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NONLINEAR SCALAR TWO-POINT BOUNDARY-VALUE
PROBLEMS ON TIME SCALES

REBECCA I. B. KALHORN, JESÚS RODRÍGUEZ

Abstract. We establish sufficient conditions for the solvability of scalar non-

linear boundary-value problems on time scales. Our attention will be focused

on problems where the solution space for the corresponding linear homoge-
neous boundary-value problem is nontrivial. As a consequence of our results

we are able to provide easily verifiable conditions for the existence of periodic

behavior for dynamic equations on time scales.

1. Introduction

This paper is devoted to the study of scalar nonlinear boundary-value problems
on time scales. We examine the problem

u∆n

(t) + an−1(t)u∆n−1
(t) + · · ·+ a0(t)u(t) = q(t) + g(u(t)), t ∈ [a, b]T (1.1)

subject to
n∑

j=1

biju
∆j−1

(a) +
n∑

j=1

diju
∆j−1

(b) = 0, (1.2)

for i = 1, 2, . . . , n. Throughout this paper we will assume that T is a time scale
and [a, b]T ⊂ Tκn

where [a, b]T will denote {t ∈ T : a ≤ t ≤ b}. The functions
a0, a1, . . . , an−1 and q are real-valued, rd-continuous functions defined on T. The
nonlinear term g is continuous, real-valued, and defined on R. We will assume
the solution space for the corresponding homogeneous boundary-value problem,
namely,

u∆n

(t) + an−1(t)u∆n−1
(t) + · · ·+ a0(t)u(t) = 0, t ∈ [a, b]T (1.3)

subject to

n∑
j=1

biju
∆j−1

(a) +
n∑

j=1

diju
∆j−1

(b) = 0, for i = 1, 2, . . . , n, (1.4)
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has dimension 1. Let A(t) be the n× n matrix-valued function given by

A(t) =


0 1 0 . . . 0
0 0 1 0
...

...
. . .

...
0 0 0 . . . 1

−a0(t) −a1(t) −a2(t) . . . −an−1(t)

 .

Clearly A is rd-continuous, and we assume A is also regressive. Let the matrices
B and D be defined by B = (bij) and D = (dij). It should be observed that linear
independence of the boundary conditions is equivalent to the matrix [B|D] having
full rank. To analyze the boundary-value problem (1.1)–(1.2) we will look at the
equivalent n× n system,

x∆(t) = A(t)x(t) + h(t) + f(x(t)), t ∈ [a, b]T (1.5)

subject to
Bx(a) + Dx(b) = 0 (1.6)

where

[f(x)]i =

{
0 for i = 1, 2, . . . n− 1
g([x]1) for i = n

and

[h(t)]i =

{
0 for i = 1, 2, . . . n− 1
q(t) for i = n

.

Note that the solution space of

x∆(t) = A(t)x(t), t ∈ [a, b]T (1.7)

subject to
Bx(a) + Dx(b) = 0 (1.8)

has dimension one as a result of the assumption on (1.3)–(1.4). Through use of
the Lyapunov-Schmidt Procedure conditions will be established to guarantee the
existence of solutions to the boundary-value problem (1.5)–(1.6) and thus (1.1)–
(1.2).

We will pay particular attention to second-order equations subject to periodic
boundary conditions. We obtain results which significantly extend previous work
by Etheridge and Rodŕıguez concerning the periodic behavior of nonlinear discrete
dynamical systems[5].

2. Preliminaries

The notation and preliminary results presented here are a straightforward gen-
eralization of previous work in differential equations and discrete time systems
[5, 15, 13, 14, 7, 6, 10]. We provide references concerning general information on
time scales[2, 1, 3] as well as boundary-value problems[9, 16]. Let

X = {x ∈ C[a, b]T : Bx(a) + Dx(b) = 0},
and

Y = Crd[a, b]T
where Crd[a, b]T denotes the space of rd-continuous Rn-valued maps on [a, b]T, and
C[a, b]T denotes the subspace of Crd[a, b]T where the maps are continuous. | · | will
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denote the Euclidean norm on Rn. The operator norm will be used for matrices,
and the supremum norm will be used for x ∈ Y ∪X, that is,

‖x‖ = sup
t∈[a,b]T

|x(t)|.

It is clear that X and Y are Banach spaces with this norm. We define the norm of
a product space, V1 × V2 × · · · × Vm, by

‖(v1, v2, . . . , vm)‖ =
m∑

i=1

‖vi‖i

where ‖ · ‖i denotes the norm on Vi.
We define the operator L : D(L) → Y where D(L) = X ∩ C1

rd([a, b]T → Rn) by

(Lx)(t) = x∆(t)−A(t)x(t), t ∈ [a, b]T

and the operator F : X → Y by

(Fx)(t) = f(x(t)), t ∈ [a, b]T.

Clearly x is a solution to (1.5)–(1.6) if and only if Lx = h + Fx. Φ will denote the
fundamental matrix solution for x∆(t) = A(t)x(t), t ∈ [a, b]T where Φ(a) = I.

Proposition 2.1. The solution space for the homogeneous boundary-value problem
(1.7)–(1.8) and the kernel of (B + DΦ(b)) have the same dimension.

Proof. The the solution space of (1.7)–(1.8) and kernel of L have the same di-
mension. x ∈ ker(L) if and only if x∆(t) = A(t)x(t), t ∈ [a, b]T and x satisfies
the boundary conditions. This is true if and only if there is a c in Rn such that
x(t) = Φ(t)c for all t ∈ [a, b]T and Bc + DΦ(b)c = 0. It follows that the kernel of L
and the kernel of (B + DΦ(b)) have the same dimension. �

Let d be a unit vector which spans the kernel of (B+DΦ(b)). Define S : [a, b]T →
Rn by

S(t) = Φ(t)d.

The following result is obvious.

Corollary 2.2. labelcoro1 The kernel of L consists of x such that x(t) = S(t)α for
some real number α.

3. Main Result

We will now construct projections onto the kernel and image of L in order to
use the Lyapunov-Schmidt Procedure [4, 5]. Define P : X → X by

(Px)(t) = S(t)dT x(a), t ∈ [a, b]T.

Proposition 3.1. P is a projection onto the kernel of L.

Proof. The fact that P is a bounded linear map is self-evident. The fact that P is
idempotent can be shown through direct computation. It remains to be shown that
Im(P ) = ker(L). Let x ∈ X. (Px)(t) = S(t)dT x(a) = S(t)α where α = dT x(a).
Therefore Im(P ) ⊂ ker(L).

Let x ∈ ker(L). There exists a β ∈ R such that x(t) = S(t)β. (Px)(t) =
S(t)dT x(a) = S(t)dT S(a)β = S(t)β = x(t). Therefore ker(L) ⊂ Im(P ). �
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Let k be a vector that spans the kernel of ((B + DΦ(b))T ). Define the map
Ψ : [a, b]T → Rn by

Ψ(t) = [DΦ(b)Φ−1(σ(t))]T k, t ∈ [a, b]T.

Proposition 3.2. y is in the image of L if and only if
∫ b

a
yT (τ)Ψ(τ)∆τ = 0.

Proof. Using the variation of constants formula [2] and the boundary conditions it
is clear that y ∈ Im(L) if and only if there exists x ∈ X such that (B+DΦ(b))x(a)+
D

∫ b

a
Φ(b)Φ−1(σ(τ))y(τ)∆τ = 0, which is equivalent to

−xT (a)(B + DΦ(b))T =
[ ∫ b

a

DΦ(b)Φ−1(σ(τ))y(τ)
]T

∆τ.

This holds if and only if
∫ b

a

[
DΦ(b)Φ−1(σ(τ))y(τ)

]T ∆τβ = 0 where β is an element
of the kernel of (B + DΦ(b))T and therefore must be a multiple of k. Therefore,∫ b

a
yT (τ)Ψ(τ)∆τ = 0. �

Define the operator W from Y into Y by

(Wy)(t) = Ψ(t)
[ ∫ b

a

|Ψ(τ)|2∆τ
]−1

∫ b

a

ΨT (τ)y(τ)∆τ, t ∈ [a, b]T.

Proposition 3.3. E, defined by E = I −W , is a projection onto the image of L.

Proof. First we will show that E is a projection. Since W is a bounded linear
map E is also a bounded map. To prove E2 = E it will be sufficient to show that
W 2 = W . Let y ∈ Y .

(W (Wy))(t)

= W
(
Ψ(·)

[ ∫ b

a

|Ψ(τ)|2∆τ
]−1

∫ b

a

ΨT (τ)y(τ)∆τ
)
(t), t ∈ [a, b]T

= Ψ(t)
[ ∫ b

a

|Ψ(τ)|2∆τ
]−1

∫ b

a

ΨT (τ)Ψ(τ)∆τ
[ ∫ b

a

|Ψ(ν)|2∆ν
]−1

∫ b

a

ΨT (ν)y(ν)∆ν

= Ψ(t)
[ ∫ b

a

|Ψ(ν)|2∆ν
]−1

∫ b

a

ΨT (ν)y(ν)∆ν = (Wy)(t).

Finally we will prove that Im(E) = Im(L). It is clear that Ey ∈ Im(E).∫ b

a

ΨT (τ)(Ey)(τ)∆τ

=
∫ b

a

ΨT (τ)(y −Wy)(τ)∆τ

=
∫ b

a

ΨT (τ)y(τ)∆τ −
∫ b

a

ΨT (τ)Ψ(τ)∆τ
[ ∫ b

a

|Ψ(ν)|2∆ν
]−1

∫ b

a

ΨT (ν)y(ν)∆ν = 0.

Therefore Ey ∈ Im(L), and Im(E) ⊂ Im(L).
Now suppose y ∈ Im(L).

(Ey)(t) = y(t)−Ψ(t)
[ ∫ b

a

|Ψ(τ)|2∆τ
]−1

∫ b

a

ΨT (τ)y(τ)∆τ = y(t),

for all t ∈ [a, b]T. Therefore y ∈ Im(E), and Im(L) ⊂ Im(E). �
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By constructing the projections P and E we are now able to analyze the exis-
tence of solutions to (1.5)–(1.6) using the classic Lyapunov-Schmidt Procedure.
We provide a self-contained presentation of our approach, but offer references
[4, 8, 10, 11, 12] for a more general formulation and for applications to differential
and difference equations. We can utilize the fact that P and E are projections and
write

X = Im(P )⊕ Im(I − P ) and Y = Im(I − E)⊕ Im(E).
For all x ∈ X there exists u ∈ ker(L) and v ∈ Im(I − P ) such that x = u + v. It is
clear that L : Im(I − P ) ∩D(L) → Im(L) is a bijection, and therefore there exists
a bounded linear map M : Im(L) → Im(I − P ) ∩D(L) such that

LMy = y,∀y ∈ Im(L) and MLx = v,∀x ∈ X.

Define H1 : R× Im(I − P ) → R by

H1(α, v) = α−
∫ b

a

g([αS(τ) + Mh(τ) + MEF (Sα + v)(τ)]1)[Ψ(τ)]n∆τ,

Define H2 : R× Im(I − P ) → Im(I − P ) by

H2(α, v) = Mh + MEF (Sα + v).

Define H : R× Im(I − P ) → R× Im(I − P ) by

H(α, v) = (H1(α, v),H2(α, v)).

Proposition 3.4. Lx = h + Fx if and only if there exists (α, v) ∈ R× Im(I − P )
such that H(α, v) = (α, v).

Proof. Let x ∈ X. There exist α ∈ R and v ∈ Im(I −P ) such that x = Sα + v and

Lx = h + Fx ⇐⇒
{

E[Lx− h− Fx] = 0
(I − E)[Lx− h− Fx] = 0

⇐⇒
{

Lv − h− EF (x) = 0
(I − E)F (x) = 0

⇐⇒
{

v = Mh + MEF (Sα + v)∫ b

a
g([αS(τ) + Mh(τ) + MEF (Sα + v)(τ)]1)[Ψ(τ)]n∆τ = 0

⇐⇒ H(α, v) = (α, v).

�

Define g(±∞) as follows, provided the corresponding limits exist,

lim
x→±∞

g(x) = g(±∞).

Proposition 3.5. Assume g is continuous, g(∞) and g(−∞) exist, [S(t)]1 is of
one sign, and g(∞)g(−∞)

∫ b

a
[Ψ(τ)]n∆τ 6= 0. Then∫ b

a

g([±αS(τ) + Mh(τ) + MEFx(τ)]1)[Ψ(τ)]n∆τ → g(±∞)
∫ b

a

[Ψ(τ)]n∆τ

as α →∞.

Proof. We will show that∫ b

a

g([αS(τ) + Mh(τ) + MEFx(τ)]1)[Ψ(τ)]n∆τ → g(∞)
∫ b

a

[Ψ(τ)]n∆τ
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as α → ∞. The proof for the corresponding result with the opposite sign follows
an analogous argument.

Let ε > 0. Since Mh and MEF are bounded on [a, b]T and S achieves its
minimum on the set there exists α0 > 0 such that for all α > α0

|g(∞)− g([αS(t) + Mh(t) + MEFx(t)]1)| < ε.

Let α > α0. Then∣∣∣g(∞)
∫ b

a

[Ψ(τ)]n∆τ −
∫ b

a

g([αS(τ) + Mh(τ) + MEFx(τ)]1)[Ψ(τ)]n∆τ
∣∣∣

≤
∫ b

a

|g(∞)− g([αS(τ) + Mh(τ) + MEFx(τ)]1)[Ψ(τ)]n|∆τ

≤ ε‖Ψ‖(b− a).

Therefore,
∫ b

a
g([±αS(τ)+Mh(τ)+MEFx(τ)]1)[Ψ(τ)]n∆τ → g(±∞)

∫ b

a
[Ψ(τ)]n∆τ

as α →∞. �

Theorem 3.6. Suppose that the kernel of (B + DΦ(b)) is one dimensional. If
(i) [S(t)]1 is of one sign for all t ∈ [a, b]T ,
(ii) g : R → R is continuous,
(iii) g(∞) and g(−∞) exist,
(iv) g(∞)g(−∞)

∣∣ ∫ b

a
[Ψ(τ)]n∆τ

∣∣ < 0, and
(v)

∫ b

a
hT (τ)Ψ(τ)∆τ = 0

then there is at least one solution to the boundary-value problem (1.1)–(1.2).

Proof. For simplicity we will assume that g(∞) > g(−∞) and
∫ b

a
[Ψ(τ)]n∆τ > 0.

Let r = supz∈R |g(z)|. Using Proposition 3.5 there is an α0 > 0 such that for α > α0∫ b

a

g([S(τ)α + Mh(τ) + MEF (Sα + v)(τ)]1)[Ψ(τ)]n∆τ > 0,∫ b

a

g([S(τ)(−α) + Mh(τ) + MEF (Sα + v)(τ)]1)[Ψ(τ)]n∆τ < 0

for v ∈ Im(I − P ). We now use Schauder’s Fixed Point Theorem to prove the
existence of a solution to (1.5)–(1.6). Let

B = {(v, α) : ‖v‖ ≤ ‖Mh‖+ ‖ME‖r, and |α| ≤ δ

where δ = α0 + r(b− a)‖Ψ‖}. Note that∣∣ ∫ b

a

g([S(τ)(−α) + Mh(τ) + MEF (Sα + v)(τ)]1)[Ψ(τ)]n∆τ
∣∣ ≤ r(b− a)‖Ψ‖.

For α ∈ [0, δ], we have

−δ ≤ −r(b− a)‖Ψ‖ ≤ H1(α, v) ≤ α ≤ δ,

−δ ≤ −α ≤ H1(−α, v) ≤ r(b− a)‖Ψ‖ ≤ δ.

Now let (v, α) ∈ B. Then

‖H2(v, α)‖ = ‖Mh + MEF (Sα + v)‖ ≤ ‖Mh‖+ ‖ME‖r.
Since H(B) ⊂ B by the Schauder fixed point theorem there is at least one fixed point
of H in B. If (α̂, v̂) is this fixed point, then v̂ = Mh + MEFv̂ and

∫ b

a
g([α̂S(τ) +
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Mh(τ) + MEF (α̂S + v̂)(τ)]1)[Ψ(τ)]n = 0. By Proposition 3.4, L(α̂S + v̂) = h +
F (α̂S + v̂), and therefore the boundary-value problem (1.5)–(1.6) has at least one
solution. Thus (1.1)–(1.2) has at least one solution. �

4. Periodic Boundary Conditions

In this section we establish the existence of solutions to periodic boundary-value
problems. We consider

u∆∆(t) + βu∆(t) + γu(t) = q(t) + g(u(t)) t ∈ [a, b]T (4.1)

subject to
u(a)− u(a + T ) = 0 and u∆(a)− u∆(a + T ) = 0 (4.2)

where [a, a + T ]T ⊂ Tκ2
and β, γ ∈ R where γµ − β is regressive. We will assume

that the solution space of

u∆∆(t) + βu∆(t) + γu(t) = 0 t ∈ [a, a + T ]T (4.3)

subject to
u(a)− u(a + T ) = 0 and u∆(a)− u∆(a + T ) = 0 (4.4)

is one-dimensional. Let

A =
[

0 1
−γ −β

]
.

It is easily verified that the kernel of (I −Φ(b)) is one dimensional if and only if A
has at least one zero eigenvalue.

First suppose A has real distinct eigenvalues, zero and λ. Now the solution to the
corresponding homogeneous problem is u(t) = c1+c2eλ(t, a), where eλ(·, a) denotes
the time scale exponential function [2]. If we impose the boundary conditions we
find that the solution space of this scalar homogeneous boundary-value problem is
spanned by u(t) = 1 for t ∈ [a, a + T ]T. Consequently the constant function [1, 0]T

spans ker(L).
Now suppose A has a repeated eigenvalue of zero. The solution to the corre-

sponding homogeneous problem is u(t) = c1 + c2t. If we impose the boundary
conditions we find that the solution space of this scalar homogeneous boundary-
value problem is spanned by u(t) = 1 for t ∈ [a, a+T ]T. Consequently the constant
function [1, 0]T spans the ker(L) in this case as well.

We can now say that the solutions to the corresponding homogeneous boundary-
value problem of (4.1)–(4.2) are real multiples of [1, 0]T . Therefore, [S(t)]1 is of one
sign for all t ∈ [a, a + T ]T.

Theorem 4.1. If

u∆∆(t) + βu∆(t) + γu(t) = q(t) t ∈ [a, a + T ]T
subject to

u(a)− u(a + T ) = 0 and u∆(a)− u∆(a + T ) = 0
has a solution and g(∞) and g(−∞) exist where g(∞)g(−∞) < 0 then there is at
least one solution to equation (4.1)–(4.2).

The proof of this theorem follows from Theorem 3.6. It is easy to verify that the
most significant results in Etheridge and Rodŕıguez [5] are a direct consequence of
Theorem 4.1.

Corollary 4.2. Suppose the conditions in Theorem 4.1 are satisfied. If
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(i) q is periodic with period T
(ii) T is a periodic time scale with period T , meaning if t ∈ T then t + T ∈ T

then there exists at least one periodic solution to equation (4.1)–(4.2).

Proof. Let x be a solution to (4.1)–(4.2). Since g is bounded and q is periodic it
is clear that the solution x exists on all of T. Let x(t + T ) = y(t). y satisfies the
dynamic equation (4.1), y(a) = x(a + T ) = x(a), and y∆(a) = x∆(a + T ) = x∆(a).
Therefore by uniqueness x(t) = x(t + T ). �

5. Example

In this section we examine the following second-order nonlinear boundary-value
problem on several time scales. consider

u∆∆(t) + βu∆(t) + γu(t) = g(u(t)) t ∈ [a, b]T (5.1)

subject to

B

[
u(a)

u∆(a)

]
+ D

[
u(b)

u∆(b)

]
= 0 (5.2)

where β, γ ∈ R and γµ − β is regressive, [a, b]T ∈ Tκ2
, B and D are 2 × 2 real

matrices, and g : R → R is continuous. The scalar boundary-value problem (5.1)–
(5.2) is equivalent to the 2× 2 system

x∆(t) = Ax(t) + f(x(t)) t ∈ [a, b]T (5.3)

subject to
Bx(a) + Dx(b) = 0 (5.4)

where

A =
[

0 1
−γ −β

]
, f(x) =

[
0

g(x1)

]
, x =

[
u

u∆

]
.

Suppose d is the vector that spans the kernel of (B + DΦ(b)) and A has real,
distinct eigenvalues, λ1 and λ2, where λ1 > λ2 and both are positively regressive;
i.e., 1+λkµ > 0. Further assume that the eigenpairs for A are given by (λ1, v) and
(λ2, w). Let

Φ̂(t) =
[
v1eλ1(t, a) w1eλ2(t, a)
v2eλ1(t, a) w2eλ2(t, a)

]
.

It is clear that

S(t) = Φ̂(t)Φ̂−1(a)d = Φ̂(t)
[
d1

d2

]
=

[
v1d1eλ1(t, a) + w1d2eλ2(t, a)
v2d1eλ1(t, a) + w2d2eλ2(t, a)

]
.

We will provide conditions under which S1 will be of one sign. It is clear that if
v1, w1, d1, or d2 are zero then S1(t) is either identically zero or of one sign. Now
we investigate the case when v1, w1, d1, and d2 are all nonzero. S1(t) will be of
one sign on [a, b]T if and only if v1d1eλ1(t, a) + w1d2eλ2(t, a) is of one sign for all
t ∈ [a, b]T. This holds when either

eλ1(t, a)
eλ2(t, a)

> −w1d2

v1d1
, for all t ∈ [a, b]T

or
eλ1(t, a)
eλ2(t, a)

< −w1d2

v1d1
, for all t ∈ [a, b]T.
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It is easy to see that
eλ1(t, a)
eλ2(t, a)

> 1 for any time scale. To obtain further results we

consider specific time scales.
The first time scale we will discuss is given by

T1 =
{
[1− 1

22n
, 1− 1

22n+1
] : n = 0, 1, 2, . . .

}
∪ {1}.

For simplicity we assume that a = 0 and b = 1.

eλk
(t, 0) = exp

{
λk

[
t−

l−1∑
i=0

1
22i+2

]} l−1∏
i=0

(1 +
1

22i+2
λk)

where t ∈
[
1 − 1

22l , 1 − 1
22l+1

]
and k = 1, 2. Let t ∈ [1 − 1

22l , 1 − 1
22l+1 ] where

l ∈ Z+ ∪ {0}. Observe that

1 <
eλ1(t, 0)
eλ2(t, 0)

= exp
{

(λ1 − λ2)
[
t−

l−1∑
i=0

1
22i+2

]} l−1∏
i=0

(1 + 1
22i+2 λ1)

(1 + 1
22i+2 λ2)

< exp
{

(λ1 − λ2)
[
1−

∞∑
i=0

1
22i+2

]}(1 + λ1

1 + λ2

)l

= exp
{
(λ1 − λ2)(

1
3
)
}(1 + λ1

1 + λ2

)l
.

Therefore, S1(t) will be of one sign on [0, 1] when

1 > −w1d2

v1d1
or exp

{
(λ1 − λ2)

(1
3
)}(1 + λ1

1 + λ2

)l
< −w1d2

v1d1
for l = 0, 1, 2 . . . .

Now we consider the time scale

T2 = {[2n, 2n + 1] : n = 0, 1, 2, . . . }.

Let a = 0 and b > 0 where b ∈ [1− 1
22N , 1− 1

22N+1 ] where N ∈ Z+ ∪ {0}.

eλk
(t, 0) = exp{λk(t− l)}(1 + λk)l

where t ∈ [2l, 2l + 1] and k = 1, 2. Let t ∈ [1 − 1
22l , 1 − 1

22l+1 ] where l ∈ Z+ ∪ {0}.
Note that

exp{(λ1 − λ2)(b−N)}(1 + λ1

1 + λ2
)N ≥ eλ1(t, 0)

eλ2(t, 0)

= exp{(λ1 − λ2)(t− l)}
(1 + λ1

1 + λ2

)l
> 1.

Therefore, S1(t) will be of one sign on [0, b] when

1 > −w1d2

v1d1
or exp{(λ1 − λ2)(b−N)}

(1 + λ1

1 + λ2

)N
< −w1d2

v1d1
.

Finally consider the time scale

T3 = {2n : n = 0, 1, 2, . . . }.

Let a = 1 and b = 2N where N ∈ Z+.

eλk
(t, 1) =

l−1∏
i=0

(1 + 2iλk)
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where t = 2l and k = 1, 2. Let t = 2l where l ∈ Z+ ∪ {0}. Observe that(1 + 2N−1λ1

1 + 2N−1λ2

)N ≥
l−1∏
i=0

(1 + 2iλ1

1 + 2iλ2

)
=

eλ1(t, 1)
eλ2(t, 1)

> 1.

Therefore, S1(t) will be of one sign on [0, b] when

1 > −w1d2

v1d1
or

(1 + 2N−1λ1

1 + 2N−1λ2

)N

< −w1d2

v1d1
.
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cations, Birkhäuser Boston, Inc., Boston, MA, 2001.

[3] M. Bohner and A. Peterson (eds.); Advances in dynamic equations on time scales, Birkhäuser
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