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OBSERVABILITY AND CONTROLLABILITY FOR A
VIBRATING STRING WITH DYNAMICAL BOUNDARY

CONTROL

ALI WEHBE

Abstract. We consider the exact controllability of a wave equation by means

of dynamical boundary control. Unlike the classical control, a difficulty is
due to the presence of the dynamical type. First, we establish a new weak

observability results. Next, by the HUM method, we prove that the system is

exactly controllable by means of regular dynamical boundary control.

1. Introduction and statement of the main result

The aim of this paper is to investigate the observability and the exact controlla-
bility of the one-dimensional system

ytt − yxx = 0 0 < x < 1, t > 0,

y(0, t) = 0 t > 0,

yx(1, t) + η(t) = 0 t > 0,

ηt(t)− yt(1, t) = v(t) t > 0

(1.1)

with the initial conditions

y(x, 0) = y0(x), yt(x, 0) = y1(x), 0 < x < 1, η(0) = η0 ∈ R (1.2)

where v(t) denotes the dynamical boundary control.
In a previous paper [14], we have considered the energy decay rate of the following

one-dimensional wave equation with dynamical boundary control

ytt − yxx = 0 0 < x < 1, t > 0,

y(0, t) = 0 t > 0,

yx(1, t) + η(t) = 0 t > 0,

ηt(t)− yt(1, t) = −η(t) t > 0

(1.3)

with the initial conditions

y(x, 0) = y0(x), yt(x, 0) = y1(x), 0 < x < 1, η(0) = η0 ∈ R (1.4)
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where η(t) denotes the dynamical boundary control. We proved that the uniform
decay rate of the system (1.3)-(1.4) is not true in the energy space. In addition,
using a spectral approach, we established the optimal energy decay rate 1/t for
smooth initial data.

A physical implementation of the dynamic control may be used in pressurized
gas tanks with servo controlled actors, as well as in standard mass-spring dampers
(see [3] and the references herein). We mention that the dynamical controls form a
part of indirect mechanisms proposed by Russell (see [13] and the references herein),
see also [15] and [12].

Now let y be a smooth solution of the system (1.1). We define the associated
energy

E(t) =
1
2

{∫ 1

0

(y2
x + y2

t )dx+ η2
}
. (1.5)

Denoting by Y (x, t) = (y(x, t), yt(x, t), η(t)) the state of the system (1.1) and by
V = (0, 0, v) the control. we can formulate the system (1.1)-(1.2) as an abstract
problem

Yt = AY + V, Y (0) = Y0 ∈ H (1.6)

where A is an m-dissipative operator on an appropriate Hilbert space H. We obtain
thus a weak formulation of the original problem (1.1).

In this paper, our aim is to study the exact controllability of the system (1.1).
For this aim, we will adapt the Hilbert Uniqueness Method [5, 6, 7] to the abstract
problem (1.6).

First, by a multiplier method, we establish an inverse observability inequality
with the usual norm for initial data in H and consequently, by the HUM method,
we prove that the problem (1.6) is exactly controllable by means of singular control
v ∈ H1(0, T )′.

Next, to prove the exact controllability of (1.6) by means of regular control
v ∈ L2(0, T ), we have to establish observability results with a weaker norm (see
[6]). Here lies the main difficulty in this paper. In fact, the operator A of the
problem (1.6) is not invertible in the energy space, so the method used by Rao in
[11] can not be adapted in this case. Indeed, the observability inequalities obtained
with the usual norm can not be extended, directly using A−1, to initial data in
D(A)′. To overcome this difficulty, we establish new intermediate observability
results with the usual norm and then, by a suitable change of variable, we extend
these results to initial data in D(A)′.

In the case of static feedback, the two conditions yx(1, t) + η(t) = 0 and ηt(t)−
yt(1, t) = v(t) are replaced by the condition yx(1, t) + g(y(1, t)) = v(t), the exact
controllability of the system (1.1)-(1.2) was well studied by different approaches
(see [5, 6, 7, 4] and the references herein).

The paper is organized as follows: In section 2, we consider the homogeneous
problem associated to (1.1). Using a multiplier method, we first establish direct and
inverse observability results with the usual norm; i.e, for initial data in H. Next, we
establish new intermediate observability results which leads, by a suitable change,
to extend these observability inequalities to initial data inD(A)′. In section 3, using
the HUM method, we prove that the abstract problem (1.6) is exactly controllable
by means of either a singular control v ∈ H(0, T )′ for usual initial data Y0 ∈ H
and T > 2 or by means of regular control v ∈ L2(0, T ) for smooth initial data
Y0 ∈ D(A) and T > 2.
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2. Observability results

In this section, our aim to establish all observability results necessary to the
controllability of the system (1.1) by singular and regular control v. For this purpose
we consider the following homogeneous system (v = 0):

φtt − φxx = 0 0 < x < 1, t > 0,

φ(0, t) = 0 t > 0

φx(1, t) + ξ(t) = 0 t > 0,

ξt(t)− φt(1, t) = 0 t > 0

(2.1)

with the initial conditions

φ(x, 0) = φ0(x), φt(x, 0) = φ1(x), 0 < x < 1, ξ(0) = ξ0 ∈ R. (2.2)

First, we will study the well-posedness of the problem (2.1).

2.1. Well-posedness of the problem. To write formally the system (2.1)-(2.2),
we, first, introduce

V =
{
φ ∈ H1(0, 1) : φ(0) = 0

}
and define the energy space H = V ×L2(0, 1)×R, endowed with the inner product

(Φ, Φ̃)H =
∫ 1

0

φxφ̃xdx+
∫ 1

0

ψψ̃dx+ ξξ̃, Φ = (φ, ψ, ξ), Φ̃ = (φ̃, ψ̃, ξ̃) ∈ H.

Next we define the linear unbounded operator A on

D(A) =
{
Φ = (φ, ψ, ξ) ∈ H : φ ∈ H2(0, 1), ψ ∈ V and φx(1) + ξ = 0

}
,

AΦ = (ψ, φxx, ψ(1)), ∀Φ = (φ, ψ, ξ) ∈ D(A).

Then setting Φ(x, t) = (φ(x, t), φt(x, t), ξ(t)) ∈ D(A), the state of the system (2.1),
we formally transform the problem (2.1)-(2.2) into an evolutionary equation:

Φt = AΦ, Φ(0) = Φ0 ∈ H. (2.3)

It is easy to check that A is skew adjoint and m-dissipative on H and therefore
generates a strongly continuous group of isometries SA(t) on the energy space H
(see [9, 2]). So, we have the following existence and uniqueness result.

Proposition 2.1. (a-) Assume that Φ0 ∈ H. The system (2.3) admits a unique
weak solution Φ(t) satisfying

Φ(t) ∈ C0(R+;H).

(b-) Assume that Φ0 ∈ D(A). The system (2.3) admits a unique strong solution
Φ(t) satisfying

Φ(t) ∈ C0(R+;D(A)) ∩ C1(R+;H)

and we have

‖Φ(t)‖H = ‖Φ0‖H, ∀t ∈ R+.

Then we will establish two observability results for usual initial data.
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2.2. Observability results for initial data in H. In this part, by a multiplier
method, we establish the following observability results.

Theorem 2.2. Let T > 2 be arbitrarily. Then for every Φ0 ∈ H the solution Φ of
the system (2.3) satisfies the following inequalities

1
T + 2

∫ T

0

[
|φx(1, t)|2 + |φxt(1, t)|2

]
dt ≤ ‖Φ0‖2

H, (2.4)

‖Φ0‖2
H ≤ 2

T − 2

∫ T

0

[
|φx(1, t)|2 + |φxt(1, t)|2

]
dt. (2.5)

Proof. Assume that Φ0 ∈ D(A2). Multiplying the equation (2.1) by 2xφx and
integrating by parts, we obtain∫ 1

0

∫ T

0

(
φ2

t + φ2
x

)
dx dt = −2

[ ∫ 1

0

φtxφxdx
]T

0
+

∫ T

0

(
|φxt(1, t)|2 + |φx(1, t)|2

)
dt.

This implies

T‖Φ0‖2
H + 2

[ ∫ 1

0

φtxφxdx
]T

0
=

∫ T

0

(
|φxt(1, t)|2 + 2|φx(1, t)|2

)
dt. (2.6)

On the other hand, using Cauchy-Schwartz inequality, we deduce that

|2
∫ 1

0

φtxφxdx| ≤ ‖Φ0‖2
H, ∀t ∈ R+.

Finally we have

−2‖Φ0‖2
H ≤ 2

[ ∫ 1

0

φtxφxdx
]T

0
≤ 2‖Φ0‖2

H. (2.7)

Inserting (2.7) in (2.6) we obtain (2.4) and (2.5) for every Φ0 ∈ D(A2). By a
density argument we prove (2.4) and (2.5) for every Φ0 ∈ H. The proof is thus
complete. �

Remark 2.3. (i) There exists no constant c > 0 such that

‖Φ0‖2
H ≤ c

∫ T

0

|φxt(1, t)|2dt.

In fact, it easy to see that the operator A has 0 as an eigenvalue, with an associated
eigenfunction Ψ0 = (x, 0,−1). Let Φ0 = Ψ0 then Φ = Φ0 is the solution of the
problem (2.3) and we have

‖Φ0‖2
H = 2, and

∫ T

0

|φxt(1, t)|2dt = 0.

(ii) There exists no constant c > 0 such that

‖Φ0‖2
H ≤ c

∫ T

0

|φx(1, t)|2dt.

In fact, the skew operator A has iµn ∈ iR , n ∈ Z, isolated eigenvalues with
algebraic multiplicity one and |µn| goes to infinity as n goes to infinity. Moreover,
µn has the following asymptotic expansion (see [14])

µn = nπ +
π

2
+

1
nπ

− 1
2n2π

+O(
1
n3

), as n→∞.
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The associated eigenvectors:

Ψ0 = (x, 0,−1), Ψn = (
1
µn

sin(µnx), i sin(µnx),− cos(µn)), ∀n ∈ Z∗.

Let Φn
0 = Ψn, n ∈ Z∗, then Φn = eiµntΨn is the solution of the problem (2.3) and

we have

‖Φn
0‖2
H = 1 + | cos(µn)|2 → 1, and

∫ T

0

|φx(1, t)|2dt = T | cos(µn)|2 → 0.

We conclude that the usual inverse observability inequalities obtained for the clas-
sical wave equation (see [6, 5]) does not hold in this case.

(iii) The observability inequality (2.5) leads, by the HUM method, to the exact
controllability of (1.1) by means of singular control v ∈ H1(0, 1)′.

2.3. Observability results for initial data in D(A)′. To prove that the system
(1.1) is exactly controllable by means of regular control v ∈ L2(0, T ), we have to
establish an inverse observability inequality with a weaker norm in [6, pp. 122-
127]. For this aim, we will extend the inverse observability inequality, obtained for
usual initial data, to initial data in D(A)′. Since the operator A is not invertible,
the classical methods based on using A−1 to obtain the extension (see [11]) can
not be adapted for this system. To overcome this difficulty, we first establish two
intermediate observability inequalities based on the following theorem.

Theorem 2.4. Let T > 2 and α > 1 be a real number. Then there exist constants
c1(T ) > 0 and c2(T ) > 0 such that for every Φ0 ∈ H the solution Φ of the system
(2.3) satisfies the following inequalities

c1

∫ T

0

[(
φx(1, t)− e−αtφx(1, 0)

)2

+
(
αφx(1, t) + φxt(1, t)

)2]
dt ≤ ‖Φ0‖2

H, (2.8)

‖Φ0‖2
H ≤ c2

∫ T

0

[(
φx(1, t)− e−αtφx(1, 0)

)2

+
(
αφx(1, t) + φxt(1, t)

)2]
dt. (2.9)

Proof. It is sufficient to prove the estimates (2.8) and (2.9) for Φ0 ∈ D(A) the case
of Φ0 ∈ H, then follows by a density argument. First, a direct computation gives∫ T

0

[(
φx(1, t)− e−αtφx(1, 0)

)2

+
(
αφx(1, t) + φxt(1, t)

)2]
dt

≤ 2(1 + α2)
∫ T

0

[
|φx(1, t)|2 + |φxt(1, t)|2

]
dt+

( 1
α
− 1
α
e−2αT

)
φ2

x(1, 0).

(2.10)

On the other hand, using the definition of the norm we have φ2
x(1, 0) = ξ20 ≤ ‖Φ0‖2

H.
Then inserting (2.4) into (2.10), we obtain the direct inequality (2.8), and we have

c−1
1 = 2(T + 2)(1 + α2) + (

1
α
− 1
α
e−2αT ).

Next, we verify the inverse inequality (2.9) by contradiction. Assume that (2.9)
fails, then there exists a sequence (Φn)n∈N such that

‖Φn(t)‖H = ‖Φn
0‖H = 1, ∀t ∈ R (2.11)

and ∫ T

0

[(
φn

x(1, t)− e−αtφn
x(1, 0)

)2

+
(
αφn

x(1, t) + φn
xt(1, t)

)2]
dt→ 0 (2.12)
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where Φn(t) = (φn(x, t), φn
t (x, t), ξn(t)) is the solution of the problem

Φn
t = AΦn, Φn(0) = Φn

0 . (2.13)

Since |φn
x(1, 0)|2 ≤ ‖Φn

0‖2
H = 1 then there exists a subsequence φn

x(1, 0), still indexed
by n for convenience, that converges to a constant −1 ≤ c ≤ 1 as n→ +∞. From
(2.12) we deduce that

φn
x(1, t) → ce−αt, in L2(0, T ) (2.14)

εn =
∫ T

0

(
αφn

x(1, t) + φn
xt(1, t)

)2

dt→ 0. (2.15)

Since α > 1, then using the inequality (2.5) we have
T − 2

2
‖Φn

0‖2
H ≤ εn + α|φn

x(1, 0)|2. (2.16)

Using the linearity of the problem, (2.14)-(2.16) and the trace theorem, we conclude
that, for any ε > 0 there exists n0 ∈ N such that for all n,m ≥ n0,

T − 2
2

‖Φn(t)− Φm(t)‖2
H ≤ 2(εn + εm) + α|φn

x(1, 0)− φm
x (1, 0)|2 ≤ ε.

Then (Φn(t)) is a cauchy sequence in H. This implies that

Φn(t) → Φ(t), strongly in H.
Using (2.5), (2.11), (2.13) and (2.14) we deduce that Φ(t) = (φ(x, t), φt(x, t), ξ(t))
solves the problem

Φt = AΦ, Φ(0) = Φ0 (2.17)
and the supplementary conditions

φx(1, t) = ce−αt, t > 0, (2.18)

‖Φ(t)‖H = 1, t > 0. (2.19)

Now, let Φ = (φ, φt, ξ) be the solution of (2.17)-(2.18) then, using Remark 2.3 (ii),
we have

Φ(x, t) =
∑

anΨn(x)eiµnt, an ∈ C
where the sequence µn satisfies sinµn = −µn cosµn. This implies

ξ(t) = −φx(1, t) = −ce−αt = −
∑

an cos(µn)eiµnt. (2.20)

Noting that µn ∈ R, then using (2.19) we deduce that∑
|an cos(µn)|2 <∞. (2.21)

Using (2.20) and (2.21) we conclude, from Riesz-Fisher theorem [1, pp. 110], that
the function ce−αt is a B2 almost periodic function. Then the Parseval equation is
true for ce−αt [1, pp. 109]; i.e.,∑

|an cos(µn)|2 = M{c2e−2αt}

where the mean value M{c2e−2αt} is given by

M{c2e−2αt} = lim
X→+∞

1
X

∫ X

0

c2e−2αtdt = 0.

This, together the fact that cosµn 6= 0, implies that an = 0 for all n ∈ Z? and c = 0.
Applying Holmgren’s theorem [8], the system (2.17)-(2.18) admits the unique trivial
solution Φ = 0, this contradicts (2.19). The proof is thus complete. �
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Next, by a suitable change of variable, we will establish a direct and inverse
observability inequality for initial data in D(A)′.

Theorem 2.5. Let T > 2 and α > 1 be an arbitrarily real number. Then there
exist constants c3(T ) > 0 and c4(T ) > 0 such that the solution of the system (2.3)
satisfies the following inequalities

c3

∫ T

0

[( ∫ t

0

φx(1, s)eαsds
)2

+ e2αt|φx(1, t)|2
]
dt ≤ ‖Φ0‖2

D(A)′ , (2.22)

‖Φ0‖2
D(A)′ ≤ c4

∫ T

0

[( ∫ t

0

φx(1, s)eαsds
)2

+ e2αt|φx(1, t)|2
]
dt. (2.23)

Proof. It is sufficient to prove (2.22) and (2.23) for Φ0 ∈ D(A) the general case
follows by a density argument. Let Φ0 ∈ D(A) then the problem (2.3) has a unique
solution Φ ∈ D(A). We define a new function Ψ(x, t) by

Ψ(x, t) = eαtΦ(x, t).

It easy to see that Ψ solve the equation

Ψt = (αI +A)Ψ, Ψ(0) = Ψ0 = Φ0 ∈ H. (2.24)

Replacing φ by e−αtψ in (2.8)-(2.9) we obtain

c1e
−2αT

∫ T

0

[(
ψx(1, t)− ψx(1, 0)

)2

+ |ψxt(1, t)|2
]
dt ≤ ‖Ψ0‖2

H (2.25)

and

‖Ψ0‖2
H ≤ c2

∫ T

0

[(
ψx(1, t)− ψx(1, 0)

)2

+ |ψxt(1, t)|2
]
dt. (2.26)

Defining
Ψ̃0 = (αI +A)−1Ψ0 = (αI +A)−1Φ0.

Then
‖Ψ̃0‖2

H = ‖(αI +A)−1Φ0‖2
H = ‖Φ0‖2

D(αI+A)′ . (2.27)

Now, let Ψ̃ the solution of the equation

Ψ̃t = (αI +A)Ψ̃, Ψ̃(0) = (αI +A)−1Φ0. (2.28)

Applying the inequalities (2.25)-(2.26) to Ψ̃ we obtain

c1e
−2αT

∫ T

0

[(
ψ̃x(1, t)− ψ̃x(1, 0)

)2

+ |ψ̃xt(1, t)|2
]
dt ≤ ‖Φ0‖2

D(αI+A)′ (2.29)

and

‖Φ0‖2
D(αI+A)′ ≤ c2

∫ T

0

[(
ψ̃x(1, t)− ψ̃x(1, 0)

)2

+ |ψ̃xt(1, t)|2
]
dt. (2.30)

Using (2.28) we have
Ψ̃t(0) = (αI +A)Ψ̃(0) = Φ0.

Then Ψ̃t solve the equation

Ψ̃tt = (αI +A)Ψ̃t, Ψ̃t(0) = Φ0. (2.31)

This implies that Ψ̃t = Ψ and

ψ̃x(1, t)− ψ̃x(1, 0) =
∫ t

0

ψx(1, s)ds, ψ̃xt(1, t) = ψx(1, t).
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Using (2.29) and (2.30) we obtain

c1e
−2αT

∫ T

0

[( ∫ t

0

ψx(1, s)ds
)2

+ |ψx(1, t)|2
]
dt ≤ ‖Φ0‖2

D(αI+A)′ (2.32)

and

‖Φ0‖2
D(αI+A)′ ≤ c2

∫ T

0

[( ∫ t

0

ψx(1, s)ds
)2

+ |ψx(1, t)|2
]
dt. (2.33)

On the other hand, we have

‖Φ0‖2
D(A) ≤ ‖Φ0‖2

D(αI+A) ≤ (1 + α)‖Φ0‖2
D(A).

This implies that ‖ · ‖D(αI+A)′ and ‖ · ‖D(A)′ are equivalent. Replacing ψx(1, t) by
eαtφx(1, t), we obtain (2.22) and (2.23) with

c3 = c1e
−2αT , c4 = c2.

The proof is complete. �

3. Exact controllability of the system

In this section we study the exact controllability result inH the controlled system

ytt − yxx = 0 0 < x < 1, t > 0,

y(0, t) = 0 t > 0,

yx(1, t) + η(t) = 0 t > 0,

ηt(t)− yt(1, t) = v(t) t > 0

(3.1)

with the initial conditions

y(x, 0) = y0(x), yt(x, 0) = y1(x), 0 < x < 1, η(0) = η0 ∈ R. (3.2)

Setting Y (x, t) = (y(x, t), yt(x, t), η(t)) the state of the system (3.1)-(3.2) we for-
mally transform the problem into an evolutionary problem

Yt = AY + V, Y (0) = Y0 ∈ H (3.3)

where V = (0, 0, v).

3.1. Exact controllability for initial data in H. The observability inequalities
for usual initial data obtained in the subsection 2.2 leads, by the HUM method,
to the exact controllability of the system (3.3) by means of singular control v ∈
H1(0, T )′. Now, let Φ = (φ, φt, ξ) be a solution of the homogeneous problem (2.3).
Multiplying the equation (3.3) by Φ and integrating by parts so that we obtain
formally

(Y0,Φ0)H +
∫ t

0

v(s)ξ(s)ds = (Y (x, t),Φ(x, t))H. (3.4)

Identify the Hilbert space H with its dual and define the linear form L by setting

L(Φ0) = (Y0,Φ0)H +
∫ t

0

v(s)ξ(s)ds, ∀Φ0 ∈ H (3.5)

we obtain a weak formulation of the problem (3.3).

L(Φ0) = (Y (x, t),Φ(x, t))H = (Y (x, t), SA(t)Φ0)H, ∀Φ0 ∈ H (3.6)

where SA(t) the group of isometries associated to the homogeneous problem (2.3).
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Next, we consider the exact controllability of the equation (3.3) for usual initial
data Y0 ∈ H. We choose the control

v(t) = v0(t)−
d

dt
v1(t), v0 ∈ L2(0, T ),

d

dt
v1(t) ∈ H1(0, T )′ (3.7)

where the derivative d
dt is defined in the sense of H1(0, T )′

−
∫ T

0

d

dt
v1(t)µ(t)dt =

∫ T

0

v1(t)
d

dt
µ(t)dt, ∀µ ∈ H1(0, T ). (3.8)

Theorem 3.1. Let T > 0 and v be chosen in (3.7). For every Y0 ∈ H, the
controlled system (3.3) admits a unique weak solution Y (x, t) such that

Y (x, t) ∈ C0([0, T ];H) (3.9)

defined in the sense that the equation (3.6) is satisfied for all Φ0 ∈ H and all
0 < t < T . Moreover the linear mapping

(Y0, v0, v1) → Y (3.10)

is continuous form H× L2(0, T )× L2(0, T ) into H.

Proof. Let Φ0 ∈ H and Φ = (φ, φt, ξ) be the solution of the system (2.3). We have

|
∫ t

0

v(s)ξ(s)ds|

= |
∫ t

0

(v0 −
d

ds
v1(s))φx(1, s)ds|

= |
∫ t

0

v0φx(1, s)ds+
∫ t

0

v1(s)φxs(1, s)ds|

≤ ‖v0‖L2(0,T )‖φx(1, .)‖L2(0,T ) + ‖v1‖L2(0,T )‖φxt(1, .)‖L2(0,T )

≤ (‖v0‖L2(0,T ) + ‖v1‖L2(0,T ))(‖φx(1, .)‖L2(0,T ) + ‖φxt(1, .)‖L2(0,T )).

(3.11)

Using (2.4), (3.5) and (3.11) we obtain

|L(Φ0)| ≤
[√

2(T + 2)(‖v0‖L2(0,T ) + ‖v1‖L2(0,T )) + ‖Y0‖H
]
‖Φ0‖H

for all Φ0 ∈ H. This implies that the linear form L is continuous in the space H.
And we have

‖L‖L(H,R) ≤
√

2(T + 2)(‖v0‖L2(0,T ) + ‖v1‖L2(0,T )) + ‖Y0‖H.

From Riesz’s representation theorem, there exist a unique Z(x, t) ∈ H solution of
the following problem

L(Φ0) = (Z(x, t),Φ0)H, ∀Φ0 ∈ H.

Finally, we define Y (x, t) by SA(t)Y (x, t) = −Z(x, t) and we deduce that Y (x, t) is
the unique solution of the problem (3.6). And we have

‖Y (x, t)‖H ≤
√

2(T + 2)(‖v0‖L2(0,T ) + ‖v1‖L2(0,T )) + ‖Y0‖H, ∀t ∈ [0, T ].

This implies that the linear application (3.10) is continuous from H × L2(0, T ) ×
L2(0, T ) into H. The proof is thus complete. �
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Theorem 3.2. Let T > 2. For all Y0 ∈ H, there exists a control v(t) = v0(t) −
d
dtv1(t), v0, v1 ∈ L

2(0, T ) such that the weak solution Y (x, t) of the controlled prob-
lem (3.3) satisfies the final condition

Y (T ) = 0. (3.12)

Proof. Let Φ be the solution of the homogeneous system (2.3) with initial data
Φ0 ∈ H. We define the semi-norm

‖Φ0‖2
1 =

∫ T

0

(|φx(1, t)|2 + |φxt(1, t)|2)dt, ∀Φ0 ∈ H. (3.13)

Thanks to inequalities (2.4) and (2.5), we know that (3.13) defines an equivalent
norm in the energy space H. Now, choosing the controller v(t) as

v(t) = v0(t)−
d

dt
v1(t) =: −φx(1, t) +

d

dt
φxt(1, t) (3.14)

where the derivative d
dt is defined in the sense of (3.8). Using the direct inequality

(2.4), we have

‖v0(t)‖L2(0,T ) + ‖v1(t)‖L2(0,T ) ≤
√

2(T + 2)‖Φ0‖H. (3.15)

Now solve the backward problem

Ψt = AΨ + V, Ψ(T ) = 0. (3.16)

Using Theorem 2.4 the problem (3.16) admits a unique weak solution Ψ(x, t) ∈
C0([0, T ];H), and we have

‖Ψ‖H ≤
√

2(T + 2)(‖v0(t)‖L2(0,T ) + ‖v1(t)‖L2(0,T )). (3.17)

Next we define the operator Λ as

ΛΦ0 = −Ψ(0), ∀Φ0 ∈ H. (3.18)

By virtue of inequalities (3.15) and (3.17) we obtain

‖ΛΦ0‖H ≤
√

2(T + 2)(‖v0(t)‖L2(0,T ) + ‖v1(t)‖L2(0,T )) ≤ 2(T + 2)‖Φ0‖H.

This implies that Λ is a linear continuous operator from H into H. Multiplying the
backward problem (3.16) by Φ and integrating by parts we obtain

−(Ψ0,Φ0)H =
∫ T

0

(|φx(1, t)|2 + |φxt(1, t)|2)dt. (3.19)

This implies
(ΛΦ0,Φ0)H = ‖Φ0‖2

1. (3.20)

Thanks to the Lax-Milgram theorem, we deduce that Λ is an isomorphism from H
onto H. In particular, given any −Y0 ∈ H, there exists a unique Φ0 ∈ H such that

ΛΦ0 = −Y0. (3.21)

This equality implies that the weak solution Y (x, t) of backward problem (3.16),
with v given by (3.14) satisfy the initial value condition Y (x, 0) = Y0 and that final
condition Y (x, T ) = 0. The proof is complete. �
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3.2. Exact controllability for initial data in D(A). Now we consider the exact
controllability of the equation (3.3) by means of a regular control v ∈ L2(0, T )

v(t) = −eαtv0(t) + eαt

∫ t

T

( ∫ s

0

v0(τ)eατdτ
)
ds, v0(t) ∈ L2(0, T ). (3.22)

For the wellposedness of the equation (3.3) with the control (3.22) we first in-
terpret (3.6) into the following form

L(Φ0) = 〈Y (x, t), SA(t)Φ0〉D(A)×D(A)′ , ∀Φ0 ∈ D(A)′ (3.23)

where the linear form L is defined by

L(Φ0) = 〈Y0,Φ0〉D(A)×D(A)′ +
∫ t

0

v(s)ξ(s)ds, ∀Φ0 ∈ D(A)′. (3.24)

Theorem 3.3. Let T > 0 and v ∈ L2(0, T ) defined by (3.22). For every Y0 ∈ D(A)
the controlled system (3.3) admits a unique weak solution satisfying

Y (x, t) ∈ C0
(
[0, T ];D(A)

)
(3.25)

defined in the sense that the equation (3.23) is satisfied for all Φ0 ∈ D(A)′ and all
0 < t < T . Moreover the linear application

(Y0, v0) → Y (3.26)

is continuous form D(A)× L2(0, T ) into D(A).

Proof. Let Φ0 ∈ D(A)′ and Φ = (φ, φt, ξ) be the solution of the system (2.3). It
easy to see that

|
∫ t

0

v(s)ξ(s)ds|

= |
∫ t

0

eαsv0(s)φx(1, s)ds+
∫ t

0

( ∫ s

0

eατφx(1, τ)dτ
)( ∫ s

0

eατv0(τ)dτ
)
ds|

≤ eαT ‖v0‖L2(0,T )‖φx(1, .)‖L2(0,T ) + ‖ṽ0‖L2(0,T )‖φ̃x(1, .)‖L2(0,T )

where

φ̃x(1, t) =
∫ t

0

eαsφx(1, s)ds, ṽ0(t) =
∫ t

0

eαsv0(s)ds.

We deduce that∣∣ ∫ t

0

v(s)ξ(s)ds
∣∣ ≤ c5‖v0‖L2(0,T )(‖φx(1, .)‖L2(0,T ) + ‖φ̃x(1, .)‖L2(0,T ))

where c5 is a constant given by

c5 = 1 +

√
T (e2αT − 1)

2α
.

Using (2.22) and (3.24) we obtain

|L(Φ0)| ≤ (
√

2c5c
−1/2
3 ‖v0‖L2(0,T ) + ‖Y0‖D(A))‖Φ0‖D(A)′ , ∀Φ0 ∈ D(A)′.

This implies that the linear form L is continuous in the space D(A)′, and we have

‖L‖L(D(A)′,R) ≤
√

2c5c
−1/2
3 ‖v0‖L2(0,T ) + ‖Y0‖D(A).
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From the Riesz representation theorem, there exist a unique Z(x, t) ∈ D(A) solution
of the following problem

L(Φ0) =< Z(x, t),Φ0〉D(A)×D(A)′ , ∀Φ0 ∈ D(A)′.

Finally, we define Y (x, t) by SA(t)Y (x, t) = −Z(x, t) and we deduce that Y (x, t) is
the unique solution of the problem (3.23), and we have

‖Y (x, t)‖D(A) ≤
√

2c5c
−1/2
3 ‖v0‖L2(0,T ) + ‖Y0‖D(A), ∀t ∈ [0, T ].

This implies that the linear application (3.26) is continuous from D(A)× L2(0, T )
into D(A). The proof is complete. �

Theorem 3.4. Let T > 2. For all Y0 ∈ D(A), there exists a control v(t) ∈ L2(0, T )
such that the weak solution Y (x, t) of the controlled problem (3.3) satisfies the final
condition

Y (T ) = 0. (3.27)

Proof. Let Φ0 ∈ D(A)′ and Φ be the solution of the homogeneous system (2.3).
We define the semi-norm

‖Φ0‖2 =
∫ T

0

[(
∫ t

0

φx(1, s)eαsds)2 + e2αt|φx(1, t)|2]dt, ∀Φ0 ∈ D(A)′. (3.28)

Thanks to inequalities (2.22) and (2.23), we know that (3.28) defines an equivalent
norm in the energy space D(A)′. Now, choosing the controller v(t) by

v(t) = −eαtφx(1, t) + eαt

∫ t

T

( ∫ s

0

φx(1, τ)eατdτ
)
ds ∈ L2(0, T ). (3.29)

From the direct inequality (2.22), we have

‖v0‖L2(0,T ) ≤ c
−1/2
1 ‖Φ0‖D(A)′ . (3.30)

Next we solve the backward problem

Ψt = AΨ + V, Ψ(T ) = 0. (3.31)

Using Theorem 2.4 the problem (3.31) admits a unique weak solution Ψ(x, t) ∈
C0([0, T ];D(A)). And we have

‖Ψ‖D(A) ≤
√

2c5c
−1/2
3 ‖v0‖L2(0,T ). (3.32)

Next we define the operator Λ as

ΛΦ0 = −Ψ(0), ∀Φ0 ∈ D(A)′. (3.33)

By virtue of inequalities (3.30) and (3.32) we obtain

‖ΛΦ0‖D(A) ≤
√

2c5c−1
1 eαT ‖Φ0‖D(A)′ .

This implies that Λ is a linear continuous operator from D(A)′ into D(A). Now
multiplying the backward problem (3.31) by Φ and integrating by parts we obtain

−〈Ψ0,Φ0〉D(A)×D(A)′ =
∫ T

0

[( ∫ t

0

φx(1, s)eαsds
)2

+ e2αt|φx(1, t)|2
]
dt. (3.34)

This implies
〈ΛΦ0,Φ0〉D(A)×D(A)′ = ‖Φ0‖2

2. (3.35)
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Thanks to the the Lax-Milgram theorem, we deduce that Λ is an isomorphism
from D(A)′ into D(A). In particular, given any −Y0 ∈ D(A), there exists a unique
Φ0 ∈ D(A)′ such that

ΛΦ0 = −Y0. (3.36)
This equality implies that the weak solution Y (x, t) of backward problem (3.33),
with v given by (3.29) satisfy the initial value condition Y (x, 0) = Y0 and that final
condition Y (x, T ) = 0. The proof is thus complete. �
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