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INITIAL-BOUNDARY VALUE PROBLEMS FOR QUASILINEAR
DISPERSIVE EQUATIONS POSED ON A BOUNDED INTERVAL

ANDREI V. FAMINSKII, NIKOLAI A. LARKIN

Abstract. This paper studies nonhomogeneous initial-boundary value prob-

lems for quasilinear one-dimensional odd-order equations posed on a bounded
interval. For reasonable initial and boundary conditions we prove existence

and uniqueness of global weak and regular solutions. Also we show the ex-
ponential decay of the obtained solution with zero boundary conditions and

right-hand side, and small initial data.

1. Introduction

This work concerns global well-posedness of nonhomogeneous initial-boundary
value problems for general odd-order quasilinear partial differential equations

ut + (−1)l+1∂2l+1
x u+

2l∑
j=0

aj∂
j
xu+ uux = f(t, x), (1.1)

where l ∈ N, aj are real constants. This class of equations includes well-known
Korteweg-de Vries and Kawahara equations which model the dynamics of long
small-amplitude waves in various media [3, 30, 42].

Our study is motivated by physics and numerics and our main goal is to for-
mulate a correct nonhomogeneous initial-boundary value problem for (1.1) in a
bounded interval and to prove the existence and uniqueness of global in time weak
and regular solutions in a large scale of Sobolev spaces as well as to study decay
of solutions while t → ∞. Dispersive equations such as KdV and Kawahara equa-
tions have been developed for unbounded regions of wave propagations, however, if
one is interested in implementing numerical schemes to calculate solutions in these
regions, there arises the issue of cutting off a spatial domain approximating un-
bounded domains by bounded ones. In this occasion some boundary conditions are
needed to specify the solution. Therefore, precise mathematical analysis of bound-
ary value problems in bounded domains for general dispersive equations is welcome
and attracts attention of specialists in the area of dispersive equations, especially
KdV and BBM equations, [2, 5, 8, 7, 9, 10, 11, 12, 13, 14, 18, 17, 21, 22, 23, 24, 26,
27, 28, 29, 33, 34, 35, 36, 39, 45, 46]. Cauchy problem for dispersive equations of
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high orders was successfully explored by various authors, [4, 15, 16, 21, 31, 41, 44].
On the other hand, we know few published results on initial-boundary value prob-
lems posed on a finite interval for general nonlinear odd-order dispersive equations,
such as the Kawahara equation, see [19, 20, 37].

In this paper we study an initial-boundary value problem for (1.1) in a rectangle
QT = (0, T )× (0, 1) with initial data

u(0, x) = u0(x), x ∈ (0, 1), (1.2)

and boundary data

∂j
xu(t, 0) = µj(t), j = 0, . . . , l − 1, (1.3)

∂j
xu(t, 1) = νj(t), j = 0, . . . , l, t ∈ (0, T ). (1.4)

Well-posedness of such a problem for a linearized version of (1.1) with homogeneous
initial and boundary data (1.2)–(1.4) was established in [40]. It should be noted
that imposed boundary conditions are reasonable at least from mathematical point
of view, see comments in [19].

The theory of global solvability of dispersive equations is based on conservation
laws, the first one – in L2. Let u(t, x) be a sufficiently smooth and decaying while
|x| → ∞ solution of an initial value problem for (1.1) (where a2j = 0, f ≡ 0), then∫

R
u2 dx = const.

The analogous equality can be written for problem (1.1)–(1.4) in the case of zero
boundary data. In the general case one has to make this data zero with the help
of a certain auxiliary function. In the present paper we construct a solution of an
initial-boundary value problem for the linear homogeneous equation

ut + (−1)l+1∂2l+1
x u = 0 (1.5)

with the same initial and boundary data (1.2)–(1.4) and use it as such an auxiliary
function. This idea gives us an opportunity to establish our existence results for
(1.1) under natural assumptions on boundary data (see Remark 2.11 below).

Another important fact is extra smoothing of solutions in comparison with initial
data. In a finite domain it was first established for the KdV equation in [33, 10, 11]
based on multiplication of the equation by (1 + x)u and consequent integration.
In our case, we also have an extra smoothing effect. Roughly speaking, if u0 ∈
H(2l+1)k(0, 1), then u ∈ L2(0, T ;H(2l+1)k+l(0, 1)).

It has been shown in [35, 36] that the KdV equation is implicitly dissipative.
This means that for small initial data the energy decays exponentially as t→ +∞
without any additional damping terms in the equation. Moreover, the energy decays
even for the modified KdV equation with a linear source term, [36]. In the present
paper we prove that this phenomenon takes place for general dispersive equations
of odd-orders.

The paper has the following structure. Section 2 contains main notations and
definitions. The main results of the paper on well-posedness of the considered prob-
lem are also formulated in this section. In Section 3 we study the aforementioned
initial-boundary value problem for equation (1.5). Section 4 is devoted to the corre-
sponding problem for a complete linear equation. In Section 5 local well-posedness
of the original problem is established. Section 6 contains global a priori estimates.
Finally, the decay of small solutions, while t→ +∞, is studied in Section 7.
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2. Notation and statement of main results

For any space of functions, defined on the interval (0, 1), we omit the symbol
(0, 1), for example, Lp = Lp(0, 1), Hk = Hk(0, 1), C∞0 = C∞0 (0, 1) etc. Define
linear differential operators in L2 with constant coefficients

P0 ≡
2l∑

j=0

aj∂
j
x, P ≡ (−1)l+1∂2l+1

x + P0.

The main assumption on P0 is the following.

Definition 2.1. We say that the operator P0 satisfies Assumption A if either

(−1)ja2j ≥ 0, j = 1, . . . , l,

or there is a natural number m ≤ l such, that

(−1)ma2m > 0 and a2j = 0, j = m+ 1, . . . , l.

Lemma 2.2. Assumption A is equivalent to the following property: There exists a
constant c0 ≥ 0 such that for any function ϕ ∈ H2l+1, ϕ(0) = · · · = ϕ(l−1)(0) = 0,
ϕ(1) = · · · = ϕ(l−1)(1) = 0,

(P0ϕ,ϕ) ≥ −c0‖ϕ‖2L2 (2.1)

(here and further (·, ·) denotes scalar product in L2).

Proof. Sufficiency of Assumption A is obvious (in the second case by virtue of the
Ehrling inequality, [1]).

In order to prove necessity, assume that there exists a natural m ≤ l such that
a2j = 0, j = m+ 1, . . . , l. Consider a set of functions

ϕλ(x) ≡ λ1/2−mϕ(λx)

for certain ϕ ∈ C∞0 , ϕ 6≡ 0, and λ ≥ 1 and write down (2.1) for ϕλ:

(P0ϕλ, ϕλ) =
m∑

j=0

(−1)ja2jλ
2(j−m)‖ϕ(j)‖2L2 ≥ −c0λ−2m‖ϕ‖2L2 .

It follows for λ→ +∞ that (−1)ma2m ≥ 0. �

Lemma 2.3. If the operator P0 satisfies Assumption A, then for any function ϕ
as in Lemma 2.2

(Pϕ,ϕ) ≥ −c0‖ϕ‖2L2 −
1
2
(
ϕ(l)(1)

)2
. (2.2)

Moreover, for certain positive constants c1, c2

(Pϕ, (1 + x)ϕ) ≥ c1‖ϕ(l)‖2L2 − c2‖ϕ‖2L2 −
(
ϕ(l)(1)

)2
. (2.3)

Proof. Inequality (2.2) is obvious because

(−1)l+1(ϕ(2l+1), ϕ) = −1
2
(
ϕ(l)

)2∣∣1
0
.

Then integration by parts yields

(−1)l+1(ϕ(2l+1), (1 + x)ϕ) =
2l + 1

2
‖ϕ(l)‖2L2 +

1
2
(
ϕ(l)(0)

)2 −
(
ϕ(l)(1)

)2
,

a2l(ϕ(2l), (1 + x)ϕ) = (−1)la2l‖(1 + x)1/2ϕ(l)‖2L2 ≥ 0;
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and for j ≤ l − 1 again with the use of the Ehrling inequality

a2j+1(ϕ(2j+1), (1 + x)ϕ) + a2j(ϕ(2j), (1 + x)ϕ)

= (−1)j+1 2j + 1
2

a2j+1‖ϕ(j)‖2L2 + (−1)ja2j‖(1 + x)1/2ϕ(j)‖2L2

≥ −δ‖ϕ(l)‖2L2 − c(δ)‖ϕ‖2L2 ,

where δ > 0 can be chosen arbitrary small, we obtain (2.3). �

Let F and F−1 be respectively the direct and inverse Fourier transforms of a
function f . For s ∈ R define the fractional order Sobolev space

Hs(R) =
{
f : F−1[(1 + |ξ|2) s

2 f̂(ξ)] ∈ L2(R)
}

and for a certain interval I ⊂ R let Hs(I) be a space of restrictions on I of functions
from Hs(R). Define also

Hs
0(I) =

{
f ∈ Hs(R) : supp f ⊂ I

}
.

If ∂I is a finite part of the boundary of the interval I, then for s ∈ (k+1/2, k+3/2),
where k ≥ 0 – integer,

Hs
0(I) =

{
f ∈ Hs(I) : f (j)

∣∣
∂I

= 0, j = 0, . . . , k
}
.

Note, that Hs
0(I) = Hs(I) for s ∈ [0, 1/2).

If X is a certain Banach (or full countable-normed) space, define by Cb(I;X ) a
space of continuous bounded mappings from I to X . Let

Ck
b (I;X ) =

{
f(t) : ∂j

t f ∈ Cb(I;X ), j = 0, . . . , k},

C∞b (I;X ) =
{
f(t) : ∂j

t f ∈ Cb(I;X ), ∀j ≥ 0}.

If I is a bounded interval, the index b is omitted.
The symbol Lp(I;X ) is used in the usual sense for the space of Bochner mea-

surable mappings from I to X , summable with order p (essentially bounded if
p = +∞).

Next we introduce some special functional spaces.

Definition 2.4. For integer k ≥ 0, T > 0 and an interval (bounded or unbounded)
I ⊂ R define

Xk((0, T )× I) = {u(t, x) : ∂n
t u ∈ C([0, T ];H(2l+1)(k−n)(I))

∩ L2(0, T ;H(2l+1)(k−n)+l(I)), n = 0, . . . , k},
Mk((0, T )× I)

= {f(t, x) : ∂k
t f ∈ L2(0, T ;H−l(I)), ∂n

t f ∈ C([0, T ];H(2l+1)(k−n−1)(I))

∩ L2(0, T ;H(2l+1)(k−n)−l−1(I)), n = 0, . . . , k − 1}.

Obviously,
‖P0u‖Mk((0,T )×I)) ≤ c‖u‖Xk((0,T )×I)). (2.4)

In fact, we construct solutions to problem (1.1)–(1.4) in the spaces Xk(QT ) for
the right parts of equation (1.1) in the spaces Mk(QT ). To describe properties of
boundary functions µj , νj we use the following functional spaces.
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Definition 2.5. Let s ≥ 0, m = l − 1 or m = l, define

Bm
s (0, T ) =

m∏
j=0

Hs+(l−j)/(2l+1)(0, T ).

Also we use auxiliary subsets of Bm
s (0, T ):

Bm
s0(0, T ) =

m∏
j=0

H
s+(l−j)/(2l+1)
0 (R+)

∣∣
(0,T )

, R+ = (0,+∞).

For the study of properties of equation (1.5) we need more sophisticated spaces
than Xk.

Definition 2.6. For s ≥ 0, I ⊂ R define

Ys((0, T )× I) ={u(t, x) : ∂n
t u ∈ C([0, T ];H(2l+1)(s−n)(I)), n = 0, . . . , [s],

∂j
xu ∈ Cb(I;Hs+(l−j)/(2l+1)(0, T )), j = 0, . . . , [(2l + 1)s] + l}.

Obviously, Yk(QT ) ⊂ Xk(QT ). The spaces Ys originate from internal properties
of the linear operator ∂t + (−1)l+1∂2l+1

x . In fact, consider an initial value problem
in a strip ΠT = (0, T ) × R for (1.5) with the initial data (1.2). This problem was
studied in [31]. In particular, if u0 ∈ H(2l+1)s(R), then for any T > 0 there exists
a solution of (1.5), (1.2), S(t, x;u0), given by the formula

S(t, x;u0) = F−1
x [eiξ2l+1tû0(ξ)](x). (2.5)

For this solution for any t ∈ R and integer 0 ≤ n ≤ s, 0 ≤ j ≤ (2l + 1)(s− n)

‖∂n
t ∂

j
xS(t, ·;u0)‖L2(R) = ‖u((2l+1)n+j)

0 ‖L2(R), (2.6)

and for any x ∈ R and integer 0 ≤ j ≤ (2l + 1)s+ l

‖Ds+(l−j)/(2l+1)
t ∂j

xS(·, x;u0)‖L2(R) = c(l)‖D(2l+1)s
x u0‖L2(R), (2.7)

where the symbol Ds denotes the Riesz potential of the order −s. In particular,
the traces of ∂j

xS for x = 0, j = 0, . . . ,m = l− 1, and x = 1, j = 0, . . . ,m = l lie in
Bm

s (0, T ). To formulate compatibility conditions for the original problem we now
introduce certain special functions.

Definition 2.7. Let Φ0(x) ≡ u0(x) and for natural n

Φn(x) ≡ ∂n−1
t f(0, x)− PΦn−1(x)−

n−1∑
m=0

(
n− 1
m

)
Φm(x)Φ′n−m−1(x).

Now we can present the main results of this paper.

Theorem 2.8 (local well-posedness). Let the operator P0 satisfy Assumption A.
Let u0 ∈ H(2l+1)k(0, 1), (µ0, . . . , µl−1) ∈ Bl−1

k (0, T ), (ν0, . . . , νl) ∈ Bl
k(0, T ), f ∈

Mk(QT ) for some T > 0 and integer k ≥ 0. Assume also that µ(n)
j (0) = Φ(j)

n (0),

j = 0, . . . , l−1, ν(n)
j (0) = Φ(j)

n (1), j = 0, . . . , l, for 0 ≤ n ≤ k−1. Then there exists
t0 ∈ (0, T ] such that (1.1)–(1.4) is well-posed in Xk(Qt0).

Theorem 2.9 (global well-posedness). Let the hypothesis of Theorem 2.8 be sat-
isfied and, in addition, if k = 0, then f ∈ L1(0, T ;L2), and if l = 1, k = 0,
then µ0, ν0 ∈ H1/3+ε(0, T ) for a certain ε > 0. Then (1.1)–(1.4) is well-posed in
Xk(QT ).
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Remark 2.10. A problem is well-posed in the space Xk, if there exists a unique
solution u(t, x) in this space and the map (u0, (µ0, . . . , µl−1), (ν0, . . . , νl), f) 7→ u is
Lipschitz continuous on any ball in the corresponding norms.

Remark 2.11. Properties (2.7) of the solution S to the initial-value problem (1.5),
(1.2) show that the smoothness conditions on the boundary data in our results are
natural (with the only exception in the case l = 1, k = 0 for global results) because
they originate from the properties of the operator ∂t + (−1)l+1∂2l+1

x .

Remark 2.12. All these well-posedness results can be easily generalized for an
equation of (1.1) type with a nonlinear term g(u)ux, where a sufficiently smooth
function g has not more than a linear growth rate.

3. Linear problem for a homogeneous equation

The goal of this section is to construct solutions to an initial-boundary value
problem in QT for equation (1.5) with initial and boundary data (1.2)–(1.4) in the
spaces Ys(QT ). Uniqueness will be discussed in the next section for more general
linear equations.

In what follows, we need simple properties of roots rm(λ, ε), m = 0, . . . , 2l of an
algebraic equation

r2l+1 = (−1)l(ε+ iλ), ε ≥ 0, λ ∈ R, (λ, ε) 6= (0, 0). (3.1)

An enumeration of these roots can be chosen such that they are continuous with
respect to (λ, ε), rm(−λ, ε) = rm(λ, ε),

Re rm < 0, m = 0, . . . , l − 1; Re rm > 0, m = l, . . . , 2l − 1; (3.2)

Re r2l > 0, ε > 0; Re r2l = 0, ε = 0. (3.3)

It is obvious that for any m and j 6= m

|rm| = (λ2 + ε2)1/(4l+2), |rm − rj | = c(l,m, j)(λ2 + ε2)1/(4l+2). (3.4)

Denote rm(λ) ≡ rm(λ, 0), then

|Re rm(λ)| = c(l,m)|λ|1/(2l+1), m = 0, . . . , 2l − 1; r2l(λ) = iλ1/(2l+1). (3.5)

To construct the desired solutions to the problem in a bounded rectangle, we
first consider corresponding problems in half-strips and start with a problem in a
right one: Π+

T = (0, T )× R+.

Lemma 3.1. Let u0 ∈ H(2l+1)s(R+), (µ0, . . . , µl−1) ∈ Bl−1
s (0, T ) for some T > 0

and s ≥ 0 such that s+ l−j
2l+1−

1
2 is non-integer for any j = 0, . . . , l−1. Assume also

that µ(n)
j (0) = (−1)nlu

((2l+1)n+j)
0 (0) for n = 0, . . . , [s+ l−j

2l+1 −
1
2 ], j = 0, . . . , l − 1.

Then there exists a solution to problem (1.5), (1.2), (1.3) u(t, x) ∈ Ys(Π+
T ) such

that

‖u‖Ys(Π+
T ) ≤ c(T, l, s)

(
‖u0‖H(2l+1)s(R+) + ‖(µ0, . . . , µl−1)‖Bl−1

s (0,T )

)
. (3.6)

Proof. We construct the desired solution in the form

u(t, x) = S(t, x;u0) + w(t, x), (3.7)

where u0 is extended to the whole real line R in the same class H(2l+1)s with an
equivalent norm, the function S is defined by formula (2.5) and w(t, x) is a solution
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to the problem in Π+
T for equation (1.5) with zero initial data (1.2) and boundary

data
∂j

xw(t, 0) = σj(t), j = 0, . . . , l − 1, (3.8)
where σj(t) ≡ µj(t)− ∂j

xS(t, 0;u0). Note that, by virtue of (2.7) and compatibility
conditions, (σ0, . . . , σl−1) ∈ Bl−1

s0 (0, T ).
Assume at first that all functions σj ∈ C∞0 (R+). In this case, according to

[43], there exists a solution w(t, x) and w ∈ C∞([0, T ];H∞(R+)) for any T > 0.
Moreover, if σj(t) = 0 for t ≥ T0 > 0 and all j, then it is easy to show that for
t ≥ T0 and all integer n ≥ 0

d

dt
‖∂n

t w‖L2(R+) ≤ 0, (3.9)

whence with the use of (1.5) itself one can prove w ∈ C∞b (R+;H∞(R+)).
Therefore, for any p = ε+ iλ, where ε > 0, we can define the Laplace transform

w̃(p, x) ≡
∫

R+

e−ptw(t, x) dt. (3.10)

The function w̃(p, x) is a solution to the problem

pw̃(p, x) + (−1)l+1∂2l+1
x w̃(p, x) = 0, x ≥ 0, (3.11)

∂j
xw̃(p, 0) = σ̃j(p) ≡

∫
R+

e−ptσj(t) dt, j = 0, . . . , l − 1. (3.12)

Since w̃(p, x) → 0 as x→ +∞, it follows from (3.2)–(3.4) that

w̃(p, x) =
l−1∑
m=0

l−1∑
k=0

cmk(l)(λ2 + ε2)−k/(4l+2)erm(λ,ε)xσ̃k(ε+ iλ).

Using the formula of inversion of the Laplace transform and passing to the limit as
ε→ +0, we find

w(t, x) =
l−1∑
m=0

l−1∑
k=0

cmk(l)F−1
t

[
|λ|−k/(2l+1)erm(λ)xσ̂k(λ)

]
(t)

≡
l−1∑
m=0

l−1∑
k=0

cmk(l)wmk(t, x).

(3.13)

Now consider the integral

Im(t, x) ≡
∫

R
eiλt+rm(λ)xf(λ) dλ, m = 0, . . . , l − 1,

and establish that, uniformly with respect to t ∈ R,

‖Im(t, ·)‖L2(R+) ≤ c(l,m)
∥∥|λ|l/(2l+1)f(λ)

∥∥
L2(R)

. (3.14)

The proof of (3.14) is based on the following fundamental inequality from [6]: If a
continuous function γ(ξ) satisfies an inequality Re γ(ξ) ≤ −ε|ξ| for some ε > 0 and
all ξ ∈ R, then ∥∥∫

R
eγ(ξ)xf(ξ) dξ

∥∥
L2(R+)

≤ c(ε)‖f‖L2(R). (3.15)

Changing variables ξ = λ1/(2l+1), we derive from (3.15) (since Re rm(ξ2l+1) =
−c(l,m)|ξ|)

‖Im‖L2(R+) ≤ c(l,m)‖ξ2lf(ξ2l+1)‖L2(R)
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which proves (3.14).
Applying (3.14) to (3.13) yields, by virtue of (3.3), (3.4), that uniformly with

respect to t ∈ R for n = 0, . . . , [s], j = 0, . . . , [(2l + 1)(s− n)]

‖∂n
t ∂

j
xwmk(t, ·)‖L2(R+) ≤ c(l,m, s)‖σk‖Hn+(l+j−k)/(2l+1)(R). (3.16)

Next, let
σk0 ≡ F−1 [σ̂k(λ)χ(λ)] , σk1 ≡ σk − σk0,

where χ is the characteristic function of the interval (−1, 1), and represent wmk as
a sum of two corresponding functions wmk0 and wmk1. Then, by virtue of (3.16),
uniformly with respect to x ≥ 0 for j = 0, . . . , [(2l + 1)s] + l

‖∂j
xwmk0(·, x)‖Hs+(l−j)/2l+1)(0,T ) ≤ c(T )‖wmk0‖C[s]+2([0,T ];H[(2l+1)s]+l+1(R+))

≤ c(l, s, T )‖σk0‖H2s+4(R)

≤ c1(l, s, T )‖σk‖L2(R)

(3.17)

and since Re rm(λ) ≤ 0,

‖∂j
xwmk1(·, x)‖Hs+(l−j)/(2l+1)(R) ≤ c(l, k)‖σk‖H(s+(l−k)/(2l+1)(R). (3.18)

Combining (2.6), (2.7), (3.7), (3.8), (3.13), (3.16)–(3.18) we derive (3.6) in the
smooth case and via closure in the general case. �

Corollary 3.2. Let J(t, x;σ0, . . . , σl−1) denotes the solution to the problem in Π+
T

for equation (1.5) with zero initial data and boundary data (3.8) (where w must be
substituted by u) constructed in Lemma 3.1 . Then J is infinitely differentiable for
x > 0; and for any x0 > 0 and integer n, j ≥ 0

sup
x≥x0

|∂n
t ∂

j
xJ(t, x)| ≤ c(l, n, j, x−1

0 )
l−1∑
m=0

‖σm‖L2(0,T ). (3.19)

Proof. From representation (3.13) we obtain

∂n
t ∂

j
xwmk(t, x) = F−1

t

[
(iλ)nrj

m(λ)|λ|−k/(2l+1)erm(λ)xσ̂k(λ)
]
(t),

where, by virtue of (3.2) and (3.5),

Re rm(λ)x ≤ −c(l,m)|λ|1/(2l+1)x0, |λ|n+ j−k
2l+1 e−c(l,m)|λ|1/(2l+1)x0 ∈ L2(R).

�

Now consider (1.5), (1.2) in a half-strip Π−
T = (0, T )× R−, R− = (−∞, 0), with

boundary data
∂j

xu(t, 0) = νj(t), j = 0, . . . , l. (3.20)

Lemma 3.3. Let u0 ∈ H(2l+1)s(R−), (ν0, . . . , νl) ∈ Bl
s(0, T ) for some T > 0 and

s ≥ 0 such that s+ l−j
2l+1 −

1
2 is non-integer for any j = 0, . . . , l. Assume also that

ν
(n)
j (0) = (−1)nlu

((2l+1)n+j)
0 (0) for n = 0, . . . , [s + l−j

2l+1 −
1
2 ], j = 0, . . . , l. Then

there exists a solution to problem (1.5), (1.2), (3.20), u(t, x) ∈ Ys(Π−
T ), such that

‖u‖Ys(Π−T ) ≤ c(T, l, s)
(
‖u0‖H(2l+1)s(R−) + ‖(ν0, . . . , νl)‖Bl

s(0,T )

)
. (3.21)
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Proof. The scheme of the proof repeats the one of Lemma 3.1. The desired solution
is constructed in the form (3.7), where w is a solution to the problem in Π−

T for
equation (1.5) with zero initial data and boundary data

∂j
xw(t, 0) = σj(t) ≡ νj(t)− ∂j

xS(t, 0;u0), j = 0, . . . , l. (3.22)

By virtue of compatibility conditions, (σ0, . . . , σl) ∈ Bl
s0(0, T ).

Assuming temporarily that all functions σj ∈ C∞0 (R+), results of [43] provide
that there exists a solution to this problem w ∈ C∞b (Rt

+;H∞(R−)) (where inequal-
ity (3.9) transforms into a corresponding equality). The Laplace transform w̃(p, x),
given by formula (3.10), satisfies (3.11) for x ≤ 0 and (l + 1) boundary conditions
(3.12). Using the properties of the roots of (3.1), by analogy with (3.13), one can
easily derive

w(t, x) =
2l∑

m=l

l∑
k=0

cmk(l)F−1
t

[
|λ|−k/(2l+1)erm(λ)xσ̂k(λ)

]
(t)

≡
2l∑

m=l

l∑
k=0

cmk(l)wmk(t, x).

(3.23)

Similarly to (3.16) for m = l, . . . , 2l − 1; n = 0, . . . , [s]; j = 0, . . . , [(2l + 1)(s− n)];
uniformly with respect to t ∈ R

‖∂n
t ∂

j
xwmk(t, ·)‖L2(R−) ≤ c(l,m, s)‖σk‖Hn+(l+j−k)/(2l+1)(R).

For m = 2l, changing variables ξ = λ1/(2l+1) and using (2.5) and (3.5), we find

w(2l)k = (2l + 1)S(t, x;F−1
x

[
|ξ|2l−kσ̂k(ξ2l+1)

]
),

and, by virtue of (2.6), uniformly with respect to t ∈ R

‖∂n
t ∂

j
xw(2l)k(t, ·)‖L2(R) = c(l)‖|ξ|(2l+1)n+2l+j−kσ̂k(ξ2l+1)‖L2(R)

≤ c1(l)‖σk‖Hn+(l+j−k)/(2l+1)(R).

Since Re rk(λ) ≥ 0, m = l, . . . , 2l, similarly to (3.17), (3.18), one can obtain that
for j = 0, . . . , [(2l + 1)s] + l uniformly with respect to x ≤ 0

‖∂j
xwmk(·, x)‖Hs+(l−j)/(2l+1)(0,T )) ≤ c(l, s, T, k)‖σk‖Hs+(l−k)/(2l+1)(R).

The end of the proof is the same as in Lemma 3.1. �

Now we pass to a problem on a bounded rectangle.

Lemma 3.4. Let u0 ∈ H(2l+1)s, (µ0, . . . , µl−1) ∈ Bl−1
s (0, T ), (ν0, . . . , νl) ∈

Bl
s(0, T ) for some T > 0 and s ≥ 0 such that s + l−j

2l+1 −
1
2 is non-integer for

any j = 0, . . . , l. Assume also that µ(n)
j (0) = (−1)nlu

((2l+1)n+j)
0 (0), j = 0, . . . , l−1,

ν
(n)
j (0) = (−1)nlu

((2l+1)n+j)
0 (1), j = 0, . . . , l, for n = 0, . . . , [s + l−j

2l+1 −
1
2 ]. Then

there exists a solution to problem (1.5), (1.2)–(1.4), u(t, x) ∈ Ys(QT ), and the
following inequality holds:

‖u‖Ys(QT ) ≤ c(T, l, s)
(
‖u0‖H(2l+1)s

+ ‖(µ0, . . . , µl−1)‖Bl−1
s (0,T ) + ‖(ν0, . . . , νl)‖Bl

s(0,T )

)
.

(3.24)
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Proof. We construct the desired solution in the form

u(t, x) = w(t, x) + v(t, x), (3.25)

where w(t, x) is a solution to an initial boundary-value problem in Π−
T,1 = (0, T )×

(−∞, 1) for equation (1.5) with initial and boundary conditions (1.2), (1.4) written
for the function w, (u0 is extended here to the half-line (−∞, 1) in the same class
H(2l+1)s with an equivalent norm). According to Lemma 3.3, the solution w ∈
Ys(Π−

T,1) exists and

‖w‖Ys(Π−T,1)
≤ c(T, l, s)

(
‖u0‖H(2l+1)s + ‖(ν0, . . . , νl)‖Bl

s(0,T )

)
. (3.26)

Let
αj(t) ≡ µj(t)− ∂j

xw(t, 0), j = 0, . . . , l − 1.
It follows from (3.26)

‖(α0, . . . , αl−1)‖Bl−1
s (0,T ) ≤ c(T, l, s)

(
‖u0‖H(2l+1)s + ‖(µ0, . . . , µl−1)‖Bl−1

s (0,T )

+ ‖(ν0, . . . , νl)‖Bl
s(0,T )

)
(3.27)

and (α0, . . . , αl−1) ∈ Bl−1
s0 (0, T ) by virtue of the compatibility conditions in the

point (0, 0).
Consider the following problem for the function v, in QT ,

vt + (−1)l+1∂2l+1
x v = 0, (3.28)

v(0, x) = 0, x ∈ (0, 1), (3.29)

∂j
xv(t, 0) = αj(t), j = 0, . . . , l − 1, (3.30)

∂j
xv(t, 1) = 0, j = 0, . . . , l, t ∈ (0, T ). (3.31)

To construct a solution, we consider the function J(t, x;σ0, . . . , σl−1) ∈ Ys(Π+
T ) as

in Corollary 3.2 for a certain set of functions (σ0, . . . , σl−1) ∈ Bl−1
s0 (0, T ). Let

βj(t) ≡ ∂j
xJ(t, 1;σ0, . . . , σl−1), j = 0, . . . , l.

Due to (3.19), for any δ ∈ (0, T ]

‖(β0, . . . , βl)‖Bl
s(0,δ) ≤ c(l, s)δ1/2‖(σ0, . . . , σl−1)‖Bl−1

s (0,δ).

Moreover, (β0, . . . , βl) ∈ Bl
s0(0, δ).

Consider in the half-strip Π−
δ,1 a problem of the (1.5), (1.2), (1.4) type, where

u0 ≡ 0, νj ≡ −βj for j = 0, . . . , l. It follows again from Lemma 3.3 that a solution
to this problem V ∈ Ys(Π−

δ,1) exists and, in particular, if

γj(t) ≡ ∂j
xV (t, 0), j = 0, . . . , l − 1,

then (γ0, . . . , γl−1) ∈ Bl−1
s0 (0, δ) and

‖(γ0, . . . , γl−1)‖Bl−1
s (0,δ) ≤ c(T, l, s)‖(β0, . . . , βl)‖Bl

s(0,δ)

≤ c1(T, l, s)δ1/2‖(σ0, . . . , σl−1)‖Bl−1
s (0,δ).

(3.32)

Consider a linear operator Γ : (σ0, . . . , σl−1) 7→ (γ0, . . . , γl−1) in the space Bl−1
s0 (0, δ).

For small δ = δ(T, l, s) estimate (3.32) provides that the operator (E+Γ) is invert-
ible (E is the identity operator) and setting

σj(t) ≡ (E + Γ)−1αj(t), j = 0, . . . , l − 1,
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we obtain the desired solution to problem (3.28)–(3.31),

v(t, x) ≡ J(t, x;σ0, . . . , σl−1) + V (t, x),

where
‖v‖Ys(Qδ) ≤ c(T, l, s)‖(α0, . . . , αl−1)‖Bl−1

s (0,T ). (3.33)

Thus, the solution u(t, x) to problem (1.5), (1.2)–(1.4) in the rectangle Qδ has been
constructed and, according to (3.26), (3.27), (3.33), estimated in the space Ys(Qδ)
by the right part of (3.24). Moving step by step (δ is constant), we obtain the
desired solution in the whole rectangle QT . �

Remark 3.5. The idea to construct solutions in a bounded rectangle from solutions
in half-strips for the linearized KdV equation goes back to the paper [29], but the
method of study of these problems in the infinite domains in [29] differs from the
one used here. The method of the present paper is analogous to [25].

4. Complete linear problem

In this section we consider an initial-boundary value problem in QT for the
equation

ut + Pu = f(t, x) (4.1)
with initial and boundary conditions (1.2)–(1.4). First of all we introduce auxiliary
functions necessary for compatibility conditions.

Definition 4.1. Let Φ̃0(x) ≡ u0(x) and for natural n

Φ̃n(x) ≡ ∂n−1
t f(0, x)− P Φ̃n−1(x).

Remark 4.2. It is easy to see that

Φ̃n = (−1)nPnu0 +
n−1∑
m=0

(−1)n−m−1Pn−m−1∂m
t f

∣∣
t=0

.

Lemma 4.3. Let the operator P0 satisfies Assumption A. Let u0 ∈ H(2l+1)k,
(µ0, . . . , µl−1) ∈ Bl−1

k (0, T ), (ν0, . . . , νl) ∈ Bl
k(0, T ), f ∈ Mk(QT ) for some T > 0

and integer k ≥ 0. Assume also that µ(n)
j (0) = Φ̃(j)

n (0), j = 0, . . . , l − 1, ν(n)
j (0) =

Φ̃(j)
n (1), j = 0, . . . , l, for n = 0, . . . , k − 1. Then there exists a unique solution to

problem (4.1), (1.2)–(1.4) u(t, x) ∈ Xk(QT ) and for any t0 ∈ (0, T ]

‖u‖Xk(Qt0 ) ≤ c(T, l, k)
(
‖u0‖H(2l+1)k + ‖f‖Mk(Qt0 )

+ ‖(µ0, . . . , µl−1)‖Bl−1
k (0,T ) + ‖(ν0, . . . , νl)‖Bl

k(0,T )

)
.

(4.2)

For any natural n ≤ k the function ∂n
t u ∈ Xk−n(QT ) is a solution to a problem

of the (4.1), (1.2)–(1.4) type, where u0, µj, νj, f are substituted by Φ̃n, µ(n)
j , ν(n)

j ,
∂n

t f .

Proof. It is sufficient to prove this lemma for k = 0 and k = 1. The cases k ≥ 2 are
similar to k = 1. First consider the case k = 0. Let ψ(t, x) ∈ Y0(QT ) be a solution
to problem (1.5), (1.2)–(1.4) for the same u0, µj , νj constructed in Lemma 3.4.
Consider the initial-boundary value problem in QT for the equation

vt + Pv = f − P0ψ ≡ F (4.3)
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with zero initial and boundary conditions of the (1.2)–(1.4) type. By virtue of (2.4),
F ∈M0(QT ) with an appropriate estimate of its norm in M0(Qt0) by the right part
of (4.2). Define

w(t, x) ≡ v(t, x)e−λt, λ ≥ c0,

where c0 is the constant from (2.1). Then (4.3) transforms into

wt + (P + λE)w = e−λtF ≡ F1. (4.4)

Consider the corresponding initial-boundary value problem for the function w as
an abstract Cauchy problem in L2

wt = Aw + F1, w
∣∣
t=0

= 0, (4.5)

where A = −(P + λE) is the closed linear operator in L2 with the domain

D(A) =
{
g ∈ H2l+1 : g(j)(0) = g(j)(1) = g(l)(1) = 0, j = 0, . . . , l − 1

}
.

The adjoint operator A∗ is defined as

A∗ = −(P ∗ + λE),

where P ∗ is the formally adjoint operator of P , with the domain

D(A∗) =
{
g∗ ∈ H2l+1 : g∗(j)(0) = g∗(j)(1) = g∗(l)(0) = 0, j = 0, . . . , l − 1

}
.

It is easy to see that, by virtue of (2.1), both A and A∗ are dissipative which means

(Ag, g) ≤ 0, (A∗g∗, g∗) ≤ 0.

Assume F smooth, for example F ∈ C1([0, T ];H2l+1). By [38, Corollaries 4.4,
Chapter 1 and 2.10 of Chapter 4], A is the infinitesimal generator of a C0-semigroup
of contraction in L2 and the Cauchy problem (4.5) has a unique strong solution
w ∈ C([0, T ];H2l+1) ∩ C1([0, T ];L2). Consequently, the initial-boundary value
problem for (4.3) with zero initial and boundary conditions has a unique solution
v(t, x) in the same class.

Multiplying (4.3) by 2(1 + x)v(t, x) and integrating over Qt, t ∈ (0, T ], we find
that by virtue of (2.3)

‖v(t, ·)‖2L2 + c1‖∂l
xv‖2L2(Qt)

≤ c‖v‖2L2(Qt)
+ c‖F‖2L2(0,t;H−l). (4.6)

This estimate gives an opportunity to construct an appropriate solution v ∈ X0(QT )
to the considered problem in the general case F ∈ L2(0, T ;H−l) = M0(QT ) via
closure and then, by the formula

u(t, x) = v(t, x) + ψ(t, x),

a solution to problem (4.1), (1.2)–(1.4) in the same space X0(QT ) with the estimate
(4.2) for k = 0.

For k = 1, we consider the initial-boundary value problem, in QT ,

zt + Pz = ft, (4.7)

z(0, x) = Φ̃1(x), x ∈ (0, 1), (4.8)

∂j
xz(t, 0) = µ′j(t), j = 0, . . . , l − 1, (4.9)

∂j
xz(t, 1) = ν′j(t), j = 0, . . . , l, t ∈ (0, T ). (4.10)
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Note that Φ̃1 ∈ L2, hence the hypothesis of Lemma 4.1 are satisfied for this problem
in the case k = 0. Consider the solution z ∈ X0(QT ) of (4.7)–(4.10) and define

u(t, x) ≡ u0(x) +
∫ t

0

z(τ, x) dτ.

Using the compatibility conditions, it is easy to show that the function u(t, x) is a
solution to the original problem (4.1), (1.2)–(1.4) and u, ut ∈ X0(QT ). Expressing
from the equation (4.1) the derivative

∂2l+1
x u = (−1)l+1(f − ut − P0u)

and using the Ehrling inequality, one can easily obtain that ∂2l+1
x u ∈ X0(QT ), thus

to construct the desired solution u ∈ X1(QT ) with estimate (4.2) for k = 1.
Uniqueness of the considered problem in L2(QT ) can be proved via the Holmgren

principle from the existence in X1(QT ) of a solution to the adjoint problem

ϕt − P ∗ϕ = f ∈ C∞0 (QT ),

ϕ
∣∣
t=T

= 0,

∂j
xϕ

∣∣
x=0

= 0, j = 0, . . . , l,

∂j
xϕ

∣∣
x=1

= 0, j = 0, . . . , l − 1

which follows by simple change of variables from the already established existence
of a solution in the same space to the original problem. �

Corollary 4.4. Let the hypothesis of Lemma 4.3 be satisfied for k = 0, µj = νj ≡ 0
for j ≤ l − 1. Let u ∈ X0(QT ) be a solution to corresponding problem (4.1), (1.2)–
(1.4). Then for any t ∈ (0, T ]∫ 1

0

u2(t, x) dx ≤
∫ 1

0

u2
0 dx+ c

∫ t

0

∫ 1

0

u2 dxdτ + 2
∫ t

0

(f, u) dτ +
∫ t

0

ν2
l dτ. (4.11)

Proof. In the smooth case it follows from (2.2) and in the general case can be
obtained via closure. �

Remark 4.5. It was shown in [40] that in the case of zero initial and boundary
data for f ∈ L2(QT ) the solution to the problem (4.1), (1.2)–(1.4), u(t, x) : u ∈
L2(0, T ;H2l).

Properties of solutions to linear problems estimated in Lemma 4.3 are enough
for our next purposes except the case l = 1, k = 0.

Consider now an algebraic equation related to the complete linear equation in
the case l = 1

r3 + a2r
2 + a1r + a0 = −iλ, λ ∈ R \ {0}. (4.12)

Then there exists λ0 > 0 (without loss of genarality we assume that λ0 ≥ 1) such
that for |λ| ≥ λ0 there exist two roots r0(λ) and r1(λ) with properties similar to
(3.2)–(3.5), namely, for certain constants c̃ > 0, c̃1 > 0 and |λ| ≥ λ0 ≥ 1

Re r0(λ) ≤ −c̃|λ|1/3, Re r1(λ) ≥ c̃|λ|1/3, |rj(λ)| ≤ c̃1|λ|1/3, j = 0, 1. (4.13)

Let
µ00(t) ≡ F−1

t [χλ0(λ)µ̂0(λ)] (t), ν00(t) ≡ F−1
t [χλ0(λ)ν̂0(λ)] (t),

where χλ0 is the characteristic function of the interval (−λ0, λ0),

µ01(t) ≡ µ0(t)− µ00(t), ν01(t) ≡ ν0(t)− ν00(t).
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Let

ψ(t, x) ≡
(
µ00(t) + F−1

t

[
er0(λ)xµ̂01(λ)

]
(t)

)
η(1− x)

+
(
ν00(t) + F−1

t

[
er1(λ)(x−1)ν̂01(λ)

]
(t)

)
η(x),

(4.14)

where η is a certain smooth “cut-off” function, namely, η ≥ 0, η′ ≥ 0, η(x) = 0 for
x ≤ 1/4, η(x) = 1 for x ≥ 3/4. Note that ψ(t, 0) ≡ µ(t), ψ(t, 1) ≡ ν(t).

Lemma 4.6. Let µ0, ν0 ∈ H1/3+ε(0, T ) for some ε > 0. Then

ψ ∈ Y0(QT ), ψx ∈ L2(0, T ;L∞), ψt + P (∂x)ψ ∈ C∞(QT )

(with corresponding estimates).

Proof. The fact that ψ ∈ Y0(QT ) is established similarly to (3.16), (3.18) with the
use of inequalities (4.13) (it is sufficient to assume here that µ0, ν0 ∈ H1/3(0, T )).

Next, similarly to Corollary 3.2 the function J0 ≡ F−1
t

[
er0xµ̂01

]
is infinitely

differentiable for x > 0 and by virtue of (4.12) satisfies the homogeneous equation
(4.1). The same properties are valid for J1 ≡ F−1

t

[
er1(x−1)ν̂01

]
if x < 1. Therefore,

ψt + P (∂x)ψ ∈ C∞(QT ) since supp η′ ⊂ [1/4, 3/4] (here it is sufficient to assume
that µ0, ν0 ∈ L2(0, T )).

Finally, for any integer j ≥ 0

‖∂j
xJ0‖L2(R×R+) =

∥∥rj
0µ̂01

(∫
R+

e2 Re r0x dx
)1/2∥∥

L2(R)

≤ c‖|λ|j/3−1/6µ̂01‖L2(R)

≤ c1‖µ0‖Hj/3−1/6(R),

whence by interpolation it follows that for s ≥ 0

‖J0‖L2(R;Hs(R)) ≤ c‖µ0‖Hs/3−1/6(R).

Similar arguments can be applied to the function J1 and so the well-known embed-
ding H1/2+ε ⊂ L∞ provides the property ψx ∈ L2(0, T ;L∞). �

5. Results for local solutions

In this section local well-posedness for the original nonlinear problem is proved
under natural assumptions on initial and boundary data.

Proof of Theorem 2.8. For t0 ∈ (0, T ] introduce a set of functions

X̃k(Qt0) = {v(t, x) ∈ Xk(Qt0) : ∂n
t v

∣∣
t=0

= Φn, n = 0, . . . , k − 1}

and define on this set a map Λ in such a way: u = Λv ∈ X̃k(Qt0) is a solution in
Qt0 to an initial boundary value problem for the equation

ut + Pu = f − vvx (5.1)
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with initial and boundary conditions (1.2)–(1.4). Making use of Lemma 4.3, we
have to estimate ‖vvx‖Mk(Qt0 ). Let k = 0, then

‖vvx‖L2(0,t0;H−l) ≤
1
2
‖v‖2L4(Qt0 )

≤ 1
2

sup
t∈[0,t0]

‖v‖L2

(∫ t0

0

sup
x∈[0,1]

v2 dt
)1/2

≤ c sup
t∈[0,t0]

‖v‖L2

(∫ t0

0

(
‖vx‖L2‖v‖L2 + ‖v‖2L2

)
dt

)1/2

≤ c1t
1/4
0 ‖v‖2X0(Qt0 ).

(5.2)

Let k = 1, then

‖vvx‖L2(0,t0;Hl)

≤ c
l+1∑
j=0

‖∂j
xv‖2L4(Qt0 )

≤ c1

l+1∑
j=0

sup
t∈[0,t0]

‖∂j
xv‖L2

(∫ t0

0

(
‖∂j+1

x v‖L2‖∂j
xv‖L2 + ‖∂j

xv‖2L2

)
dt

)1/2

≤ c2t
1/2
0 ‖v‖2X1(Qt0 );

similarly to (5.2),

‖(vvx)t‖L2(0,t0;H−l) ≤ ‖vvt‖L2(Qt0 )

≤ sup
t∈[0,t0]

‖vt‖L2

(∫ t0

0

sup
x∈[0,1]

v2 dt
)1/2

≤ ct
1/4
0 ‖vt‖X0(Qt0 )‖v‖X0(Qt0 )

≤ ct
1/4
0 ‖v‖2X1(Qt0 )

(5.3)

and

‖vvx‖C([0,t0];L2) ≤ ‖u0u
′
0‖L2 + ‖(vvx)t‖L1(0,t0;L2)

≤ c‖u0‖2H2l+1 + ct
1/2
0 ‖(vvx)t‖L2(Qt0 )

≤ c‖u0‖2H2l+1 + ct
1/2
0 ‖v‖C([0,t0];C1)‖vt‖L2(0,t0;H1)

≤ c‖u0‖2H2l+1 + c1t
1/2
0 ‖v‖2X1(Qt0 ).

The cases k ≥ 2 can be handled in the same manner as the case k = 1.
As a result, the map Λ exists and it follows from (4.2) that

‖Λv‖Xk(Qt0 ) ≤ c
(
1 + t

1/4
0 ‖v‖2Xk(Qt0 )

)
. (5.4)

By standard arguments, see [32], it can be derived from (5.4) that for small t0 the
map Λ transforms a certain large ball in X̃k(Qt0) into itself. Similarly to (5.4), one
can obtain for two functions v, ṽ ∈ X̃k(Qt0):

‖Λv − Λṽ‖Xk(Qt0 ) ≤ c
(
‖v‖Xk(Qt0 ), ‖ṽ‖Xk(Qt0 )

)
t
1/4
0 ‖v − ṽ‖Xk(Qt0 ),
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and t0 can be reduced in such a way that Λ becomes a contraction on this ball in
X̃k(Qt0), therefore, there exists a unique solution u ∈ Xk(Qt0) to problem (1.1)–
(1.4). Continuous dependence can be established by analogous arguments. �

Remark 5.1. The idea to use the contraction principle to establish local well-
posedness for KdV-like equations goes back to [32].

6. Results for global solutions

Theorem 2.9 succeeds from the already established local well-posedness and the
following global a priori estimates.

Lemma 6.1. Let the hypothesis of Theorem 2.9 be satisfied and u(t, x) ∈ Xk(QT ′)
be a solution to (1.1)–(1.4) for certain T ′ ∈ (0, T ]. Then

‖u‖C([0,T ′];H(2l+1)k) ≤ c, (6.1)

where the constant c depends upon T , l, k; properties of the operator P0 and the
norms of initial data, boundary data and the right-hand side of (1.1) in the spaces
from the hypothesis of the theorem hold, but do not depend on T ′.

Proof. First put k = 0. Let for l = 1 a function ψ is given by formula (4.14) and
for l ≥ 2 a function ψ ∈ X0(QT ) be a solution to (4.1), (1.2)–(1.4) for the same u0,
µj , νj and f . Then

ψ ∈ L2(0, T ;H l) ∩ C([0, T ];L2).
Define

U(t, x) ≡ u(t, x)− ψ(t, x),

F ≡ f − uux − ψt − P (∂x)ψ for l = 1 and F ≡ −uux for l ≥ 2.

Then the function U satisfies

Ut + PU = F ∈ L1(0, T ;L2) ∩ L2(0, T ;H−l),

U
∣∣
x=0

= U
∣∣
x=1

= 0, Ux

∣∣
x=1

= ν1 − ψx

∣∣
x=1

∈ L2(0, T ) for l = 1,
zero boundary conditions of (1.3), (1.4) type for l ≥ 2 and the initial condition

U(0, x) = U0(x),

where U0 ≡ u0 − ψ|t=0 ∈ L2 for l = 1 and U0 ≡ 0 for l ≥ 2. Write down inequality
(4.11) for the function U . Since

2
∫ 1

0

uuxU dx =
∫ 1

0

ψx(U2 + 2Uψ) dx,

where ψx ∈ L2(0, T ;L∞), estimate (6.1) for k = 0 (and, consequently, desired
global well-posedness) follows.

Next let k = 1, then a function u1 ≡ ut ∈ X0(QT ′) is a solution to an initial
boundary value problem for the equation

u1t + Pu1 = (f − uux)t

with initial data Φ1 = f
∣∣
t=0

−Pu0−u0u
′
0 ∈ L2 and boundary data (µ′0, . . . , µ

′
l−1) ∈

Bl−1
0 (0, T ), (ν′0, . . . , ν

′
l) ∈ Bl

0(0, T ). We use for the function u1 the inequality (4.2)
in the case k = 0. Note that, by virtue of (5.3) (where v is substituted by u), for
any t0 ∈ (0, T ′]

‖(uux)t‖L2(0,t0;H−l) ≤ ct
1/4
0 ‖u‖X0(QT ′ )

‖ut‖X0(Qt0 ).
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Since for k = 0 global well-posedness is already established and, consequently,
‖u‖X0(QT ′ )

≤ c, we first derive from inequality (4.2) that

‖ut‖X0(Qt0 ) ≤ c
(
1 + ‖ut

∣∣
t=0

‖L2 + t
1/4
0 ‖ut‖X0(Qt0 )

)
and, finally, by standard arguments the estimate

‖ut‖C([0,T ′];L2) ≤ c. (6.2)

Using the equality

∂2l+1
x u = (−1)l+1(f − ut − P0u− uux),

the Ehrling inequality, (6.1) for k = 0, and (6.2), one can obtain estimate (6.1) for
k = 1. The cases k ≥ 2 are handled similarly to the case k = 1. �

7. Decay of small solutions

Consider (1.1)–(1.4) with zero boundary data, f ≡ 0 and small initial data u0.
Define

Aj = (−1)j+1(2j + 1)a2j+1 + (−1)jσa2j , j = 0, . . . , l, (7.1)
where σ = 2 if (−1)ja2j ≥ 0, σ = 4 if (−1)ja2j < 0; (−1)l+1a2l+1 = 1.

Theorem 7.1. Let u0 ∈ L2, µj = νj = νl ≡ 0 for j = 0, . . . , l − 1, f ≡ 0 and
Assumption A is satisfied. Let

Al +
∑

j:Aj<0

23(j−l)Aj = 2K > 0 (7.2)

‖(1 + x)
1
2u0‖L2 < 3× 23(l−1)K. (7.3)

Then a unique solution u(t, x) to (1.1)–(1.4), such that u ∈ X0(QT ) for any T > 0,
satisfies the following inequality, for all t ≥ 0,

‖u(t, ·)‖2L2 ≤ 2e−κt‖u0‖2L2 , (7.4)

where
κ = 23lK +

∑
j:Aj≥0

23jAj .

Proof. First of all note that the hypothesis of Theorem 2.9 are satisfied, hence such
a unique solution exists. By Assumption A, (−1)la2l ≥ 0, hence Al ≥ 2l + 1 > 0.
Multiplying (1.1) by 2(1 + x)u(t, x) and integrating, we find

d

dt

∫ 1

0

(1 + x)u2(t, x) dx

+
l∑

j=0

∫ 1

0

[
(−1)j+1(2j + 1)a2j+1 + (−1)j2a2j(1 + x)

]
(∂j

xu)
2 dx− 2

3

∫ 1

0

u3 dx = 0.

(7.5)
(In fact, such a calculation must be first performed for smooth solutions and the
general case can be obtained via closure). We use the Friedrichs inequality as
follows: for any ϕ ∈ H l

0

‖ϕ‖L∞ ≤ 21−3l/2‖ϕ(l)‖L2 , ‖ϕ‖L2 ≤ 2−3l/2‖ϕ(l)‖L2 . (7.6)

Then ∣∣∣∫ 1

0

u3 dx
∣∣∣ ≤ ‖u‖2L∞‖u‖L2 ≤ 22−3l‖u(t, ·)‖L2‖∂l

xu‖2L2 .
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This and (7.1), (7.2) allow us to rewrite (7.5) as

d

dt

∫ 1

0

(1 + x)u2(t, x) dx+
∫ 1

0

[
2K − 1

3
23(1−l)‖(1 + x)

1
2u(t, ·)‖L2

]
(∂l

xu)
2 dx ≤ 0.

Taking into account (7.3) and exploiting standard arguments, one can prove that

‖(1 + x)
1
2u(t, ·)‖L2 < 3× 23(l−1)K for all t ≥ 0.

Returning to (7.5), we rewrite it as

d

dt

∫ 1

0

(1 + x)u2(t, x) dx+
∫ 1

0

23lKu2 dx+
∫ 1

0

∑
j:Aj≥0

23jAju
2 dx ≤ 0,

whence
d

dt

∫ 1

0

(1 + x)u2(t, x) dx+ κ

∫ 1

0

(1 + x)u2 dx ≤ 0.

From here follows (7.4). �

Remark 7.2. Zero boundary data are chosen here for simplicity in order to show
the idea of the method. In the general case similar results can be established
for a difference between the solution to problem (1.1)–(1.4) and a solution to a
certain linear problem with the same boundary data under suitable assumptions
on behavior of the solution of this linear problem as t→ +∞.

Remark 7.3. In [28] a non-trivial stationary solution to the initial-boundary value
problem for the homogeneous KdV equation under zero boundary data (1.3), (1.4)
(here l = 1) was constructed. Therefore certain assumptions on the initial data u0

are necessary for the decay of the corresponding solution as t→ +∞.
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