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MULTIPLICITY OF SOLUTIONS FOR SOME FOURTH-ORDER
M-POINT BOUNDARY-VALUE PROBLEMS

HAITAO LI, YANSHENG LIU

Abstract. Using the theory of the fixed point index in a cone and the Leray-
Schauder degree, this paper investigates the existence and multiplicity of non-

trivial solutions for a class of fourth order m-point boundary-value problems.

1. Introduction

Consider the following fourth order m-point boundary-value problem

u(4)(t) = f(u(t),−u′′(t)), t ∈ (0, 1);

u′(0) = 0, u(1) =
m−2∑
i=1

αiu(ηi);

u′′′(0) = 0, u′′(1) =
m−2∑
i=1

αiu
′′(ηi),

(1.1)

where f : R × R → R is a given sign-changing continuous function, m ≥ 3, 0 <
η1 < η2 < · · · < ηm−2 < 1 and αi > 0 for i = 1, . . . ,m− 2, with

m−2∑
i=1

αi < 1. (1.2)

The multi-point boundary-value problems for ordinary differential equations
arise in many areas of applied mathematics and physics. The existence of solu-
tions of the fourth order two-point boundary-value problems and the second or-
der m-point boundary-value problems have been studied intensively because of
their interest to physics(see [1,2,6,7,9-11] and [5,8,13,14], resp.). However, to our
best knowledge, the multiplicity of nontrivial solutions of the nonlinear multi-point
boundary-value problems for fourth order differential equations has not been stud-
ied intensively.
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Recently in [12], Wei and Pang investigated the existence and multiplicity of
nontrivial solutions for the following fourth order m-point boundary-value problems

x(4)(t) = f(x(t),−x′′(t)), t ∈ (0, 1);

x(0) = 0, x(1) =
m−2∑
i=1

αix(ηi);

x′′(0) = 0, x′′(1) =
m−2∑
i=1

αix
′′(ηi),

(1.3)

where m ≥ 3, 0 < η1 < η2 < · · · < ηm−2 < 1 are constants and αi ∈ (0, 1) for
i = 1, . . . ,m− 2 satisfies (1.2). f : R× R → R satisfies the following conditions:

(S0) The sequence of positive solutions of

sin(
√

s) =
m−2∑
i=1

αi sin(ηi

√
s)

is 0 < λ1 < λ2 < · · · < λn < λn+1 < . . . .
(S1) f(0, 0) = 0; and for u > 0, v > 0, f(u, v) ≥ 0; for u < 0, v < 0, f(u, v) ≤ 0;

for uv > 0, f(u, v) does not vanished.
(S2) f(u, v) has a continuous partial derivative at the point (0, 0), and there

exists a positive integer n0 such that µ2n0 < 1 < µ2n0+1, where µn =
λ2

n

a0+b0λn
, a0 = f ′u(0, 0) > 0, b0 = f ′v(0, 0) > 0.

(S3) There exist a1 > 0, b1 > 0 such that

lim
|u|+|v|→+∞

|f(u, v)− a1u− b1v|
|u|+ |v|

= 0,

and there exists a positive integer n1 such that γ2n1 < 1 < γ2n1+1, where
γn = λ2

n

a1+b1λn
.

(S4) There exists a constant T > 0 such that |f(u, v)| < W−1T , for all 0 < |u| ≤
T , 0 < |v| ≤ T , where

W =
1
2

+

m−2∑
i=1

αi

6(1−
m−2∑
i=1

αiηi)
.

Using the theory of the fixed point index in a cone and the Leray-Schauder degree,
we obtain the following results.

Theorem 1.1. Suppose (S0)–(S4) hold. Then (1.3) has at least six nontrivial
solutions: Two positive solutions, two sign-changing solutions, and two negative
solutions.

Theorem 1.2. Suppose (S0)–(S4) hold, and f is odd. Then (1.3) has at least eight
nontrivial solutions.
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Motivated by [12], we investigate the existence and multiplicity of nontrivial
solutions for (1.1). Let X = C[0, 1] with the norm ‖u‖0 = max

t∈[0, 1]
|u(t)|,

Y = {u ∈ C2[0, 1] : u′(0) = 0, u(1) =
m−2∑
i=1

αiu(ηi)}

with the norm ‖u‖ = max{‖u‖0, ‖u′‖0, ‖u′′‖0},

E = {u ∈ C3[0, 1] ∩ Y : u′′′(0) = 0, u′′(1) =
m−2∑
i=1

αiu
′′(ηi)}

with the norm ‖u‖ = max{‖u‖0, ‖u′‖0, ‖u′′‖0, ‖u′′′‖0}. Then X, Y,E are Banach
spaces. We define a cone in E as

P = {x ∈ E : x(t) ≥ 0,−x′′(t) ≥ 0,∀t ∈ [0, 1]}.

Let

Γ(s) = cos(
√

s)−
m−2∑
i=1

αi cos(ηi

√
s), s ∈ R.

Then we can list the sequence of positive solutions of the equation Γ(s) = 0 as
follows:

0 < s1 < s2 < · · · < sn < sn+1 < . . . .

Regarding the nonlinearity f(u, v), we assume that it satisfies the following condi-
tions:

(H1) f(0, 0) = 0; and for u > 0, v > 0, f(u, v) ≥ 0; for u < 0, v < 0, f(u, v) ≤ 0;
for uv > 0, f(u, v) does not vanish.

(H2) There exist a0 > 0, b0 > 0, such that

f(u, v) = a0u + b0v + o(|(u, v)|), as |(u, v)| → 0,

where (u, v) ∈ R × R, and |(u, v)| := max{|x|, |y|}. And there exists a
positive integer n0 such that µn0 < 1 < µn0+1, where µn = s2

n

a0+b0sn
.

(H3) There exist a1 > 0, b1 > 0, such that

f(u, v) = a1u + b1v + o(|(u, v)|), as |(u, v)| → +∞,

where (u, v) ∈ R × R, and |(u, v)| := max{|x|, |y|}. And there exists a
positive integer n1 such that γn1 < 1 < γn1+1, where γn = s2

n

a1+b1sn
.

(H4) There exists a constant T > 0 such that |f(u, v)| < M−1T , for all (u, v)
satisfying 0 < |u| ≤ T , 0 < |v| ≤ T , where M = max{1, N, N2} and

N = 1
2 (1 +

m−2P
i=1

αi

1−
m−2P
i=1

αiηi

).

This paper is organized as follows. In Section 2, we present some basic properties
of the fixed point index, and make use of these properties to obtain some important
lemmas. In Section 3, we shall give our main results and their proofs.
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2. Preliminaries

Let us list some properties of the fixed point index in a cone (for details, [3, 4]).

Lemma 2.1 ([4]). Let P be a cone of the Banach space E, and A : P → P be
completely continuous, suppose that A is differential at θ and ∞ along P and 1 is
not an eigenvalue of A′

+(θ) and A′
+(∞) corresponding to a positive eigenfunction.

(i) If A′
+(θ) has a positive eigenfunction corresponding to an eigenvalue greater

than 1, and Aθ = θ, then there exists τ > 0 such that i(A,P ∩ B(θ, r), P ) = 0 for
any 0 < r < τ .

(ii) If A′
+(∞) has a positive eigenfunction which corresponds to an eigenvalue

greater than 1, then there exists ζ > 0 such that i(A,P ∩ B(θ, R), P ) = 0 for any
R > ζ.

Lemma 2.2 ([4]). Let θ ∈ Ω and A : P ∩ Ω → P be condensing. Suppose that
Ax 6= µx, for all x ∈ P ∩ ∂Ω and µ ≥ 1. Then i(A,P ∩ Ω, P ) = 1.

We first transform (1.1) into another form. Suppose u(t) is a solution of (1.1).
Let v(t) = −u′′(t). Note that

u′′(t) + v(t) = 0, t ∈ (0, 1);

u′(0) = 0, u(1) =
m−2∑
i=1

αiu
(ηi),

(2.1)

thus u(t) can be written as
u(t) = Lv(t), (2.2)

where the operator L is defined by Lv(t) =
∫ 1

0
H(t, s)v(s)ds, for all v ∈ Y , and

H(t, s) = G(t, s) +

m−2∑
i=1

αiG(ηi, s)

1−
m−2∑
i=1

αiηi

t,

G(t, s) =

{
1− t, 0 ≤ s ≤ t ≤ 1;
1− s, 0 ≤ t ≤ s ≤ 1.

Therefore, we obtain the following equivalent form of (1.1):

v′′(t) + f((Lv)(t), v(t)) = 0, t ∈ (0, 1);

v′(0) = 0, v(1) =
m−2∑
i=1

αiv
(ηi).

(2.3)

Similar to (2.1) and (2.2), v(t) can be written as

v(t) = (LF )u(t), (2.4)

where (Fu)(t) = f(u(t), −u′′(t)), t ∈ (0, 1), for all u ∈ E. From (2.2) and (2.4)
we obtain u(t) = (L2F )u(t). Define A = L2F , then it is easy to get the following
lemma.

Lemma 2.3. u(t) is a solution of (1.1) if and only if u(t) is a solution of the
operator equation

u(t) = Au(t). (2.5)
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Lemma 2.4. Suppose (H1) holds. Then A : P → P is completely continuous.

Proof. By the continuity of f , it is easy to see that A : E → E is completely
continuous. Suppose x(t) ∈ P , condition (H1) implies

Ax(t) = (L2F )x(t) ≥ 0, −(Ax)′′(t) = (LF )x(t) ≥ 0, ∀t ∈ [0, 1].

Therefore ,Ax(t) ∈ P . �

Remark 2.5. Similarly to the above, if f satisfies (H1), then A : −P → −P is
completely continuous.

Set

Kx(t) = L2x(t), (2.6)

Qx(t) = L2(−x′′)(t). (2.7)

Lemma 2.6. (i) K : C[0, 1] → E is a completely continuous linear operator;
(ii) F : E → C[0, 1] is a continuous bounded operator, and A = KF ;
(iii) Q : E → E is a completely continuous linear operator;
(iv) the sequences of all eigenvalues of the operators a0K + b0Q and a1K + b1Q

are { 1
µn
}, and { 1

γn}, respectively, where µn and γn are respectively defined
by (H2) and (H3).

Proof. Items (i)-(iii) have obvious proofs. To prove (iv), let µ be a positive eigen-
value of the linear operator a0K + b0Q, and y ∈ E \ {θ} be an eigenfunction
corresponding to the eigenvalue µ. By (2.6) and (2.7), we have

µy(4) = a0y + b0(−y′′);

y′(0) = 0, y(1) =
m−2∑
i=1

αiy(ηi);

y′′′(0) = 0, y′′(1) =
m−2∑
i=1

αiy
′′(ηi).

(2.8)

Define D = d
dt , G = µD4 − a0 + b0D

2, then there exist complex constants r1, r2

such that
Gu = µ(D2 + r1)(D2 + r2)u.

By the properties of differential operators, if (2.8) has a nonzero solution, then
there exists rs, s ∈ {1, 2} such that rs = sk, k ∈ N+. In this case, cos t

√
sk is a

nonzero solution of (2.8). On substituting this solution into (2.8), we have

µs2
k − (a0 + b0sk) = 0.

Hence, {a0+b0sk

s2
k

= 1
µk
}, k = 1, 2, . . . is the sequence of eigenvalues of the operator

a0K + b0Q. Then µ is one of the values
1
µ1

>
1
µ2

> · · · > 1
µn

> . . .

and the eigenfunction corresponding to the eigenvalue 1/µn is

yn(t) = C cos(t
√

sn), t ∈ [0, 1],

where C is a nonzero constant.
Similarly, we can show that the sequence of eigenvalues of the operator a1K+b1Q

is {1/µn}, n = 1, 2, . . . . �
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Lemma 2.7. Suppose (H2) and (H3) hold. Then the operator A is Frechet differ-
entiable at θ and ∞. Moreover, A′(θ) = a0K + b0Q and A′(∞) = a1K + b1Q.

Proof. For any x ∈ E, we have

[Ax−Aθ − (a0Kx + b0Qx)](t) = L2[f(x(t),−x′′(t))− (α0x(t)− β0x
′′(t))]

= L2Bx(t), ∀t ∈ [0, 1]
(2.9)

[Ax−Aθ − (a0Kx + b0Qx)]′(t) = −
∫ t

0

LBx(s)ds, (2.10)

[Ax−Aθ − (a0Kx + b0Qx)]′′(t) = −LBx(t), (2.11)

[Ax−Aθ − (a0Kx + b0Qx)]′′′(t) =
∫ t

0

Bx(s)ds, (2.12)

where Bx(t) = f(x(t),−x′′(t))− (a0x(t)− b0x
′′(t)).

For each ε > 0, by (H2), there exists a δ > 0 such that for any 0 < |u|, |v| < δ,

|f(u, v)− a0u− b0v√
u2 + v2

| < ε.

This means

|f(u, v)− (a0u + b0v)| < ε
√

u2 + v2, ∀0 < |u|, |v| < δ. (2.13)

Then, for any x ∈ E with ‖x‖ < δ, by (2.9)-(2.13), we get

‖Ax−Aθ − (a0Kx + b0Qx)‖ ≤
√

2Mε‖x‖. (2.14)

Consequently,

lim
‖x‖→0

‖Ax−Aθ − (a0Kx + b0Qx)‖
‖x‖

= 0.

Therefore, A is Frechet differentiable at θ, and A′(θ) = a0K + b0Q.
For each ε > 0, by (H3), there exists a constant R1 > 0 such that |f(u, v) −

a1u− b1v| < ε(|u|+ |v|), for |u|+ |v| > R1. Let

b = max
|u|+|v|≤R1

|f(u, v)− a1u− b1v|,

then we have

|f(u, v)− a1u− b1v| ≤ ε(|u|+ |v|) + b, ∀u, v ∈ R.

By a consideration similar to (2.14), we get

‖Ax− (a1Kx + b1Qx)‖ ≤ (2ε‖x‖+ b)M, ∀x ∈ E.

Consequently, lim
‖x‖→∞

‖Ax−(a1Kx+b1Qx)‖
‖x‖ = 0. This implies that A is Frechet differ-

entiable at ∞, and A′(∞) = a1K + b1Q. �

Lemma 2.8. Suppose that (H1)–(H3) hold. Then

(i) there exists a constant r0 such that 0 < r0 < T , and for any 0 < r ≤ r0,
i(A,P ∩B(θ, r), P ) = 0, i(A,−P ∩B(θ, r),−P ) = 0;

(ii) there exists a constant R0 > T such that for any R ≥ R0, i(A,P ∩
B(θ, R), P ) = 0, i(A,−P ∩B(θ, R),−P ) = 0.
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Proof. We prove conclusion (i) only; conclusion (ii) can be proved in the same way.
By Lemma 2.7, A : P → P is completely continuous and Frechet differentiable along
P at θ, and A′

+(θ) = a0K + b0Q,Aθ = θ. By Lemma 2.6 and (H2), A′
+(θ) has an

eigenvalue 1
µ1

= a0+b0s1
s2
1

> 1, and 1
µ1

> 1
µ2

> · · · > 1
µn0

> 1 > 1
µn0+1

> · · · > 0, so
1 is not an eigenvalue of A′

+(θ) corresponding to a positive eigenfunction.
The eigenfunction corresponding to 1

µ1
is y(t) = cos t

√
s1, t ∈ [0, 1], where s1 is

the smallest positive solution of the equation

cos(
√

s) =
m−2∑
i=1

αi cos(ηi

√
s).

Since

cos(
√

0)−
m−2∑
i=1

αi cos 0 = 1−
m−2∑
i=1

αi > 0,

cos(
√

(π/2)2)−
m−2∑
i=1

αi cos(ηi

√
(π/2)2) = −

m−2∑
i=1

αi cos(
π

2
ηi) < 0.

Then by the mean-value theorem, s1 ∈ (0, (π
2 )2). Consequently

y(t) = cos(t
√

s1) ≥ 0, t ∈ [0, 1].

And then it follows from Lemma 2.1 that there exists an τ0 > 0 such that i(A,P ∩
B(θ, r), P ) = 0 for any 0 < r ≤ τ0.

Similarly, we can show that there exists an τ1 > 0 such that i(A,−P∩B(θ, r),−P ) =
0 for any 0 < r ≤ τ1. Let r0 < min{T, τ0, τ1}, then the conclusion (i) holds and the
proof is complete. �

3. Main Results

Now we are ready to give our main results.

Theorem 3.1. Suppose (H1)–(H4) hold. Then (1.1) has at least four nontrivial
solutions: Two positive solutions, and two negative solutions.

Proof. For x ∈ E, we have

Ax(t) = L2Fx(t), (Ax)′(t) = −
∫ t

0

LFx(s)ds;

(Ax)′′(t) = −LFx(t), (Ax)′′(t) =
∫ t

0

Fx(s)ds.

As for (2.14) we have

‖Ax‖ ≤ M‖x‖. (3.1)

Therefore, for any x ∈ E, ‖x‖ = T , by (H4) and (3.1), ‖Ax‖ < T = ‖x‖. Then by
Lemma 2.2, we have

i(A,P ∩B(θ, T ), P ) = 1, (3.2)

i(A,−P ∩B(θ, T ),−P ) = 1. (3.3)
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By Lemma 2.8, there exists two constants r0, R0, 0 < r0 < T < R0, such that

i(A,P ∩B(θ, r0), P ) = 0, (3.4)

i(A,−P ∩B(θ, r0),−P ) = 0, (3.5)

i(A,P ∩B(θ, R0), P ) = 0, (3.6)

i(A,−P ∩B(θ, R0),−P ) = 0. (3.7)

Thus by (3.2), (3.4) and (3.6) we have

i(A,P ∩ (B(θ, T ) \B(θ, r0)), P ) = 1, (3.8)

i(A,P ∩ (B(θ, R0) \B(θ, T )), P ) = −1. (3.9)

Therefore, the operator A has at least two fixed points x1 ∈ P ∩(B(θ, R0)\B(θ, T ))
and x2 ∈ P∩(B(θ, T )\B(θ, r0)), respectively. By Lemma 2.3, x1 and x2 are positive
solutions of (1.1).

Similarly, by (3.3), (3.5) and (3.7) we have

i(A,−P ∩ (B(θ, R0) \B(θ, T )),−P ) = −1, (3.10)

i(A,−P ∩ (B(θ, T ) \B(θ, r0)),−P ) = 1. (3.11)

Thus, the operator A has at least two fixed points x3 ∈ (−P )∩ (B(θ, T ) \B(θ, r0))
and x4 ∈ (−P ) ∩ (B(θ, R0) \ B(θ, T )), respectively. Obviously by Lemma 2.3, x3

and x4 are negative solutions of (1.1). �

By the method used in the proof of Theorem 3.1, it is easy to show the following
corollaries.

Corollary 3.2. Equation (1.1) has at least two different nontrivial solutions: One
positive and one negative, provided that (H1), (H2), (H4) hold.

Corollary 3.3. Suppose that (H1), (H3), (H4) hold. Then (1.1) has at least two
different nontrivial solutions: One positive and one negative.

If the nonlinearity f does not depend on the second order derivative., then (1.1)
becomes the following fourth-order m-point boundary-value problem

u(4)(t) = f(u(t)), t ∈ (0, 1);

u′(0) = 0, u(1) =
m−2∑
i=1

αiu(ηi);

u′′′(0) = 0, u′′(1) =
m−2∑
i=1

αiu
′′(ηi).

(3.12)

We have the following corollary.

Corollary 3.4. If f satisfies
(H1’) f ∈ C(R, R), f(0) = 0; and xf(x) ≥ 0, for x ∈ R;
(H2’) there exists a positive integer n0 such that s2

n0
< a0 < s2

n0+1, where a0 =
lim
x→0

f(x)
x ;

(H3’) there exists a positive integer n1 such that s2
n1

< a1 < s2
n1+1, where a1 =

lim
x→∞

f(x)
x ;
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(H4’) There exists a constant T > 0 such that |f(x)| < M−1T , for all 0 < |x| ≤ T ,
where M is defined as in (H4).

Then (3.12) has at least four nontrivial solutions.

Acknowledgements. The authors want to thank the anonymous referee for the
suggestions on this paper.
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