Alfredo Cano, Sergio Hernandez-Linares, Eric Hernandez-Martinez
Abstract:
We consider the singular semilinear elliptic equation
in
,
on
,
where
is a smooth bounded domain, in
,
,
is the critical Sobolev exponent,
is a continuous function,
, where
is the first
Dirichlet eigenvalue of
in
and
.
We show that if
and f are invariant under a subgroup of
,
the effect of the equivariant topology of
will give many symmetric nodal solutions, which extends previous results of
Guo and Niu [8].
Submitted November 15, 2009. Published August 16, 2010.
Math Subject Classifications: 35J20, 35J25, 49J52, 58E35,74G35.
Key Words: Critical points; critical Sobolev exponent;
multiplicity of solutions; invariant under the action
of a orthogonal group; Palais-Smale condition;
singular semilinear elliptic problem; relative category.
Show me the PDF file (293 KB), TEX file, and other files for this article.
![]() |
Alfredo Cano Rodríguez Universidad Autónoma del Estado de México Facultad de Ciencias, Departamento de Matemáticas Campus El Cerrillo Piedras Blancas Carretera Toluca-Ixtlahuaca, Km 15.5, Toluca, Estado de México, México email: calfredo420@gmail.com |
---|---|
![]() |
Sergio Hernández-Linares Universidad Autónoma Metropolitana, Cuajimalpa Departamento de Matemáticas Aplicadas y Sistemas Artificios No. 40, Col. Hidalgo Del. Alvaro Obregón, C.P. 01120 México D.F., México} email: slinares@correo.cua.uam.mx |
![]() |
Eric Hernández-Martínez Universidad Autónoma de la Ciudad de México, Colegio de Ciencia y Tecnología. Academia de Matemáticas, Calle Prolongación San Isidro No. 151, Col. San Lorenzo Tezonco, Del. Iztapalapa, C.P. 09790, México D.F., México email: ebric2001@hotmail.com |
Return to the EJDE web page