
Electronic Journal of Differential Equations, Vol. 2010(2010), No. 03, pp. 1–18.

ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu

ftp ejde.math.txstate.edu

A PARABOLIC-HYPERBOLIC FREE BOUNDARY PROBLEM
MODELING TUMOR GROWTH WITH DRUG APPLICATION

JI-HONG ZHAO

Abstract. In this article, we study a free boundary problem modeling the

growth of tumors with drug application. The model consists of two nonlinear

second-order parabolic equations describing the diffusion of nutrient and drug
concentration, and three nonlinear first-order hyperbolic equations describing

the evolution of proliferative cells, quiescent cells and dead cells. We deal with

the radially symmetric case of this free boundary problem, and prove that it
has a unique global solution. The proof is based on the Lp theory of parabolic

equations, the characteristic theory of hyperbolic equations and the Banach
fixed point theorem.

1. Introduction

In this article we study a free boundary problem modeling the tumor growth
with drug application, the mathematical model which neglect the drug application
was proposed by A. Friedman (cf. [13]) in 2004. This model consists of three
types of cells: proliferative cells; quiescent cells and dead cells, which we denote
the corresponding cell densities by P , Q and D, respectively. C and W represent
the concentration of nutrient and drug, respectively. We assume KB(C) is the
mitosis rate of proliferative cells when the nutrient supply is at the level C, KA(C)
and KD(C) are death rates of proliferative cells (apoptosis) and quiescent cells
(necrosis), respectively, KP (C) and KQ(C) are the transferring rate of quiescent
cells to proliferative cells and the transferring rate of proliferative cells to quiescent
cells, respectively, KR denotes the constant rate of dead cells are removed from the
tumor.

Fick’s law is assumed to describe the diffusion of the nutrient, for reasons stated
in [26, 27], the nutrient is consumed at a rate proportional to the rate of cell mitosis,
i.e., (κ1KP (C)P + κ2KQ(C)Q)C. Hence, C satisfies the following equation:

∂C

∂t
= D1∆C −

(
κ1KP (C)P + κ2KQ(C)Q

)
C in Ω(t), (1.1)

C(x, t) = C̄ on ∂Ω(t), C(x, 0) = C0(x) in Ω(0), (1.2)
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where Ω(t) represents the tumor domain at time t, D1 is the diffusion coefficient
of nutrient which is supposed to be a positive constant, κ1 and κ2 are two positive
constants, C̄ is a positive constant reflecting the constant nutrient supply that the
tumor receives from its host tissue or the solution in which it is cultivated.

Fick’s law is also assumed to describe the diffusion of the drug, we assume
(µ1G1(W )P + µ2G2(W )Q)W is the drug consumption rate function, µ1, µ2 are
two positive constants can be viewed as a measure of the drug effectiveness. Hence,
W satisfies

∂W

∂t
= D2∆W −

(
µ1G1(W )P + µ2G2(W )Q

)
W in Ω(t), (1.3)

W (x, t) = W̄ on ∂Ω(t), W (x, 0) = W0(x) in Ω(0), (1.4)

where D2 is the diffusion coefficient of drug which is supposed to be a positive
constant, W̄ is a positive constant reflecting the constant drug supply that the
tumor receives from its boundary.

Due to the proliferation and removal of cells, there is a continuous motion of
cells within the tumor, we denote this movement by the velocity fields ~v. We shall
assume that the tumor tissue is a porous medium so that by Darcy’s law, we have

~v = −∇σ in Ω(t), t > 0, (1.5)

where σ is the pressure in the tumor.
We also assume that all cells to be mixed together in the tumor which have the

same size, and the tumor is uniformly packed with cells, so that

P +Q+D = N in Ω(t), t > 0, (1.6)

where N is a total number of cells per unit volume.
The mass conservation law for the densities of the proliferative cells, quiescent

cells and dead cells in Ω(t) take the following form:
∂P

∂t
+ div(P~v) = [KB(C)−KQ(C)−KA(C)]P +KP (C)Q− ι1G1(W )P

in Ω(t), t > 0,
(1.7)

∂Q

∂t
+ div(Q~v) = KQ(C)P − [KP (C) +KD(C)]Q− ι2G2(W )Q

in Ω(t), t > 0,
(1.8)

∂D

∂t
+ div(D~v) = KA(C)P +KD(C)Q−KRD + ι1G1(W )P + ι2G2(W )Q

in Ω(t), t > 0,
(1.9)

where ι1G1(W ) is a rate of the proliferative cells become dead cells due to the
drug, ι2G2(W ) is a rate of the quiescent cells become dead cells due to the drug,
the positive constant ι1 and ι2 are the maximum possible rate of drug induced
proliferative cells and quiescent cells dead, respectively.

We take the boundary conditions for σ to be

σ = θκ on ∂Ω(t), t > 0, (1.10)
∂σ

∂n
= −Vn on ∂Ω(t), t > 0, (1.11)

and the initial data

P (x, 0) = P0(x), Q(x, 0) = Q0(x), D(x, 0) = D0(x) for x ∈ Ω(0), (1.12)
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where Ω(0) is given, θ is the surface tension, κ is the mean curvature of the tumor
surface, ∂

∂n is the derivatives in the direction n of the outward normal, and Vn is
the velocity of the free boundary ∂Ω(t) in the direction n. Equation (1.10) is based
on the assumption that the pressure σ on the surface of the tumor is proportional
to the surface tension (cf. Greenspan [18, 19]), and (1.11) is a standard kinetic
condition.

The model (1.1)–(1.12) without drug application was proposed by A. Friedman
(cf. [13]) in 2004. In [12], the authors studied this model, under the case of where
the initial data and the solution are spherically symmetric, they proved that there
exists a unique global solution. However, for three dimensional model (1.1)–(1.12),
as to our knowledge, the global existence is still an open problem. In [9], based on
the well-known theory of Hele-Shaw problem, the authors proved the local existence
and uniqueness of solution to the system (1.1)–(1.12) without drug application.

There are many mathematical tumor models involving drug therapies (cf. [20,
21, 23, 25, 28]). We know the drug can penetrate tumor tissue mainly by the mech-
anism of diffusion. In [28], the authors advanced the model which only considered
living cells and dead cells with drug application, under the condition of spherical
symmetry of the solution. In [23, 25], the authors proved that there exists a unique
global solution of the model in [28]. Since the living cells include the proliferative
cells and quiescent cells, the model in this article is more reasonable than that of
[28]. Some other tumor models and rigorous mathematical analysis of these models
we refer the reader to see [1]–[11], [14]–[17], [24] and [26]–[28], and the references
there in.

In this article, we consider the drug application, also spherically symmetric so-
lution for the system (1.1)–(1.12). It is clear that, under the condition of spherical
symmetry, for given ~v and R(t), σ can easily solved from (1.5) and (1.10). The
major difficulty lies in that there is a clear coupling between the evolution of the
cells and the nutrient (drug) diffusion-consumption process. By applying the Lp

theory of parabolic equations, the characteristic theory of hyperbolic equations and
the Banach fixed point theorem, we prove that there exists a unique global solution
of (1.1)–(1.12).

It is obvious that if we make an addition to (1.7)–(1.9), then we can get the
following equation for ~v,

div(~v) =
1
N

[KB(C)P −KRD] for x ∈ Ω(t), t > 0. (1.13)

Conversely, from (1.13) and Eqs. (1.7)–(1.9) we have

∂(P +Q+D)
∂t

+~v∇(P +Q+D) =
1
N

[KB(C)P −KRD][N − (P +Q+D)] (1.14)

for x ∈ Ω(t), t > 0. By uniqueness, we can deduce that (1.6) is equivalent to (1.13),
later on we shall use (1.13) instead of (1.6).

The model (1.1)–(1.12) is a three-dimensional tumor model, in this article we
consider the well-posedness of this problem under the case where the initial data
and the solution are spherically symmetric. Hence, we assume that C, W , P , Q
and D are spherical symmetric in the space variable, let r = |x| we denote

C = C(r, t), W = W (r, t), P = P (r, t), Q = Q(r, t), D = D(r, t)



4 J.-H. ZHAO EJDE-2010/03

for 0 ≤ r ≤ R(t), t ≥ 0, and

C0 = C0(r), W0 = W0(r), P0 = P0(r), Q0 = Q0(r), D0 = D0(r)

for 0 ≤ r ≤ R0 = R(0). We also assume that there is a scalar function v = v(r, t)
such that ~v = v(r, t)x

r . Since σ is spherically symmetric in the space variable,
as we mentioned before, we could eliminate the pressure σ and derive the model
(1.1)–(1.12) as follows:

∂C

∂t
= D1

1
r2

∂

∂r
(r2

∂C

∂r
)− F (C,P,Q)C for 0 < r < R(t), t > 0, (1.15)

∂C

∂r
(r, t) = 0 at r = 0, C(r, t) = C̄ at r = R(t) for t > 0, (1.16)

C(r, 0) = C0(r) for 0 ≤ r ≤ R0, (1.17)
∂W

∂t
= D2

1
r2

∂

∂r
(r2

∂W

∂r
)−G(W,P,Q)W for 0 < r < R(t), t > 0, (1.18)

∂W

∂r
(r, t) = 0 at r = 0, W (r, t) = W̄ at r = R(t) for t > 0, (1.19)

W (r, 0) = W0(r) for 0 ≤ r ≤ R0, (1.20)
∂P

∂t
+ v

∂P

∂r
= g11(C,W,P,Q,D)P + g12(C,W,P,Q,D)Q

+ g13(C,W,P,Q,D)D for 0 ≤ r ≤ R(t), t > 0,
(1.21)

∂Q

∂t
+ v

∂Q

∂r
= g21(C,W,P,Q,D)P + g22(C,W,P,Q,D)Q

+ g23(C,W,P,Q,D)D for 0 ≤ r ≤ R(t), t > 0,
(1.22)

∂D

∂t
+ v

∂D

∂r
= g31(C,W,P,Q,D)P + g32(C,W,P,Q,D)Q

+ g33(C,W,P,Q,D)D for 0 ≤ r ≤ R(t), t > 0,
(1.23)

1
r2

∂

∂r
(r2v) = h(C,W,P,Q,D) for 0 < r ≤ R(t), t > 0, (1.24)

v(0, t) = 0 for t > 0, (1.25)

dR(t)
dt

= v(R(t), t) for t > 0, (1.26)

P (r, 0) = P0(r), Q(r, 0) = Q0(r), D(r, 0) = D0(r) for 0 ≤ r ≤ R0,

R(0) = R0 is prescribed,
(1.27)

where

F (C,P,Q) = κ1KP (C)P + κ2KQ(C)Q,

G(W,P,Q) = µ1G1(W )P + µ2G2(W )Q,

g11(C,W,P,Q,D)

= [KB(C)−KQ(C)−KA(C)− ι1G1(W )]− 1
N

[KB(C)P −KRD],

g12(C,W,P,Q,D) = KP (C),

g13(C,W,P,Q,D) = 0,

g21(C,W,P,Q,D) = KQ(C),

g22(C,W,P,Q,D) = −[KP (C) +KD(C) + ι2G2(W )]− 1
N

[KB(C)P −KRD],
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g23(C,W,P,Q,D) = 0,

g31(C,W,P,Q,D) = KA(C) + ι1G1(W ),

g32(C,W,P,Q,D) = KD(C) + ι2G2(W ),

g33(C,W,P,Q,D) = −KR −
1
N

[KB(C)P −KRD],

h(C,W,P,Q,D) =
1
N

[KB(C)P −KRD].

Remark 1.1. The following facts will play an important role in our subsequent
analysis:

gij(C,W,P,Q,D) ≥ 0 for i 6= j, (1.28)
3∑

i=1

gi1(C,W,P,Q,D)P + gi2(C,W,P,Q,D)Q+ gi3(C,W,P,Q,D)D

= h(C,W,P,Q,D)[N − (P +Q+D)].

(1.29)

Throughout the whole article we make use of the following notations:
(i) Given an open set Ω ⊂ R3, we denote W 2,p(Ω) := {u : Dαu ∈ Lp(Ω), 0 ≤ |α| ≤
2} is the usual Sobolev space with norm ‖u‖W 2,p(Ω) =

∑
0≤|α|≤2 ‖Dαu‖Lp(Ω), where

1 ≤ p ≤ ∞.
(ii) For T > 0, given a positive continuous function R = R(t) (0 ≤ t ≤ T ), we
denote QR

T = {(x, t) ∈ R3 ×R : |x| < R(t), 0 < t < T} and QR
T denotes the closure

of QR
T .

(iii) For R = R(t) as in (ii) and 1 ≤ p < ∞, we denote by W 2,1
p (QR

T ) the usual
non-isotropic Sobolev spaces on the parabolic domain QR

T , i.e.,

W 2,1
p (QR

T ) = {u ∈ Lp(QR
T ) : ∂α

x ∂
k
t u ∈ Lp(QR

T ) for |α|+ 2k ≤ 2},
with the norm

‖u‖W 2,1
p (QR

T ) =
∑

|α|+2k≤2

‖∂α
x ∂

k
t u‖Lp(QR

T ).

(iv) Given an open set Ω ⊂ R3 and for some number p > 5/2, we denote by Dp(Ω)
the trace space of W 2,1

p (Ω × (0, T )) at t = 0, i.e., ϕ ∈ Dp(Ω) if and only if there
exists u ∈ W 2,1

p (Ω× (0, T )) such that u(·, 0) = ϕ. The norm equipped in Dp(Ω) is
defined as follows:

‖ϕ‖Dp(Ω) = inf{T−
1
p ‖u‖W 2,1

p (Ω×(0,T )) : u ∈W 2,1
p (Ω× (0, T )), u(·, 0) = ϕ}.

It is well known that if p > 5/2, then W 2,1
p (Ω×(0, T )) ⊂ C(Ω× [0, T ]) is continuous

by the embedding theorem (see [22]). Furthermore, if ϕ ∈W 2,p(Ω), then ϕ ∈ Dp(Ω)
and ‖ϕ‖Dp(Ω) ≤ ‖ϕ‖W 2,p(Ω) since we can take u(x, t) ≡ ϕ(x) for all 0 ≤ t ≤ T .

Since the functional dependence of KA(C), KB(C), KD(C), KP (C) and KQ(C)
with respect to C and G1(W ), G2(W ) with respect to W are not critical to our
results, we only need a very simple assumption as follows:

(A1) KA(C), KB(C), KD(C), KP (C) and KQ(C) are non-negative C1-smooth
functions;

(A2) G1(W ) and G2(W ) are non-negative C1-smooth functions;
(A3) P0, Q0 and D0 are non-negative C1-smooth functions on [0, R0];
(A4) C0(|x|), W0(|x|) ∈ Dp(BR0) for some p > 5, where BR0 = {x ∈ R3 : |x| ≤

R0}.
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The first three conditions are clearly very natural from biological point of view.
We also assume that the initial data satisfy the following compatible conditions:

0 ≤ C0(r) ≤ C̄, 0 ≤W0(r) ≤ W̄ for 0 ≤ r ≤ R0,

C ′0(0) = 0, C0(R0) = C̄, W ′
0(0) = 0, W0(R0) = W̄ ,

P0(r) ≥ 0, Q0(r) ≥ 0, D0(r) ≥ 0 for 0 ≤ r ≤ R0,

P0(r) +Q0(r) +D0(r) = N for 0 ≤ r ≤ R0.

(1.30)

Remark 1.2. Under the assumptions (A1)–(A4), we can easily deduce the follow-
ing facts:

• F ≥ 0, G ≥ 0.
• F , G and h are C1-functions.
• gij (i, j = 1, 2, 3) are C1-functions.

Now we give our main results.

Theorem 1.3. Under the assumptions (A1)–(A4) and initial condition (1.30), the
free boundary problem (1.15)–(1.27) has a unique solution (R,C,W,P,Q,D) for all
t ≥ 0. In addition, for any T > 0, R(t) ∈ C1[0, T ], C, W ∈ W 2,1

p (QR
T ) and P , Q,

D ∈ C1(QR
T ). Furthermore, the following estimates hold:

R(t) > 0 for t > 0,

0 < C(r, t) ≤ C̄, 0 < W (r, t) ≤ W̄ for 0 ≤ r ≤ R(t), t ≥ 0,

P (r, t) ≥ 0, Q(r, t) ≥ 0, D(r, t) ≥ 0 for 0 ≤ r ≤ R(t), t ≥ 0,

P (r, t) +Q(r, t) +D(r, t) = N for 0 ≤ r ≤ R(t), t ≥ 0.

(1.31)

This article is organized as follows. In Section 2, we transform the problem
(1.15)–(1.27) for a moving domain into an equivalent one which defined on a fixed
domain. Section 3 is devoted to presenting some preliminary lemmas that will be
used in the later analysis. In section 4 we prove local existence and uniqueness
of the transformed problem by applying Banach fixed point theorem. We prove
Theorem 1.3 in Section 5.

2. Reformulation of the problem

To transform the varying domain {(x, t) : |x| = r < R(t), t ≥ 0} into a fixed
domain, let we assume (R,C,W,P,Q,D) is a solution of (1.15)–(1.27) and R(t) > 0
(t ≥ 0), and make the following change of variables,

ρ =
r

R(t)
, τ =

∫ t

0

ds

R2(s)
, η(τ) = R(t), c(ρ, τ) = C(r, t), w(ρ, τ) = W (r, t),

p(ρ, τ) = P (r, t), q(ρ, τ) = Q(r, t), d(ρ, τ) = D(r, t), u(ρ, τ) = R(t)v(r, t),
(2.1)

then the free boundary problem (1.15)–(1.27) is transformed into the following
initial-boundary value problem on the fixed domain {(ρ, τ) : 0 ≤ ρ ≤ 1, τ ≥ 0}:
∂c

∂τ
= D1

1
ρ2

∂

∂ρ
(ρ2 ∂c

∂ρ
) + u(1, τ)ρ

∂c

∂ρ
− η2f(c, p, q)c for 0 < ρ < 1, τ > 0, (2.2)

∂c

∂ρ
(0, τ) = 0, c(1, τ) = c̄ for τ > 0, (2.3)

c(ρ, 0) = c0(ρ) for 0 ≤ ρ ≤ 1, (2.4)
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∂w

∂τ
= D2

1
ρ2

∂

∂ρ
(ρ2 ∂w

∂ρ
) + u(1, τ)ρ

∂w

∂ρ
− η2g(w, p, q)w

for 0 < ρ < 1, τ > 0,
(2.5)

∂w

∂ρ
(0, τ) = 0, w(1, τ) = w̄ for τ > 0, (2.6)

w(ρ, 0) = w0(ρ) for 0 ≤ ρ ≤ 1, (2.7)
∂p

∂τ
+ ν

∂p

∂ρ
= η2[g11(c, w, p, q, d)p+ g12(c, w, p, q, d)q + g13(c, w, p, q, d)d]

for 0 ≤ ρ ≤ 1, τ > 0,
(2.8)

∂q

∂τ
+ ν

∂q

∂ρ
= η2[g21(c, w, p, q, d)p+ g22(c, w, p, q, d)q + g23(c, w, p, q, d)d]

for 0 ≤ ρ ≤ 1, τ > 0,
(2.9)

∂d

∂τ
+ ν

∂d

∂ρ
= η2[g31(c, w, p, q, d)p+ g32(c, w, p, q, d)q + g33(c, w, p, q, d)d]

for 0 ≤ ρ ≤ 1, τ > 0,
(2.10)

ν(ρ, τ) = u(ρ, τ)− ρu(1, τ) for 0 ≤ ρ ≤ 1, τ > 0, (2.11)
1
ρ2

∂

∂ρ
(ρ2u) = η2(τ)h(c, w, p, q, d) for 0 < ρ ≤ 1, τ > 0, (2.12)

u(0, τ) = 0 for τ > 0, (2.13)

dη(τ)
dτ

= η(τ)u(1, τ) for τ > 0, (2.14)

p(ρ, 0) = p0(ρ), q(ρ, 0) = q0(ρ), d(ρ, 0) = d0(ρ) for 0 ≤ ρ ≤ 1, (2.15)

η(0) = η0, (2.16)

where

f(c, p, q) = F (c, p, q), g(w, p, q) = G(w, p, q),

c̄ = C̄, w̄ = W̄ , c0(ρ) = C0(ρR0), w0(ρ) = W0(ρR0),

p0(ρ) = P0(ρR0), q0(ρ) = Q0(ρR0), d0(ρ) = D0(ρR0),
η0 = R0.

Conversely, if (η, c, w, p, q, d, u) is a solution of (2.2)–(2.16) such that η(τ) > 0 for
τ ≥ 0, then by making the change of variables

r = ρη(τ), t =
∫ τ

0

η2(s)ds, R(t) = η(τ), C(r, t) = c(ρ, τ),

W (r, t) = w(ρ, τ), P (r, t) = p(ρ, τ), Q(r, t) = q(ρ, τ),

D(r, t) = d(ρ, τ), v(r, t) =
u(ρ, τ)
η(τ)

.

(2.17)

One can easily verify that (R,C,W,P,Q,D, v) is a solution to (1.15)–(1.27). Hence,
we summarize the above result in the following lemma.

Lemma 2.1. Under the change of variables (2.1) or its inverse (2.17), the free
boundary problem (1.15)–(1.27) is equivalent to the initial-boundary value problem
(2.2)–(2.16).
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Remark 2.2. Note that from the (2.12), we obtain

u(ρ, τ) =
η2(τ)
ρ2

∫ ρ

0

h(c(s, τ), w(s, τ), p(s, τ), q(s, τ), d(s, τ))s2ds. (2.18)

Then, using (2.14) and (2.18) we have

dη(τ)
dτ

= η3(τ)
∫ 1

0

h(c(s, τ), w(s, τ), p(s, τ), q(s, τ), d(s, τ))s2ds. (2.19)

At first glance, we can not expect the solution of (2.2)–(2.16) exists for all τ ≥ 0,
but since we make the change of variables t =

∫ τ

0
η2(s)ds and τ =

∫ t

0
ds

R2(s) , we can
prove the solution of (2.2)–(2.16) exists actually for all τ ≥ 0.

3. Preliminary Lemmas

In this section we present some preliminary lemmas which can be found in [12].
Let QT = {(x, τ) ∈ R3 × R : |x| < 1, 0 < τ < T} and Q̄T denotes the closure of
QT . For a vector-valued function (p, q, d) we denote

‖(p, q, d)‖L∞ = (‖p‖2L∞ + ‖q‖2L∞ + ‖d‖2L∞)
1
2 .

Without confusion we do not point out the explicit domain in the L∞-norm in the
whole article.

Lemma 3.1. Let φ(τ), ϕ(ρ, τ) and ψ(ρ, τ) be bounded continuous functions on
[0, T ] and [0, 1] × [0, T ] (T > 0), respectively. Let σ̄ be a constant, and σ0 be a
function on [0, 1] such that σ0(|x|) ∈ Dp(B1) for some p > 5

2 , where B1 denotes the
unit ball in R3. Then the initial value problem

∂σ

∂τ
=

1
ρ2

∂

∂ρ
(ρ2 ∂σ

∂ρ
) + φ(τ)ρ

∂σ

∂ρ
+ ϕ(ρ, τ)σ + ψ(σ, ρ)

for 0 < ρ < 1, 0 < τ ≤ T,
(3.1)

∂σ

∂ρ
(0, τ) = 0, σ(1, τ) = σ̄ for 0 < τ ≤ T, (3.2)

σ(ρ, 0) = σ0(ρ) for 0 ≤ ρ ≤ 1, (3.3)

has a unique solution σ(ρ, τ) such that σ(|x|, τ) ∈W 2,1
p (QT ). Moreover, there exists

a positive constant A depending only on p, T , ‖φ‖L∞ and ‖ϕ‖L∞ , such that

‖σ(|x|, τ)‖W 2,1
p (QT ) ≤ A(|σ̄|+ ‖σ0(|x|)‖Dp(B1) + ‖ψ‖Lp), (3.4)

where A is bounded for T in any bounded set. Furthermore, the following estimate
holds:

‖σ‖L∞ ≤ max{|σ̄|, ‖σ0‖L∞}+ TeA0T ‖ψ‖L∞ , (3.5)

where A0 = 0 if ϕ ≤ 0 and A0 = maxQT
ϕ otherwise.

Proof. The proof of Lemma 3.1 relies on the standard Lp theory for parabolic
equations and maximum principle. See [12] for more details. �

Lemma 3.2. Assume that ν(ρ, τ), gij(ρ, τ) (i, j = 1, 2, 3) and fi(ρ, τ) (i = 1, 2, 3)
are bounded functions defined on [0, 1]× [0, T ], ν(ρ, τ) is continuously differentiable
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with respect to ρ and ν(0, τ) = ν(1, τ) = 0. Then for any α0, β0, γ0 ∈ C[0, 1], the
initial value problem

∂α

∂τ
+ ν(ρ, τ)

∂α

∂ρ
= g11(ρ, τ)α+ g12(ρ, τ)β + g13(ρ, τ)γ + f1(ρ, τ)

for 0 ≤ ρ ≤ 1, 0 < τ ≤ T,
(3.6)

∂β

∂τ
+ ν(ρ, τ)

∂β

∂ρ
= g21(ρ, τ)α+ g22(ρ, τ)β + g23(ρ, τ)γ + f2(ρ, τ)

for 0 ≤ ρ ≤ 1, 0 < τ ≤ T,
(3.7)

∂γ

∂τ
+ ν(ρ, τ)

∂γ

∂ρ
= g31(ρ, τ)α+ g32(ρ, τ)β + g33(ρ, τ)γ + f3(ρ, τ)

for 0 ≤ ρ ≤ 1, 0 < τ ≤ T,
(3.8)

α(ρ, 0) = α0(ρ), β(ρ, 0) = β0(ρ), γ(ρ, 0) = γ0(ρ) for 0 ≤ ρ ≤ 1, (3.9)

has a unique weak solution α, β, γ ∈ C([0, 1] × [0, T ]) and the following estimate
holds:

‖(α, β, γ)‖L∞ ≤ eTA0(T )
(
‖(α0, β0, γ0)‖L∞ + T‖(f1, f2, f3)‖L∞

)
, (3.10)

where A0(T ) = 2max{‖gij‖L∞ : i, j = 1, 2, 3}. If we assume further that gij(ρ, τ)
(i, j = 1, 2, 3) and fi(ρ, τ) (i = 1, 2, 3) are also continuously differentiable with
respect to ρ, and α0, β0, γ0 ∈ C1[0, 1], then the weak solution of (3.6)–(3.9) is a
classical solution, and the following estimate holds:

‖(∂α
∂ρ
,
∂β

∂ρ
,
∂γ

∂ρ
)‖L∞

≤ eT (A(T )+A0(T ))
(
‖(α′0, β′0, γ′0)‖L∞ + TA1(T )eTA(T )‖(α0, β0, γ0)‖L∞

+ TeTA(T )‖(∂f1
∂ρ

,
∂f2
∂ρ

,
∂f3
∂ρ

)‖L∞

)
,

(3.11)

where A0(T ) is as before, and

A(T ) = ‖∂ν
∂ρ
‖L∞ , A1(T ) = max{‖∂gij

∂ρ
‖L∞ : i, j = 1, 2, 3}.

If in addition, gij ≥ 0 for i 6= j, and

α0(ρ) ≥ 0, β0(ρ) ≥ 0, γ0(ρ) ≥ 0, fi(ρ, τ) ≥ 0 (i = 1, 2, 3),

then we have

α(ρ, τ) ≥ 0, β(ρ, τ) ≥ 0, γ(ρ, τ) ≥ 0 for 0 ≤ ρ ≤ 1, 0 ≤ t ≤ T.

Proof. Using the characteristic theory of hyperbolic equations, we can transform
(3.6)–(3.9) into an ordinary differential equations, the desired results readily follow
from a simple analysis of this transformed equations. See [12] for more details. �

Lemma 3.3. Let fi(ρ, τ, α, β, γ) (i = 1, 2, 3) be functions defined in [0, 1]× [0, T ]×
R3 are continuous in all arguments and continuously differentiable in (ρ, α, β, γ).
Let ν(ρ, τ) be as in Lemma 3.2, consider the following initial value problem:

∂α

∂τ
+ ν(ρ, τ)

∂α

∂ρ
= f1(ρ, τ, α, β, γ) for 0 ≤ ρ ≤ 1, 0 < τ ≤ T, (3.12)

∂β

∂τ
+ ν(ρ, τ)

∂β

∂ρ
= f2(ρ, τ, α, β, γ) for 0 ≤ ρ ≤ 1, 0 < τ ≤ T, (3.13)
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∂γ

∂τ
+ ν(ρ, τ)

∂γ

∂ρ
= f3(ρ, τ, α, β, γ) for 0 ≤ ρ ≤ 1, 0 < τ ≤ T, (3.14)

α(ρ, 0) = α0(ρ), β(ρ, 0) = β0(ρ), γ(ρ, 0) = γ0(ρ) for 0 ≤ ρ ≤ 1. (3.15)

If α0, β0, γ0 ∈ C1[0, 1], then there exists 0 < T1 ≤ T depending only on M0 =
‖(α0, β0, γ0‖∞ and supremum norms of fi, ∂fi

∂α , ∂fi

∂β , ∂fi

∂γ (i = 1, 2, 3) on the set
[0, 1] × [0, T ] × [−2M0, 2M0] × [−2M0, 2M0] × [−2M0, 2M0] such that the above
problem has a unique weak solution in [0, 1]× [0, T1] satisfying

‖(α, β, γ)‖L∞ ≤ 2M0. (3.16)

Furthermore, if α0, β0, γ0 ∈ C1[0, 1], then this weak solution is actually a classical
solution, and the following estimate holds

‖(∂α
∂ρ
,
∂β

∂ρ
,
∂γ

∂ρ
)‖L∞

≤ eT (A(T )+B0(T ))
(
‖(α′0, β′0, γ′0)‖L∞ + TeTA(T )

∥∥(
∂f1
∂ρ

,
∂f2
∂ρ

,
∂f3
∂ρ

)
∥∥

L∞

)
,

(3.17)

where A(T ) = ‖∂ν
∂ρ‖L∞ , and B0(T ) = max1≤i≤3 max{‖∂fi

∂α ‖L∞ , ‖∂fi

∂β ‖L∞ , ‖∂fi

∂γ ‖L∞}.

Proof. Using the same argument as that of Lemma 3.2, and via a standard con-
traction argument, we can prove Lemma 3.3. See [12] for more details. �

4. Existence of a local solution

From the assumptions (A1)–(A4) in Section 1 and transformation (2.1) in Section
2, we can readily verify the following conditions hold:

(B1) f , g and h are C1-smooth functions;
(B2) gij (i, j = 1, 2, 3) are C1-smooth functions;
(B3) p0, q0 and d0 are C1-smooth functions;
(B4) c0(|x|), w0(|x|) ∈ Dp(B1) for some p > 5.
We shall prove the local existence and uniqueness of solution to (2.2)–(2.16) by

using Banach fixed point theorem and then prove it is actually a global one in
Section 5. To this purpose, let

M0 = ‖(p0, q0, d0)‖L∞ ;

A0 = 2 max{|gij(c, w, p, q, d)| : 0 ≤ c ≤ c̄, 0 ≤ w ≤ w̄,

|p| ≤ 2M0, |q| ≤ 2M0, |d| ≤ 2M0, i, j = 1, 2, 3};
B0 = max{|h(c, w, p, q, d)| : 0 ≤ c ≤ c̄, 0 ≤ w ≤ w̄,

|p| ≤ 2M0, |q| ≤ 2M0, |d| ≤ 2M0}.

Now, given T > 0, we introduce a metric space (XT , d) as

XT =
{

(η(τ), c(ρ, τ), w(ρ, τ), p(ρ, τ), q(ρ, τ), d(ρ, τ)) (0 ≤ ρ ≤ 1, 0 ≤ τ ≤ T ) :

(η, c, w, p, q, d) satisfying the following conditions (C1)–(C4)
}
,

(C1) η ∈ C[0, 1], η(0) = η0 and 1
2η0 ≤ η(τ) ≤ 2η0 (0 ≤ τ ≤ T );

(C2) c ∈ C([0, 1] × [0, T ]), c(ρ, 0) = c0(ρ), c(1, τ) = c̄ and 0 ≤ c(ρ, τ) ≤ c̄ for
0 ≤ ρ ≤ 1, 0 ≤ τ ≤ T ;

(C3) w ∈ C([0, 1]× [0, T ]), w(ρ, 0) = w0(ρ), w(1, τ) = w̄ and 0 ≤ w(ρ, τ) ≤ w̄ for
0 ≤ ρ ≤ 1, 0 ≤ τ ≤ T ;
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(C4) p(ρ, τ), q(ρ, τ), d(ρ, τ) ∈ C([0, 1] × [0, T ]), p(ρ, 0) = p0(ρ), q(ρ, 0) = q0(ρ),
d(ρ, 0) = d0(ρ) and |p(ρ, τ)| ≤ 2M0, |q(ρ, τ)| ≤ 2M0, |d(ρ, τ)| ≤ 2M0 for
0 ≤ ρ ≤ 1, 0 ≤ τ ≤ T .

The metric d in XT is defined by

d
(
(η1, c1, w1, p1, q1, d1), (η2, c2, w2, p2, q2, d2)

)
= ‖η1 − η2‖L∞ + ‖c1 − c2‖L∞ + ‖w1 − w2‖L∞

+ ‖p1 − p2‖L∞ + ‖q1 − q2‖L∞ + ‖d1 − d2‖L∞ .

It is easy to see (XT , d) is a complete metric space.
Given any (η, c, w, p, q, d) ∈ XT , set

u(ρ, τ) =
η2(τ)
ρ2

∫ ρ

0

h(c(s, τ), w(s, τ), p(s, τ), q(s, τ), d(s, τ))s2ds,

ν(ρ, τ) = u(ρ, τ)− ρu(1, τ),

φ(ρ, τ) = η2(τ)f(c(s, τ), p(s, τ), q(s, τ)),

ϕ(ρ, τ) = η2(τ)g(w(s, τ), p(s, τ), q(s, τ)).

Consider the following problem for (η̃, c̃, w̃, p̃, q̃, d̃):

dη̃

dτ
= η̃(τ)u(1, τ) for 0 < τ ≤ T, (4.1)

η̃(0) = η0, (4.2)
∂c̃

∂τ
=
D1

ρ2

∂

∂ρ
(ρ2 ∂c̃

∂ρ
) + u(1, τ)ρ

∂c̃

∂ρ
− φ(ρ, τ)c̃ for 0 < ρ < 1, 0 < τ ≤ T, (4.3)

∂c̃

∂ρ
(0, τ) = 0, c̃(1, τ) = c̄ for 0 < τ ≤ T, (4.4)

c̃(ρ, 0) = c0(ρ) for 0 ≤ ρ ≤ 1, (4.5)
∂w̃

∂τ
=
D2

ρ2

∂

∂ρ
(ρ2 ∂w̃

∂ρ
) + u(1, τ)ρ

∂w̃

∂ρ
− ϕ(ρ, τ)w̃ for 0 < ρ < 1, 0 < τ ≤ T, (4.6)

∂w̃

∂ρ
(0, τ) = 0, w̃(1, τ) = w̄ for 0 < τ ≤ T, (4.7)

w̃(ρ, 0) = w0(ρ) for 0 ≤ ρ ≤ 1, (4.8)
∂p̃

∂τ
+ ν

∂p̃

∂ρ
= η2[g11(c̃, w̃, p̃, q̃, d̃)p̃+ g12(c̃, w̃, p̃, q̃, d̃)q̃ + g13(c̃, w̃, p̃, q̃, d̃)d̃]

for 0 ≤ ρ ≤ 1, 0 < τ ≤ T,
(4.9)

∂q̃

∂τ
+ ν

∂q̃

∂ρ
= η2[g21(c̃, w̃, p̃, q̃, d̃)p̃+ g22(c̃, w̃, p̃, q̃, d̃)q̃ + g23(c̃, w̃, p̃, q̃, d̃)d̃]

for 0 ≤ ρ ≤ 1, 0 < τ ≤ T,
(4.10)

∂d̃

∂τ
+ ν

∂d̃

∂ρ
= η2[g31(c̃, w̃, p̃, q̃, d̃)p̃+ g32(c̃, w̃, p̃, q̃, d̃)q̃ + g33(c̃, w̃, p̃, q̃, d̃)d̃]

for 0 ≤ ρ ≤ 1, 0 < τ ≤ T,

(4.11)

p̃(ρ, 0) = p0(ρ), q̃(ρ, 0) = q0(ρ), d̃(ρ, 0) = d0(ρ) for 0 ≤ ρ ≤ 1. (4.12)
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With this problem solved, we define a mapping F : (η, c, w, p, q, d) 7→ (η̃, c̃, w̃, p̃, q̃, d̃).
Next we shall prove that F is a contraction mapping from XT to XT provided T
is sufficiently small.

Step 1 First we prove F maps XT into itself. It is obvious that (4.1)–(4.2) has
a unique solution η̃ ∈ C1[0, T ] and

η̃(τ) = η0 exp{
∫ τ

0

u(1, s)ds} for 0 ≤ τ ≤ T. (4.13)

From the fact that ‖h(c(ρ, τ), w(ρ, τ), p(ρ, τ), q(ρ, τ), d(ρ, τ))‖L∞ ≤ B0 and 1
2η0 <

η(τ) ≤ 2η0, we know ‖u(1, τ)‖L∞ ≤ 4
3B0η

2
0 , then we have

η0 exp{−4
3
B0η

2
0T} ≤ η̃(τ) ≤ η0 exp{4

3
B0η

2
0T} for 0 ≤ τ ≤ T. (4.14)

So if we choose T sufficiently small such that exp{ 4
3B0η

2
0T} ≤ 2, we have 1

2η0 ≤
η̃ ≤ 2η0, that implies η̃ satisfies the condition (C1).

Next we consider (4.3)–(4.5) and (4.6)–(4.8). Since c0(|x|), w0(|x|) ∈ Dp(B1) for
some p > 5, then from Lemma 3.1 we know (4.3)–(4.5) and (4.6)–(4.8) has a unique
solution c̃(|x|, τ) ∈W 2,1

p (QT ) and w̃(|x|, τ) ∈W 2,1
p (QT ), respectively. According to

the embedding theorem, W 2,1
p (QT ) ↪→ Cλ, λ

2 (QT ), where λ = 2− 5
p (see [22]), then

we know c̃(|x|, τ), w̃(|x|, τ) ∈ C([0, 1]× [0, T ]). By applying the maximum principle
we have 0 ≤ c̃ ≤ c̄ and 0 ≤ w̃ ≤ w̄. Furthermore, by (3.4) and the embedding
W 2,1

p (QT ) ↪→ C1+λ, 1+λ
2 (QT ) with λ = 1− 5

p (see [22]), we have

‖ ∂c̃
∂ρ
‖L∞ ≤ A(T ), ‖∂w̃

∂ρ
‖L∞ ≤ A(T ).

From above results, we know c̃ satisfies the condition (C2) and w̃ satisfies the
condition (C3).

Finally we consider (4.9)–(4.12). Since ν(ρ, τ), c̃(ρ, τ) and w̃(ρ, τ) are continu-
ously differentiable, then from Lemma 3.3 we obtain that if we take T small enough,
(4.9)–(4.12) has a unique classical solution (p̃, q̃, d̃) ∈ C1([0, 1]× [0, T ]) satisfying

|p̃| ≤ 2M0, |q̃| ≤ 2M0, |d̃| ≤ 2M0 for 0 ≤ ρ ≤ 1, 0 ≤ τ ≤ T. (4.15)

Furthermore, by (3.17) in Lemma 3.3, if T is small enough, then we have

‖
(∂p̃
∂ρ
,
∂q̃

∂ρ
,
∂d̃

∂ρ

)
‖L∞ ≤ 2M1 for 0 ≤ ρ ≤ 1, 0 ≤ τ ≤ T, (4.16)

where M1 = ‖(p′0, q′0, d′0)‖L∞ . This implies p̃, q̃ and d̃ satisfy the condition (C4).
Now we can see that for a sufficiently small T , F : XT 7→ XT is well-defined.

To obtain the desired result we only need to prove F : XT 7→ XT is a contraction
mapping if T is further small enough.

Step 2 Let (ηi, ci, wi, pi, qi, di) ∈ XT (i = 1, 2), set

ui(ρ, τ) =
η2

i (τ)
ρ2

∫ ρ

0

h(ci(s, τ), wi(s, τ), pi(s, τ), qi(s, τ), di(s, τ))s2ds,

νi(ρ, τ) = ui(ρ, τ)− ρui(1, τ),

(η̃i, c̃i, w̃i, p̃i, q̃i, d̃i) = F (ηi, ci, wi, pi, qi, di),

d = d
(
(η1, c1w1, p1, q1, d1), (η2, c2, w2, p2, q2, d2)

)
.
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Firstly from ‖h(ci(ρ, τ), wi(ρ, τ), pi(ρ, τ), qi(ρ, τ), di(ρ, τ))‖L∞ ≤ B0 and 1
2η0 <

ηi(τ) ≤ 2η0, we can easily calculate that

|u1(ρ, τ)− u2(ρ, τ)| ≤ A(T )d. (4.17)

Then by (4.13) we get

‖η̃1 − η̃2‖L∞ ≤ max
0≤τ≤T

|η̃1(τ)− η̃2(τ)| ≤ TA(T )d. (4.18)

Next, let c̃∗ = c̃1 − c̃2 and w̃∗ = w̃1 − w̃2, we have
∂c̃∗
∂τ

=
D1

ρ2

∂

∂ρ
(ρ2 ∂c̃∗

∂ρ
) + u1(1, τ)ρ

∂c̃∗
∂ρ

− φ(ρ, τ)c̃∗ + F (ρ, τ)

for 0 < ρ < 1, 0 < τ ≤ T,
(4.19)

∂c̃∗
∂ρ

(0, τ) = 0, c̃∗(1, τ) = 0 for 0 ≤ τ ≤ T, (4.20)

c̃∗(ρ, 0) = 0 for 0 ≤ ρ ≤ 1, (4.21)
∂w̃∗
∂τ

=
D2

ρ2

∂

∂ρ
(ρ2 ∂w̃∗

∂ρ
) + u1(1, τ)ρ

∂w̃∗
∂ρ

− ϕ(ρ, τ)w̃∗ +G(ρ, τ)

for 0 < ρ < 1, 0 < τ ≤ T,
(4.22)

∂w̃∗
∂ρ

(0, τ) = 0, w̃∗(1, τ) = 0 for 0 ≤ τ ≤ T, (4.23)

w̃∗(ρ, 0) = 0 for 0 ≤ ρ ≤ 1, (4.24)

where

φ(ρ, τ) = η2
1(τ)f(c1(s, τ), p1(s, τ), q1(s, τ)),

ϕ(ρ, τ) = η2
1(τ)g(w1(s, τ), p1(s, τ), q1(s, τ)),

F (ρ, τ) = [u1(1, τ)− u2(1, τ)]ρ
∂c̃2
∂ρ

+ [η2
2(τ)f(c2, p2, q2)− η2

1(τ)f(c1, p1, q1)]c̃2,

G(ρ, τ) = [u1(1, τ)− u2(1, τ)]ρ
∂w̃2

∂ρ
+ [η2

2(τ)g(w2, p2, q2)− η2
1(τ)g(w1, p1, q1)]w̃2.

As for c̃, from the Lemma 3.1 we know ‖∂c̃2
∂ρ ‖L∞ ≤ A(T ) and 0 ≤ c̃2(ρ, τ) ≤ c̄ by

maximum principle. Note that f is continuously differentiable and ηi, pi, qi are
bounded, so we can deduce that

‖F‖L∞ ≤ A(T )‖u1−u2‖L∞+‖η2
2f(c2, p2, q2)−η2

1f(c1, p1, q1)‖L∞ ≤ A(T )d. (4.25)

Then from Lemma 3.1 again we obtain that

‖c̃1 − c̃2‖L∞ = ‖c̃∗‖L∞ ≤ T‖F‖L∞ ≤ TA(T )d. (4.26)

Similarly, for w̃, we obtain

‖G‖L∞ ≤ A(T )‖u1 − u2‖L∞ +A(T )d ≤ A(T )d. (4.27)

Then from Lemma 3.1 again we obtain

‖w̃1 − w̃2‖L∞ = ‖w̃∗‖L∞ ≤ T‖G‖L∞ ≤ TA(T )d. (4.28)

Finally, letting p̃∗ = p̃1 − p̃2, q̃∗ = q̃1 − q̃2, d̃∗ = d̃1 − d̃2, we have:
∂p̃∗
∂τ

+ ν1
∂p̃∗
∂ρ

= λ11(ρ, τ)p̃∗ + λ12(ρ, τ)q̃∗ + λ13(ρ, τ)d̃∗ + F1(ρ, τ)

for 0 ≤ ρ ≤ 1, 0 < τ ≤ T,
(4.29)
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∂q̃∗
∂τ

+ ν1
∂q̃∗
∂ρ

= λ21(ρ, τ)p̃∗ + λ22(ρ, τ)q̃∗ + λ23(ρ, τ)d̃∗ + F2(ρ, τ)

for 0 ≤ ρ ≤ 1, 0 < τ ≤ T,
(4.30)

∂d̃∗
∂τ

+ ν1
∂d̃∗
∂ρ

= λ31(ρ, τ)p̃∗ + λ32(ρ, τ)q̃∗ + λ33(ρ, τ)d̃∗ + F3(ρ, τ)

for 0 ≤ ρ ≤ 1, 0 < τ ≤ T,

(4.31)

p̃∗(ρ, 0) = 0, q̃∗(ρ, 0) = 0, d̃∗(ρ, 0) = 0 for 0 ≤ ρ ≤ 1, (4.32)

where

λij = η2
1(τ)gij(c̃1, w̃1, p̃1, q̃1, d̃1) (i, j = 1, 2, 3),

Fi(ρ, τ) = (ν2 − ν1)
∂ξ̃i
∂ρ

+
3∑

j=1

[η2
1gij(c̃1, w̃1, p̃1, q̃1, d̃1)− η2

2gij(c̃2, w̃2, p̃2, q̃2, d̃2)]ξ̃j ,

and ξ̃1 = p̃2, ξ̃2 = q̃2, ξ̃3 = d̃2. Then from (4.15)–(4.16) we know that

‖p̃i‖L∞ ≤ 2M0, ‖q̃i‖L∞ ≤ 2M0, ‖d̃i‖L∞ ≤ 2M0, i = 1, 2,

‖(∂p̃i

∂ρ
,
∂q̃i
∂ρ

,
∂d̃i

∂ρ
)‖L∞ ≤ 2M1, i = 1, 2,

and since gij (i, j = 1, 2, 3) are continuously differentiable, we deduce that

‖Fi‖L∞ ≤ A(T )‖ν1 − ν2‖L∞ +A(T )
3∑

j=1

‖η2
1gij(c̃1, w̃1, p̃1, q̃1, d̃1)

− η2
2gij(c̃2, w̃2, p̃2, q̃2, d̃2)‖L∞ ≤ A(T )d, i = 1, 2, 3.

(4.33)

It is easy to see λij (i, j = 1, 2, 3) are bounded by a constant independent of the
choice of (ηi, ci, pi, qi, di), so from (3.17) in Lemma 3.3 and (4.33) we have

‖(p̃1 − p̃2, q̃1 − q̃2, d̃1 − d̃2)‖L∞ = ‖(p̃∗, q̃∗, d̃∗)‖L∞ ≤ TA(T )d. (4.34)

By (4.16), (4.26), (4.28) and (4.34) we conclude that

d
(
(η̃1, c̃1, w̃1, p̃1, q̃1, d̃1), (η̃2, c̃2, w̃2, p̃2, q̃2, d̃2)

)
≤ TA(T )d.

Hence, if we choose T sufficiently small such that TA(T ) < 1, then F is a contraction
mapping from XT into XT .

According to the Banach fixed point theorem we know that if T is small enough
then F has a unique fixed point (η, c, w, p, q, d) for 0 ≤ τ ≤ T . By the definition
of the mapping F , it is clearly that (η, c, w, p, q, d) is the unique solution of the
problem (2.2)–(2.16) for 0 ≤ τ ≤ T .

Theorem 4.1. Under the assumptions of Theorem 1.3, there exists T > 0 depend-
ing only on ‖c0(|x|)‖Dp(BR0 ), ‖w0(|x|)‖Dp(BR0 ), ‖(p0, q0, d0)‖L∞ , ‖(p′0, q′0, d′0)‖L∞ ,
such that the problem (2.2)–(2.16) has a unique solution for 0 ≤ τ ≤ T .

5. Existence of global solutions

Note that from Theorem 4.1 we know (2.2)–(2.16) has a unique local solution,
then by Lemma 2.1, we know the problem (1.15)–(1.27) has also a unique local
solution for 0 ≤ τ ≤ T , where T is some positive constant which may depend on
the bound of R0, ‖C0(|x|)‖Dp(BR0 ), ‖W0(|x|)‖Dp(BR0 ), ‖(P0, Q0, D0)‖L∞(BR0 ) and
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‖(P ′0, Q′0, D′
0)‖L∞(BR0 ). To get the global result of Theorem 1.3, we establish the

following two preliminary lemmas.

Lemma 5.1. Under the assumptions of Theorem 1.3, if(
R(t), C(r, t),W (r, t), P (r, t), Q(r, t), D(r, t)

)
is a solution of (1.15)–(1.27) for 0 ≤ t < T , then

0 ≤ C(r, t) ≤ C̄ for 0 ≤ r ≤ R(t), 0 ≤ t < T, (5.1)

0 ≤W (r, t) ≤ W̄ for 0 ≤ r ≤ R(t), 0 ≤ t < T, (5.2)

P (r, t) ≥ 0, Q(r, t) ≥ 0, D(r, t) ≥ 0 for 0 ≤ r ≤ R(t), 0 ≤ t < T, (5.3)

P (r, t) +Q(r, t) +D(r, t) = N for 0 ≤ r ≤ R(t), 0 ≤ t < T, (5.4)

R0 exp{−1
3
B0t} ≤ R(t) ≤ R0 exp{1

3
B0t} for 0 ≤ t < T, (5.5)

−1
3
B0R(t) ≤ dR(t)

dt
≤ 1

3
B0R(t) for 0 ≤ t < T, (5.6)

where

B0 = max{|h(C,W,P,Q,D)| : 0 ≤ C ≤ C̄, 0 ≤W ≤ W̄ , 0 ≤ P, Q, D ≤ N}.

Proof. Note that (5.1) and (5.2) are immediate results by applying the maximum
principle. From (1.28) in Remark 1.1 and Lemma 3.3 we know (5.3) holds. To prove
(5.4) we represent M(r, t) = P (r, t) + Q(r, t) + D(r, t), then summing up (1.21)–
(1.23) and using (1.29) in Remark 1.1, we can get M(r, t) satisfies the following
equation:
∂M

∂t
+ v

∂M

∂r
=

1
N

[KB(C)−KRD](N −M) for 0 ≤ r ≤ R(t), 0 ≤ t < T, (5.7)

M(r, 0) = P0(r) +Q0(r) +D0(r) = N for 0 ≤ r ≤ R0. (5.8)

It is clear that M(r, t) = N is a solution of (5.7)–(5.8), by uniqueness we obtain
that M(r, t) = N for all 0 ≤ r ≤ R(t), 0 ≤ t < T , this completes the proof of (5.4).
From (5.3) and (5.4) we get

0 ≤ P (r, t), Q(r, t), R(r, t) ≤ N for 0 ≤ r ≤ R(t), 0 ≤ t < T.

It is obvious that |h(C,W,P,Q,D)| ≤ B0, then by (1.24), we have

−1
3
B0r ≤ v(r, t) ≤ 1

3
B0r for 0 ≤ r ≤ R(t), 0 ≤ t < T. (5.9)

From (1.26) we can see

−1
3
B0R(t) ≤ dR(t)

dt
≤ 1

3
B0R(t).

Hence, we complete the proof of (5.6). (5.5) is an immediate consequence of (5.6).
�

Lemma 5.2. Under the assumptions of Theorem 1.3, if(
R(t), C(r, t),W (r, t), P (r, t), Q(r, t), D(r, t)

)
is a solution of (1.15)–(1.27) for 0 ≤ t < T , then

‖C(r, t)‖W 2,1
p (QR

T ) ≤ A(T ), ‖W (r, t)‖W 2,1
p (QR

T ) ≤ A(T )

for 0 ≤ r ≤ R(t), 0 ≤ t < T,
(5.10)
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‖(∂P
∂r

,
∂Q

∂r
,
∂D

∂r
)‖L∞ ≤ A(T ) for 0 ≤ r ≤ R(t), 0 ≤ t < T. (5.11)

An immediate consequence from (5.10) we obtain that for any t0 ∈ [0, T ),

‖C(r, t0)‖Dp(B(t0)) ≤ A(T ), ‖W (r, t0)‖Dp(B(t0)) ≤ A(T ). (5.12)

Proof. From Lemma 5.1 we know R(t) has a positive lower bound R0 exp{− 1
3B0T}

and a finite upper bound R0 exp{ 1
3B0T}, dR(t)

dt is also bound for 0 ≤ t < T , by
(5.3) and (5.4) we know P , Q and D are also bound. Let

c(x, t) = C(|x|R(t), t), w(x, t) = W (|x|R(t), t) for |x| ≤ 1, 0 ≤ t < T,

and we denote Ṙ(t) = dR(t)
dt . Then from (1.15)–(1.17) and (1.18)–(1.20) we can see

that c is a solution of the following problem:

∂c

∂t
=

D1

R2(t)
∆c+

Ṙ(t)
R(t)

(x · ∇c)− f(x, t)c for |x| < 1, 0 < t < T, (5.13)

c(x, t) = C̄ for |x| = 1, 0 < t < T, (5.14)

c(x, 0) = C0(|x|R0) for |x| ≤ 1, (5.15)

and w is a solution of the following problem:

∂w

∂t
=

D2

R2(t)
∆w +

Ṙ(t)
R(t)

(x · ∇w)− g(x, t)w for |x| < 1, 0 < t < T, (5.16)

w(x, t) = W̄ for |x| = 1, 0 < t < T, (5.17)

w(x, 0) = W0(|x|R0) for |x| ≤ 1. (5.18)

Here

f(x, t) = F (C(|x|R(t), t), P (|x|R(t), t), Q(|x|R(t), t)),

g(x, t) = G(W (|x|R(t), t), P (|x|R(t), t), Q(|x|R(t), t)).

Since all coefficients in (5.13) and (5.16) are bounded continuous functions, then
from Lemma 3.1 we get

‖c‖W 2,1
p (QT ) ≤ A(T ), ‖w‖W 2,1

p (QT ) ≤ A(T ).

Now transforming back to the original variables we know

‖C(|x|, t)‖W 2,1
p (QR

T ) ≤ A(T ), ‖W (|x|, t)‖W 2,1
p (QR

T ) ≤ A(T ).

Besides, since all coefficients in (1.21)–(1.23) are bounded continuously differen-
tiable functions, so from Lemma 3.3 we get

‖(∂P
∂r

,
∂Q

∂r
,
∂D

∂r
)‖L∞ ≤ A(T ) for 0 ≤ r ≤ R(t), 0 ≤ t < T.

We complete the proof of Lemma 5.2. �

From a priori estimates established in Lemma 5.1 and Lemma 5.2, now we can
extend the local solution of (1.15)–(1.27) to the global one.

Theorem 5.3. Under the assumptions of Theorem 1.3, there exists a unique global
solution

(
R(t), C(r, t),W (r, t), P (r, t), Q(r, t), D(r, t)

)
of (1.15)–(1.27).
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Proof. From Section 4 we know that (1.15)–(1.27) has a unique local (in time)
solution, we can extend this local solution step by step to get a solution defined
in a maximal time interval [0, T ) with either T = ∞ or 0 < T < ∞. In what
follows we show, by using the method of reducing into absurdity, that the second
case cannot occur. Hence we assume that T <∞, then for any 0 < t, t0 < T , from
Lemma 5.1 and Lemma 5.2 we have

‖C(|x|, t)‖W 2,1
p (QR

T ) ≤ A(T ), ‖W (|x|, t)‖W 2,1
p (QR

T ) ≤ A(T ),

‖C(|x|, t0)‖Dp(B(t0)) ≤ A(T ), ‖W (|x|, t0)‖Dp(B(t0)) ≤ A(T ),

‖(P,Q,D)‖L∞ ≤ A(T ),

‖(∂P
∂r

,
∂Q

∂r
,
∂D

∂r
)‖L∞ ≤ A(T ),

R0 exp{−1
3
B0t} ≤ R(t) ≤ R0 exp{1

3
B0t},

−1
3
B0R(t) ≤ dR(t)

dt
≤ 1

3
B0R(t).

Hence if we consider the initial value problem (1.15)–(1.27) with initial data given
at t0 for every t0 ∈ [0, T ), then by Theorem 4.1, there exists a common constant
δ > 0 such that the problem (1.15)–(1.27) always has a solution on the time interval
[t0, t0+δ). It follows that the solution

(
R(t), C(r, t),W (r, t), P (r, t), Q(r, t), D(r, t)

)
is extended to the time interval [0, T + δ), which contradicts the definition of T .
Hence the solution of (1.15)–(1.27) exists for all t ≥ 0. �

By Lemma 2.1 and Theorem 5.3, we accomplish the proof of Theorem 1.3.
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