EXISTENCE AND UPPER SEMICONTINUITY OF GLOBAL ATTRACTORS FOR NEURAL FIELDS IN AN UNBOUNDED DOMAIN

SEVERINO HORÁCIO DA SILVA

$$
\begin{aligned}
& \text { ABSTRACT. In this article, we prove the existence and upper semicontinuity } \\
& \text { of compact global attractors for the flow of the equation } \\
& \qquad \frac{\partial u(x, t)}{\partial t}=-u(x, t)+J *(f \circ u)(x, t)+h, \quad h>0 \\
& \text { in } L^{2} \text { weighted spaces. }
\end{aligned}
$$

1. Introduction

We consider here the non local evolution equation

$$
\begin{equation*}
\frac{\partial u(x, t)}{\partial t}=-u(x, t)+J *(f \circ u)(x, t)+h, \quad h>0 \tag{1.1}
\end{equation*}
$$

where $u(x, t)$ is a real-valued function on $\mathbb{R} \times \mathbb{R}_{+}, h$ is a positive constant, $J \in C^{1}(\mathbb{R})$ is a non negative even function supported in the interval $[-1,1]$, and, f is a non negative nondecreasing function. The $*$ above denotes convolution product, namely:

$$
\begin{equation*}
(J * u)(x)=\int_{\mathbb{R}} J(x-y) u(y) d y \tag{1.2}
\end{equation*}
$$

Equation (1.1) was derived by Wilson and Cowan, [18, to model a single layer of neurons in 1972. The function $u(x, t)$ denotes the mean membrane potential of a patch of tissue located at position $x \in(-\infty, \infty)$ at time $t \geq 0$. The connection function $J(x)$ determines the coupling between the elements at position x and position y. The non negative nondecreasing function $f(u)$ gives the neural firing rate, or averages rate at which spikes are generated, corresponding to an activity level u. The neurons at a point x are said to be active if $f(u(x, t))>0$. The parameter h denotes a constant external stimulus applied uniformly to the entire neural field, (see [1], 4], [6, 8], 9], 10], 15] and [16]).

[^0]An equilibrium of (1.1) is a solution for (1.1) that is constant with respect to t. Thus, if u is an equilibrium for (1.1) then u satisfies

$$
\begin{equation*}
u(x)=J *(f \circ u)(x)+h . \tag{1.3}
\end{equation*}
$$

In the literature, there are already several works dedicated to the analysis of this model. In [1] lateral inhibition type coupling is studied. Furthermore, when f is a Heaviside step function, [1] also treats the behavior of time dependent periodic solutions as well as traveling waves for systems of equations. Existence and uniqueness of monotone traveling waves was investigated in [6]. An another prove of existence of monotone travelling waves is given in 4]. In [8, the existence of a non-homogeneous stationary solution referred to as "bump" is proved. One link between the integral equations given by (1.3) and ODEs is given in [9]. In [10], the existence of a non-homogeneous stationary solution of the type "double-bump" is proved. In [15] is proved that solutions as "bump" can exist and be linearly stable in neural population models without recurrent excitation. In [16, assuming that f is Lipschitz and bounded, is proved the existence of global attractor, for the flow generated by (1.1), in weighted space.

We consider here the unique additional condition on f which will is used as hypothesis in our results when necessary.
(H1) The function $f: \mathbb{R} \rightarrow \mathbb{R}$ is Lipschitz, that is, there exists $k_{1}>0$ such that

$$
\begin{equation*}
|f(x)-f(y)| \leq k_{1}|x-y|, \quad \forall x, y \in \mathbb{R} \tag{1.4}
\end{equation*}
$$

From (1.4), follows that there exists constant $k_{2} \geq 0$ such that

$$
\begin{equation*}
|f(x)| \leq k_{1}|x|+k_{2} \tag{1.5}
\end{equation*}
$$

This paper is organized as follows. In Section 2 we prove that, under hypothesis (H1), in the phase space $L^{2}(\mathbb{R}, \rho)=\left\{u \in L_{\text {loc }}^{1}(\mathbb{R}): \int u^{2} \rho(x) d x<\infty\right\}$, the Cauchy problem for (1.1) is well posed with globally defined solutions. In Section 3 we prove that the system is dissipative in the sense of [7], that is, it has a global compact attractor. Our proof is stronger of what the given one in [16] because we do not use no hypothesis of limitation on f. In our proof, we only use the Sobolev's compact embedding $H^{1}([-l, l]) \hookrightarrow L^{2}([-l, l])$ and some ideias from [12], where the equation $u_{t}=-u+\tanh (\beta J * u+h)$ is considered (see also [2], 11, [13] and [14] for related work). In Section 4, we prove an uniform estimate for the attractor and finally, in Section 5, after obtaining some estimates for the flow of 1.1 , we prove the upper semicontinuity property of the attractors with respect to function J present in (1.1).

2. WELL-POSEDNESS

In this section we consider the flow generated by (1.1) in the space $L^{2}(\mathbb{R}, \rho)$ defined by

$$
L^{2}(\mathbb{R}, \rho)=\left\{u \in L_{\mathrm{loc}}^{1}(\mathbb{R}): \int_{\mathbb{R}} u^{2}(x) \rho(x) d x<+\infty\right\}
$$

with norm $\|u\|_{L^{2}}(\mathbb{R}, \rho)=\left(\int_{\mathbb{R}} u^{2}(x) \rho(x) d x\right)^{1 / 2}$. Here ρ is an integrable positive even function with $\int_{\mathbb{R}} \rho(x) d x=1$. Note that in this space the constant function equal to 1 has norm 1. The corresponding higher-order Sobolev space $H^{k}(\mathbb{R}, \rho)$ is the space
of functions $u \in L^{2}(\mathbb{R}, \rho)$ whose distributional derivatives up to order k are also in $L^{2}(\mathbb{R}, \rho)$, with norm

$$
\|u\|_{H^{k}(\mathbb{R}, \rho)}=\left(\sum_{i=1}^{k}\left\|\frac{\partial^{i} u}{\partial x^{i}}\right\|_{L^{2}(\mathbb{R}, \rho)}^{2}\right)^{1 / 2}
$$

To obtain some convenient estimates we will need the following additional hypothesis on the function ρ.
(H2) There exists constant $K>0$ such that

$$
\sup \{\rho(x): x \in \mathbb{R}, y-1 \leq x \leq y+1\} \leq K \rho(y), \quad \forall y \in \mathbb{R}
$$

Remark 2.1. When $\rho(x)=\frac{1}{\pi}\left(1+x^{2}\right)^{-1}$, the hypothesis (H2), is verified with $K=3$, (see, [12]).
Lemma 2.2. Suppose that (H2) holds. Then

$$
\|J * u\|_{L^{2}(\mathbb{R}, \rho)} \leq \sqrt{K}\|J\|_{L^{1}}\|u\|_{L^{2}(\mathbb{R}, \rho)}
$$

Proof. Since J is bounded and compact supported, $(J * u)(x)$ is well defined for $u \in L_{\text {loc }}^{1}(\mathbb{R})$. Thus, using 1.2 and Holder's inequality (see [3]), we obtain

$$
\begin{aligned}
\|J * u\|_{L^{2}(\mathbb{R}, \rho)}^{2} & =\int_{\mathbb{R}}|(J * u)(x)|^{2} \rho(x) d x \\
& \leq \int_{\mathbb{R}}\left(\int_{\mathbb{R}}(J(x-y))^{1 / 2}(J(x-y))^{1 / 2}|u(y)| d y\right)^{2} \rho(x) d x \\
& \leq \int_{\mathbb{R}}\left(\left[\int_{\mathbb{R}} J(x-y) d y\right]^{1 / 2}\left[\int_{\mathbb{R}} J(x-y)|u(y)|^{2} d y\right]^{1 / 2}\right)^{2} \rho(x) d x \\
& =\|J\|_{L^{1}} \int_{\mathbb{R}}\left(\int_{\mathbb{R}} J(x-y)|u(y)|^{2} d y\right) \rho(x) d x \\
& =\|J\|_{L^{1}} \int_{\mathbb{R}}\left(\int_{\mathbb{R}} J(x-y) \rho(x) d x\right)|u(y)|^{2} d y \\
& \leq\|J\|_{L^{1}} \int_{\mathbb{R}}\left(\int_{x=y-1}^{x=y+1} J(x) \rho(x) d x\right)|u(y)|^{2} d y \\
& \leq\|J\|_{L^{1}} \int_{\mathbb{R}}\left(K \rho(y) \int_{x=y-1}^{x=y+1} J(x) d x\right)|u(y)|^{2} d y \\
& \leq K\|J\|_{L^{1}}^{2} \int_{\mathbb{R}}|u(y)|^{2} \rho(y) d y \\
& =K\|J\|_{L^{1}}^{2}\|u\|_{L^{2}(\mathbb{R}, \rho)}^{2} .
\end{aligned}
$$

It conclude the result.
Remark 2.3. Under hypothesis (H1), for each $u \in L^{2}(\mathbb{R}, \rho)$, we have

$$
\begin{equation*}
|J *(f \circ u)(x)| \leq k_{1}(J *|u|)(x)+k_{2}\|J\|_{L^{1}} . \tag{2.1}
\end{equation*}
$$

In fact, using 1.5 we obtain

$$
\begin{aligned}
|J *(f \circ u)(x)| & \leq \int_{\mathbb{R}} J(x-y)\left[k_{1}|u(y)|+k_{2}\right] d y \\
& =k_{1} \int_{\mathbb{R}} J(x-y)|u(y)| d y+k_{2} \int_{\mathbb{R}} J(x-y) d y \\
& =k_{1} J *|u|(x)+k_{2}\|J\|_{L^{1}} .
\end{aligned}
$$

Proposition 2.4. Suppose that the hypotheses (H1) and (H2) hold. Then the function

$$
F(u)=-u+J *(f \circ u)+h
$$

is globally Lipschitz in $L^{2}(\mathbb{R}, \rho)$.
Proof. From triangle inequality and Lemma 2.2 it follows that

$$
\begin{aligned}
\|F(u)-F(v)\|_{L^{2}(\mathbb{R}, \rho)} & \leq\|v-u\|_{L^{2}(\mathbb{R}, \rho)}+\|J *(f \circ u)-J *(f \circ v)\|_{L^{2}(\mathbb{R}, \rho)} \\
& \leq\|v-u\|_{L^{2}(\mathbb{R}, \rho)}+\sqrt{K}\|J\|_{L^{1}}\|(f \circ u)-(f \circ v)\|_{L^{2}(\mathbb{R}, \rho)}
\end{aligned}
$$

Using (1.4), we have

$$
\|(f \circ u)-(f \circ v)\|_{L^{2}(\mathbb{R}, \rho)}^{2} \leq \int_{\mathbb{R}} k_{1}^{2}|u(x)-v(x)|^{2} \rho(x) d x=k_{1}^{2}\|u-v\|_{L^{2}(\mathbb{R}, \rho)}^{2}
$$

Then

$$
\|F(u)-F(v)\|_{L^{2}(\mathbb{R}, \rho)} \leq\left(1+\sqrt{K}\|J\|_{L^{1}} k_{1}\right)\|u-v\|_{L^{2}(\mathbb{R}, \rho)}
$$

Therefore, F is globally Lipschitz in $L^{2}(\mathbb{R}, \rho)$.
Remark 2.5. Since the right-hand side of 1.1$)$ defines a Lipschitz map in $L^{2}(\mathbb{R}, \rho)$, from standard results of ODEs in Banach spaces, follows that the Cauchy problem for (1.1) is well posed in $L^{2}(\mathbb{R}, \rho)$ with globally defined solutions, (see [3] and [5]).

3. Existence of a global attractor

In this section, we prove the existence of a global maximal invariant compact set $\mathcal{A} \subset L^{2}(\mathbb{R}, \rho)$ for the flow of $\left.\sqrt{1.1}\right)$, which attracts each bounded set of $L^{2}(\mathbb{R}, \rho)$ (the global attractor, see [7] and 17]).

To obtain the existence of a global attractor we will need the following additional hypothesis on the function J.
(H3) The function J satisfies $k_{1} \sqrt{K}\|J\|_{L^{1}}<1$.
Remark 3.1. In the particular case that $\rho(x)=\frac{1}{\pi}\left(1+x^{2}\right)^{-1}$ and $f=\tanh$, whenever $\|J\|_{L^{1}}<\frac{1}{\sqrt{3}}$, the hypothesis (H3) is satisfied.

In what follows, we denote by $S(t)$ the flow generated by 1.1.
We recall that a set $\mathcal{B} \subset L^{2}(\mathbb{R}, \rho)$ is an absorbing set for the flow $S(t)$ in $L^{2}(\mathbb{R}, \rho)$ if, for any bounded set $B \subset L^{2}(\mathbb{R}, \rho)$, there is a $t_{1}>0$ such that $S(t) B \subset \mathcal{B}$ for any $t \geq t_{1}$, (see [17]).
Lemma 3.2. Assume that (H1), (H2), (H3) hold. Let

$$
R=\frac{2\left(k_{2}\|J\|_{L^{1}}+h\right)}{1-k_{1} \sqrt{K}\|J\|_{L^{1}}}
$$

Then the ball with center at the origin of $L^{2}(\mathbb{R}, \rho)$ and radius R is an absorbing set for the flow $S(t)$.
Proof. Let $u(x, t)$ be the solution of 1.1 , then

$$
\begin{aligned}
& \frac{d}{d t} \int_{\mathbb{R}}|u(x, t)|^{2} \rho(x) d x \\
& =\int_{\mathbb{R}} 2 u(x, t) \frac{d}{d t} u(x, t) \rho(x) d x \\
& =-2 \int_{\mathbb{R}} u^{2}(x, t) \rho(x) d x+2 \int_{\mathbb{R}} u(x, t)[J *(f \circ u)(x, t)+h] \rho(x) d x
\end{aligned}
$$

Using Holder inequalit's, 2.1) and Lemma 2.2, we obtain

$$
\begin{aligned}
& \int_{\mathbb{R}} u(x, t)[J *(f \circ u)(x, t)+h] \rho(x) d x \\
& \leq\left(\int_{\mathbb{R}} u(x, t)^{2} \rho(x) d x\right)^{1 / 2}\left(\int_{\mathbb{R}}|J *(f \circ u)(x, t)+h|^{2} \rho(x) d x\right)^{1 / 2} \\
& \leq\|u(\cdot, t)\|_{L^{2}(\mathbb{R}, \rho)}\left(\int_{\mathbb{R}}\left[k_{1} J *|u(x, t)|+k_{2}\|J\|_{L^{1}}+h\right]^{2} \rho(x) d x\right)^{1 / 2} \\
& =\|u(\cdot, t)\|_{L^{2}(\mathbb{R}, \rho)}\left\|k_{1} J *|u(\cdot, t)|+k_{2}\right\| J\left\|_{L^{1}}+h\right\|_{L^{2}(\mathbb{R}, \rho)} \\
& \leq k_{1} \sqrt{K}\|J\|_{L^{1}}\|u(\cdot, t)\|_{L^{2}(\mathbb{R}, \rho)}^{2}+\left(k_{2}\|J\|_{L^{1}}+h\right)\|u(\cdot, t)\|_{L^{2}(\mathbb{R}, \rho)} .
\end{aligned}
$$

Hence

$$
\frac{d}{d t} \int_{\mathbb{R}}|u(x, t)|^{2} \rho(x) d x \leq 2\|u(\cdot, t)\|_{L^{2}(\mathbb{R})}^{2}\left[-1+k_{1} \sqrt{K}\|J\|_{L^{1}}+\frac{\left(k_{2}\|J\|_{L^{1}}+h\right)}{\|u(\cdot, t)\|_{L^{2}(\mathbb{R}, \rho)}}\right]
$$

Since $k_{1} \sqrt{K}\|J\|_{L^{1}}<1$, let $\varepsilon=1-k_{1} \sqrt{K}\|J\|_{L^{1}}>0$. Then, while $\|u(\cdot, t)\|_{L^{2}(\mathbb{R}, \rho)}>$ $\frac{2\left(k_{2}\|J\|_{L^{1}}+h\right)}{\varepsilon}$, we have

$$
\frac{d}{d t}\|u(\cdot, t)\|_{L^{2}(\mathbb{R}, \rho)}^{2} \leq 2\|u(\cdot, t)\|_{L^{2}(\mathbb{R}, \rho)}^{2}\left(-\varepsilon+\frac{\varepsilon}{2}\right)=-\varepsilon\|u(\cdot, t)\|_{L^{2}(\mathbb{R}, \rho)}^{2}
$$

Therefore,

$$
\begin{aligned}
\|u(\cdot, t)\|_{L^{2}(\mathbb{R}, \rho)} & \leq e^{-\varepsilon t}\|u(\cdot, 0)\|_{L^{2}(\mathbb{R}, \rho)} \\
& =e^{-\left(1-k_{1} \sqrt{K}\|J\|_{L^{1}}\right) t}\|u(\cdot, 0)\|_{L^{2}(\mathbb{R}, \rho)}
\end{aligned}
$$

This concludes the proof.
Remark 3.3. From Lemma 3.2, follows that the ball of center in the origin and radius R is invariant set under flow $S(t)$.
Lemma 3.4. Besides the assumptions from Lemma 3.2 we also suppose that the functions J and ρ satisfy the relation $J(x) \leq C \rho(x), \forall x \in[-1,1]$, for some constant $C>0$. Let $R=\frac{2\left(k_{2}\|J\|_{L^{1}}+h\right)}{1-k_{1} \sqrt{K}\|J\|_{L^{1}}}$ be, then, for any $\eta>0$, there exists t_{η} such that $S\left(t_{\eta}\right) B(0, R)$ has a finite covering by balls of $L^{2}(\mathbb{R}, \rho)$ with radius smaller than η.

Proof. From Lemma 3.2, it follows that $B(0, R)$ is invariant. Now, the solutions of (1.1) with initial condition $u_{0} \in B(0, R)$ is given, by the variation of constant formula, by

$$
u(x, t)=e^{-t} u_{0}(x)+\int_{0}^{t} e^{-(t-s)}[(J *(f \circ u))(x, s)+h] d s
$$

Write

$$
v(x, t)=e^{-t} u_{0}(x), \quad w(x, t)=\int_{0}^{t} e^{-(t-s)}[(J *(f \circ u))(x, s)+h] d s
$$

Let $\eta>0$ given. We may find $t(\eta)$ such that if $t \geq t(\eta)$ then $\|v(\cdot, t)\|_{L^{2}(\mathbb{R}, \rho)} \leq \frac{\eta}{2}$. In fact,

$$
\|v(\cdot, t)\|_{L^{2}(\mathbb{R}, \rho)}=e^{-t}\left\|u_{0}\right\|_{L^{2}(\mathbb{R}, \rho)}
$$

then for $t>\ln \left(\frac{2\left\|u_{0}\right\|_{L^{2}(\mathbb{R}, \rho)}}{\eta}\right)$, we have $\|v(\cdot, t)\|_{L^{2}(\mathbb{R}, \rho)}<\frac{\eta}{2}$ for any $u_{0} \in B(0, R)$.

Now, from (H1) it follows that

$$
\begin{aligned}
|J *(f \circ u)(x, s)| & \leq k_{1} \int J(x-y)|u(y, s)| d y+k_{2} \int J(x-y) d y \\
& =k_{1} \int J(y-x)|u(y, s)| d y+k_{2}\|J\|_{L^{1}} \\
& =k_{1} \int_{y=x-1}^{y=x+1} J(y)|u(y, s)| d y+k_{2}\|J\|_{L^{1}}
\end{aligned}
$$

Since that ρ is a positive function, J is supported in the interval $[-1,1]$ and $J(x) \leq$ $C \rho(x), \forall x \in[-1,1]$, we obtain

$$
\begin{aligned}
|J *(f \circ u)(x, s)| & \leq C k_{1} \int_{y=x-1}^{y=x+1} \rho(y)|u(y, s)| d y+k_{2}\|J\|_{L^{1}} \\
& \leq C k_{1} \int \rho(y)|u(y, s)| d y+k_{2}\|J\|_{L^{1}} \\
& =C k_{1} \int \rho^{1 / 2}(y)|u(y, s)| \rho^{1 / 2}(y) d y+k_{2}\|J\|_{L^{1}} \\
& \leq C k_{1}\left(\int \rho(y)|u(y, s)|^{2} d y\right)^{1 / 2}\left(\int \rho(y) d y\right)^{1 / 2}+k_{2}\|J\|_{L^{1}}
\end{aligned}
$$

Then

$$
\begin{equation*}
|J *(f \circ u)(x, s)| \leq C k_{1}\|u(\cdot, s)\|_{L^{2}(\mathbb{R}, \rho)}+k_{2}\|J\|_{L^{1}} \tag{3.1}
\end{equation*}
$$

Thus, using 3.1 and that $\|u(\cdot, s)\|_{L^{2}(\mathbb{R}, \rho)} \leq R$, results

$$
\begin{aligned}
|w(x, t)| & \leq \int_{0}^{t} e^{-(t-s)}[|J *(f \circ u)(x, s)|+h] d s \\
& \leq \int_{0}^{t} e^{-(t-s)}\left(C k_{1} R+k_{2}\|J\|_{L^{1}}+h\right)
\end{aligned}
$$

Hence

$$
\begin{equation*}
|w(x, t)| \leq C k_{1} R+k_{2}\|J\|_{L^{1}}+h \tag{3.2}
\end{equation*}
$$

Now, since

$$
\begin{aligned}
J^{\prime} *|u|(x, s) & =\int_{x-1}^{x+1} J^{\prime}(x-y)|u(y, s)| d s \\
& \leq\left(\int_{x-1}^{x+1}\left|J^{\prime}(x-y)\right|^{2} d y\right)^{1 / 2}\left(\int_{x-1}^{x+1}|u(y, s)|^{2} d y\right)^{1 / 2} \\
& \leq\left\|J^{\prime}\right\|_{L^{2}}\left(\int_{x-1}^{x+1}|u(y, s)|^{2} d y\right)^{1 / 2}
\end{aligned}
$$

if $x \in[-l, l]$, we obtain

$$
\begin{aligned}
J^{\prime} *|u|(x, s) & \leq\left\|J^{\prime}\right\|_{L^{2}}\left(\int_{l-1}^{l+1}|u(y, s)|^{2} d y\right)^{1 / 2} \\
& \leq\left\|J^{\prime}\right\|_{L^{2}}\left(\int_{\mathbb{R}}|u(y, s)|^{2} \chi_{l+1} \rho(y) \frac{1}{\rho_{l}} d y\right)^{1 / 2}
\end{aligned}
$$

where χ_{l} is the characteristic function of the interval $[-l, l]$ and $\rho_{l}=\inf \{|\rho(x)|:$ $x \in[-l-1, l+1]\}$. Then if $u_{0} \in B(0, R)$, then

$$
\begin{equation*}
J^{\prime} *|u|(x, s) \leq \frac{R\left\|J^{\prime}\right\|_{L^{2}}}{\sqrt{\rho_{l}}} \tag{3.3}
\end{equation*}
$$

Furthermore, differentiating w with respect to x, for $t \geq 0$, we have

$$
\frac{\partial w}{\partial x}(x, t)=\int_{0}^{t} e^{-(t-s)}\left(J^{\prime} *(f \circ u)\right)(x, s) d s
$$

Thus

$$
\begin{aligned}
\left|\frac{\partial w(x, t)}{\partial x}\right| & \leq \int_{0}^{t} e^{-(t-s)}\left|J^{\prime} *(f \circ u)(x, s)\right|_{L^{2}(\mathbb{R}, \rho)} d s \\
& \leq \int_{0}^{t} e^{-(t-s)}\left[k_{1} J^{\prime} *|u(x, s)|+k_{2}\left\|J^{\prime}\right\|_{L^{1}}\right] d s
\end{aligned}
$$

But, proceeding as in the proof of 2.1, we obtain

$$
\left|J^{\prime} *(f \circ u)(x, s)\right| \leq k_{1}\left(J^{\prime}|u|\right)(x, s)+k_{2}\left\|J^{\prime}\right\|_{L^{1}}
$$

Hence, using (3.3), results

$$
\begin{equation*}
\left|\frac{\partial w(x, t)}{\partial x}\right| \leq k_{1} \frac{R}{\sqrt{\rho_{l}}}\left\|J^{\prime}\right\|_{L^{2}}+k_{2}\left\|J^{\prime}\right\|_{L^{2}} \tag{3.4}
\end{equation*}
$$

From (3.2) and (3.4) follows that the restriction of $w(\cdot, t)$ to the interval $[-l, l]$ is bounded in $H^{1}([-l, l])$ (by a constant independent of $u_{0} \in B(0, R)$ and of t), and therefore the set $\left\{\chi_{l} w(\cdot, t)\right\}$ with $w(\cdot, 0) \in B(0, R)$ is relatively compact subset of $L^{2}(\mathbb{R}, \rho)$ for any $t>0$ and, hence, it can be covered by a finite number of balls with radius smaller than $\frac{\eta}{4}$.

Now, from Lemma 3.2, follows that, for all $t \geq 0$ and any $u_{0} \in B(0, R)$,

$$
\begin{equation*}
\|w(\cdot, t)\|_{L^{2}(\mathbb{R}, \rho)} \leq 2 R \tag{3.5}
\end{equation*}
$$

Then, let $l>0$ be such that

$$
\begin{equation*}
2 R\left(C k_{1} R+k_{2}\|J\|_{L^{1}}+h\right)\left(\int_{\mathbb{R}}\left(1-\chi_{l}(x)\right)^{4} \rho(x) d x\right)^{1 / 2} \leq \frac{\eta}{4} \tag{3.6}
\end{equation*}
$$

Hence, using (3.2), (3.5) and (3.6), we obtain

$$
\begin{aligned}
& \left\|\left(1-\chi_{l}\right) w(\cdot, t)\right\|_{L^{2}(\mathbb{R}, \rho)}^{2} \\
& =\int_{\mathbb{R}}\left[w(x, t) \rho(x)^{1 / 2}\left(1-\chi_{l}\right)^{2}(x) w(x, t) \rho(x)^{1 / 2}\right] d x \\
& \leq\left(\int_{\mathbb{R}}|w(x, t)|^{2} \rho(x) d x\right)^{1 / 2}\left(\int_{\mathbb{R}}\left(1-\chi_{l}\right)^{4}(x)|w(x, t)|^{2} \rho(x) d x\right)^{1 / 2} \\
& \leq\|w(\cdot, t)\|_{L^{2}(\mathbb{R}, \rho)}\left(\left(C k_{1} R+k_{2}\|J\|_{L^{1}}+h\right)^{2} \int_{\mathbb{R}}\left(1-\chi_{l}\right)^{4}(x) \rho(x) d x\right)^{1 / 2} \\
& \leq 2 R\left(C k_{1} R+k_{2}\|J\|_{L^{1}}+h\right)\left(\int_{\mathbb{R}}\left(1-\chi_{l}\right)^{4}(x) \rho(x) d x\right)^{1 / 2} \leq \frac{\eta}{4}
\end{aligned}
$$

Therefore, since

$$
u(\cdot, t)=v(\cdot, t)+\chi_{l} w(\cdot, t)+\left(1-\chi_{l}\right) w(\cdot, t)
$$

it follows that $S\left(t_{\eta}\right) B(0, R)$ has a finite covering by balls of $L^{2}(\mathbb{R}, \rho)$ with radius smaller than η because

$$
\|u(\cdot, t)\|_{L^{2}(\mathbb{R}, \rho)}=\|v(\cdot, t)\|_{L^{2}(\mathbb{R}, \rho)}+\left\|\chi_{l} w(\cdot, t)\right\|_{L^{2}(\mathbb{R}, \rho)}+\left\|\left(1-\chi_{l}\right) w(\cdot, t)\right\|_{L^{2}(\mathbb{R}, \rho)}
$$

We denote by $\omega(D)$ the ω-limit of a set D.
Theorem 3.5. Assume the hypotheses in Lemma 3.4. Then $\mathcal{A}=\omega(B(0, R))$, is a global attractor for the flow $S(t)$ generated by 1.1) in $L^{2}(\mathbb{R}, \rho)$ which is contained in the ball of radius R.

Proof. From Lemma 3.2 , it follows that \mathcal{A} is contained in the ball of radius R and center in the origin of $L^{2}(\mathbb{R}, \rho)$. Now, being \mathcal{A} invariant by flow $S(t)$, it follows that $\mathcal{A} \subset S(t) B(0, R)$, for any $t \geq 0$ and then, from Lemma 3.4, it results that the measure of noncompactness of \mathcal{A} is zero. Hence \mathcal{A} is relatively compact and, since \mathcal{A} is closed, follows that \mathcal{A} is also compact. Finally, if D is bounded set in $L^{2}(\mathbb{R}, \rho)$ then $S\left(t_{0}\right) D \subset B(0, R)$ for t_{0} big enough and, therefore, $\omega(D) \subset \omega(B(0, R))$.

4. Boundedness results

In this section we prove uniform estimates for the attractor whose existence was proved in the Theorem 3.5
Theorem 4.1. Assume the same hypotheses from Theorem 3.5, and $J \in C^{r}(\mathbb{R})$, for some integer $r>0$. Then the attractor \mathcal{A} is bounded in $C_{\rho}^{r}(\mathbb{R})$.
Proof. Let $u(x, t)$ be a solution of $\sqrt{1.1}$ in \mathcal{A}. Then, by the variation of constants formula

$$
u(x, t)=e^{-\left(t-t_{0}\right)} u\left(x, t_{0}\right)+\int_{t_{0}}^{t} e^{-(t-s)}[J *(f \circ u)(x, s)+h] d s
$$

From Theorem 3.5 follows that $\|u(\cdot, t)\|_{L^{2}(\mathbb{R}, \rho)} \leq R$, where $R=\frac{2\left(k_{2}\|J\|_{L^{1}}+h\right)}{1-k_{1} \sqrt{K}\|J\|_{L^{1}}}$. Since $\left\|u\left(\cdot, t_{0}\right)\right\|_{L^{2}(\mathbb{R}, \rho)} \leq R$, letting $t_{0} \rightarrow-\infty$, we obtain

$$
\begin{equation*}
u(x, t)=\int_{-\infty}^{t} e^{-(t-s)}[J *(f \circ u)(x, s)+h] d s \tag{4.1}
\end{equation*}
$$

where the equality in (4.1) is in the sense of $L^{2}(\mathbb{R}, \rho)$.
Using that $J \in C^{1}(\mathbb{R})$ follows, from 4.1), that $u(x, t)$ is differentiable with respect to x and

$$
\begin{equation*}
\frac{\partial u(x, t)}{\partial x}=\int_{-\infty}^{t} e^{-(t-s)} J^{\prime} *(f \circ u)(x, s) d s \tag{4.2}
\end{equation*}
$$

Now, using that $J^{\prime} \in C^{1}(\mathbb{R})$ follows, from 4.2, that $\frac{\partial u(x, t)}{\partial x}$ is differentiable with respect to x and

$$
\frac{\partial^{2} u(x, t)}{\partial x^{2}}=\int_{-\infty}^{t} e^{-(t-s)} J^{\prime \prime} *(f \circ u)(x, s) d s
$$

Following this idea, using that $J^{(r-1)} \in C^{1}(\mathbb{R})$, we have that $\frac{\partial^{r-1} u(x, t)}{\partial x^{r-1}}$ is differentiable with respect to x and

$$
\begin{equation*}
\frac{\partial^{r} u(x, t)}{\partial x^{r}}=\int_{-\infty}^{t} e^{-(t-s)} J^{r} *(f \circ u)(x, s) d s \tag{4.3}
\end{equation*}
$$

Now, since J is bounded and compact supported, it also follows that $J^{(r)}$ is bounded and compact supported. Thus $J^{(r)} * v$ is well defined for $v \in L_{\mathrm{loc}}^{1}(\mathbb{R})$. Hence, proceeding as in the Lemma 2.2 , obtain

$$
\left\|J^{(r)} * v\right\|_{L^{2}(\mathbb{R}, \rho)} \leq \sqrt{K}\left\|J^{(r)}\right\|_{L^{1}}\|v\|_{L^{2}(\mathbb{R}, \rho)}
$$

Thus,

$$
\left\|J^{(r)} *(f \circ u)(\cdot, t)\right\|_{L^{2}(\mathbb{R}, \rho)} \leq \sqrt{K}\left\|J^{(r)}\right\|_{L^{1}}\|(f \circ u)(\cdot, t)\|_{L^{2}(\mathbb{R}, \rho)}
$$

Using (1.5), we have

$$
\begin{equation*}
\|f(u(\cdot, s))\|_{L^{2}(\mathbb{R}, \rho)} \leq k_{1}\|u(\cdot, s)\|_{L^{2}(\mathbb{R}, \rho)}+k_{2} . \tag{4.4}
\end{equation*}
$$

Since the ball $B(0, R)$ is invariant, $\|u(\cdot, t)\|_{L^{2}(\mathbb{R}, \rho)} \leq R$, from (4.4) results

$$
\|(f \circ u)(\cdot, t)\|_{L^{2}(\mathbb{R}, \rho)} \leq k_{1} R+k_{2}
$$

Hence

$$
\begin{equation*}
\left\|J^{(r)} *(f \circ u)(\cdot, t)\right\|_{L^{2}(\mathbb{R}, \rho)} \leq \sqrt{K}\left\|J^{(r)}\right\|_{L^{1}}\left(k_{1} R+k_{2}\right) \tag{4.5}
\end{equation*}
$$

Therefore, from 4.3 and 4.5, follows that

$$
\begin{aligned}
\left\|\frac{\partial^{r} u(x, t)}{\partial x^{r}}\right\|_{L^{2}(\mathbb{R}, \rho)} & \leq \int_{-\infty}^{t} e^{-(t-s)}\left\|J^{(r)} *(f \circ u)(\cdot, t)\right\|_{L^{2}(\mathbb{R}, \rho)} d s \\
& \leq \sqrt{K}\left\|J^{(r)}\right\|_{L^{1}}\left(k_{1} R+k_{2}\right) \int_{-\infty}^{t} e^{-(t-s)} d s \\
& =\sqrt{K}\left\|J^{(r)}\right\|_{L^{1}}\left(k_{1} R+k_{2}\right)
\end{aligned}
$$

Therefore, we can obtain boundedness for the derivatives of u of any order, in terms only of J and of the derivatives of J, concluding the proof.

Theorem 4.2. Assume the same hypotheses from Theorem 3.5. Then the attractor \mathcal{A} belongs to the ball $\|\cdot\|_{\infty} \leq a$, where $a=C k_{1} R+k_{2}\|J\|_{L^{1}}+h$.

Proof. Let $u(x, t)$ be a solution of (1.1) in \mathcal{A}. Then as we see in 4.1)

$$
u(x, t)=\int_{-\infty}^{t} e^{-(t-s)}[J *(f \circ u)(x, s)+h] d s
$$

where the equality above is in the sense of $L^{2}(\mathbb{R}, \rho)$. Thus, using (3.1), obtain

$$
\begin{aligned}
|u(x, t)| & \leq \int_{-\infty}^{t} e^{-(t-s)}[|J *(f \circ u)(x, s)|+h] d s \\
& \leq \int_{-\infty}^{t}\left(C k_{1} R+k_{2}\|J\|_{L^{1}}+h\right) e^{-(t-s)} d s \\
& =\int_{-\infty}^{t} a e^{-(t-s)} d s=a
\end{aligned}
$$

5. Upper semicontinuity of attractors with respect to J

A natural question to examine is the dependence of this attractors on the function J present in 1.1 . We denote by \mathcal{A}_{J} the global attractor whose existence was proved in the Theorem 3.5

Let us recall that a family of subsets $\left\{\mathcal{A}_{J}\right\}$, is upper semicontinuous at J_{0} if

$$
\operatorname{dist}\left(\mathcal{A}_{J}, \mathcal{A}_{J_{0}}\right) \rightarrow 0, \quad \text { as } J \rightarrow J_{0}
$$

where

$$
\operatorname{dist}\left(\mathcal{A}_{J}, \mathcal{A}_{J_{0}}\right)=\sup _{x \in \mathcal{A}_{J}} \operatorname{dist}\left(x, \mathcal{A}_{J_{0}}\right)=\sup _{x \in \mathcal{A}_{J}} \inf _{y \in \mathcal{A}_{J_{0}}}\|x-y\|_{L^{2}(\mathbb{R}, \rho)}
$$

In this section, we prove that the family of attractors is upper semicontinuous, in $L^{2}(\mathbb{R}, \rho)$, with respect to function J at J_{0} with $J \in C^{1}(\mathbb{R})$ non negative even and supported in the interval $[-1,1]$ and $J(x) \leq C \rho(x), \forall x \in[-1,1]$, where C is the constant given in the Lemma 3.4 .
Lemma 5.1. Assume (H1), (H2), (H3) hold. Then the flow $S_{J}(t)$ is continuous with respect to variations of J, in the $L^{1}-$ norm, at J_{0}, uniformly for $t \in[0, b]$ with $b<\infty$ and u in bounded sets.

Proof. As shown above the solutions of (1.1) satisfy the variations of constants formula,

$$
S_{J}(t) u=e^{-t} u+\int_{0}^{t} e^{-(t-s)}\left[J *\left(f \circ S_{J}(s) u+h\right] d s\right.
$$

Let $J_{0} \in C^{1}(\mathbb{R})$ be a non negative even function supported in the interval $[-1,1]$, $b>0$ and D a bounded set in $L^{2}(\mathbb{R}, \rho)$, for example the ball $B(0, R)$ (Although R depends on J, it can be uniformly chosen in a neighborhood of J_{0}). Given $\varepsilon>0$, we want to find $\delta>0$ such that $\left\|J-J_{0}\right\|_{L^{1}}<\delta$ implies

$$
\left\|S_{J}(t) u-S_{J_{0}}(t) u\right\|_{L^{2}(\mathbb{R}, \rho)}<\varepsilon
$$

for $t \in[0, b]$ and $u \in D$. Note that

$$
\left\|S_{J}(t) u-S_{J_{0}}(t) u\right\|_{L^{2}(\mathbb{R}, \rho)} \leq \int_{0}^{t} e^{-(t-s)} \| J *\left(f \circ S_{J}(s) u\right)-J_{0} *\left(f \circ S_{J_{0}}(s) u \|_{L^{2}(\mathbb{R}, \rho)} d s\right.
$$

Subtracting and summing the term $J_{0} *\left(f \circ S_{J}(s) u\right)$ and using Lemma 2.2, for any $t>0$, we obtain

$$
\begin{aligned}
\left\|S_{J}(t) u-S_{J_{0}}(t) u\right\|_{L^{2}(\mathbb{R}, \rho)} \leq & \int_{0}^{t} e^{-(t-s)}\left[\left\|\left(J-J_{0}\right) *\left(f \circ S_{J}(s) u\right)\right\|_{L^{2}(\mathbb{R}, \rho)}\right. \\
& \left.+\left\|J_{0} *\left[f \circ S_{J}(s) u-f \circ S_{J_{0}}(s) u\right]\right\|_{L^{2}(\mathbb{R}, \rho)}\right] d s \\
\leq & \int_{0}^{t} e^{-(t-s)}\left[\sqrt{K}\left\|J-J_{0}\right\|_{L^{1}}\left\|f \circ S_{J}(s) u\right\|_{L^{2}(\mathbb{R}, \rho)}\right. \\
& \left.+\sqrt{K}\left\|J_{0}\right\|_{L^{1}}\left\|f \circ S_{J}(s) u-f \circ S_{J_{0}}(s) u\right\|_{L^{2}(\mathbb{R}, \rho)}\right] d s
\end{aligned}
$$

Using (4.4), we obtain

$$
\left\|f \circ S_{J}(s) u\right\|_{L^{2}(\mathbb{R}, \rho)} \leq k_{1}\|u(\cdot, s)\|_{L^{2}(\mathbb{R}, \rho)}+k_{2} \leq k_{1} R+k_{2}
$$

and, using (H1), we obtain

$$
\left\|f \circ S_{J}(s) u-f \circ S_{J_{0}}(s) u\right\|_{L^{2}(\mathbb{R}, \rho)} \leq k_{1}\left\|S_{J}(s) u-S_{J_{0}}(s) u\right\|_{L^{2}(\mathbb{R}, \rho)}
$$

Therefore,

$$
\begin{aligned}
\left\|S_{J}(t) u-S_{J_{0}}(t) u\right\|_{L^{2}(\mathbb{R}, \rho)} \leq & \left(k_{1} R+k_{2}\right) \sqrt{K}\left\|J-J_{0}\right\|_{L^{1}} \\
& +\int_{0}^{t} e^{-(t-s)} \sqrt{K}\left\|J_{0}\right\|_{L^{1}} k_{1}\left\|S_{J}(s) u-S_{J_{0}}(s) u\right\|_{L^{2}(\mathbb{R}, \rho)}
\end{aligned}
$$

Hence

$$
\begin{aligned}
e^{t}\left\|S_{J}(t) u-S_{J_{0}}(t) u\right\|_{L^{2}(\mathbb{R}, \rho)} \leq & \left(k_{1} R+k_{2}\right) \sqrt{K}\left\|J-J_{0}\right\|_{L^{1}} e^{t} \\
& +\int_{0}^{t} e^{s} \sqrt{K}\left\|J_{0}\right\|_{L^{1}} k_{1}\left\|S_{J}(s) u-S_{J_{0}}(s) u\right\|_{L^{2}(\mathbb{R}, \rho)}
\end{aligned}
$$

Therefore, by Gronwall's Lemma, it follows that

$$
\left\|S_{J}(t) u-S_{J_{0}}(t) u\right\|_{L^{2}(\mathbb{R}, \rho)} \leq\left(k_{1} R+k_{2}\right) \sqrt{K}\left\|J-J_{0}\right\|_{L^{1}} e^{\left(\sqrt{K}\left\|J_{0}\right\|_{L^{1}} k_{1}\right) t}
$$

From this, the results follows immediately.
Theorem 5.2. Assume the same hypotheses as in Lemma 5.1. Then the family of attractors \mathcal{A}_{J} is upper semicontinuous with respect to J at J_{0}.

Proof. From hypotheses of the theorem, it follows that, for every $J \in C^{1}(\mathbb{R})$, sufficiently close to J_{0} in the L^{1}-norm, non negative even supported in $[-1,1]$ and satisfying $J(x) \leq C \rho(x)$, for all $x \in[-1,1]$, the attractor, \mathcal{A}_{J}, given by Theorem 3.5 is in the closed ball $B[0, R]$ in $L^{2}(\mathbb{R}, \rho)$. Therefore

$$
\cup_{J} \mathcal{A}_{J} \subset B[0, R] .
$$

Since $\mathcal{A}_{J_{0}}$ is global attractor and $B[0, R]$ is a bounded set then, for every $\varepsilon>0$, there exists $t^{*}>0$ such that $S_{J_{0}}(t) B[0, R] \subset \mathcal{A}_{J_{0}}^{\varepsilon / 2}$, for all $t \geq t^{*}$, where $\mathcal{A}_{J_{0}}^{\frac{\varepsilon}{2}}$ is $\frac{\varepsilon}{2}$-neighborhood of $\mathcal{A}_{J_{0}}$.

From Lemma 5.1 it follows that $S_{J}(t)$ is continuous at J_{0}, uniformly for u in a bounded set and t in compacts. Thus, there exists $\delta>0$ such that

$$
\left\|J-J_{0}\right\|_{L^{1}}<\delta \Rightarrow\left\|S_{J}\left(t^{*}\right) u-S_{J_{0}}\left(t^{*}\right) u\right\|_{L^{2}(\mathbb{R}, \rho)}<\frac{\varepsilon}{2}, \quad \forall u \in B[0, R]
$$

We will show that if $\left\|J-J_{0}\right\|<\delta$ then $\mathcal{A}_{J} \subset \mathcal{A}_{J_{0}}^{\varepsilon}$. In fact, let $u \in \mathcal{A}_{J}$. Since \mathcal{A}_{J} is invariant, $v=S_{J}\left(-t^{*}\right) u \in \mathcal{A}_{J} \subset B[0, R]$. Therefore,

$$
\begin{gather*}
S_{J_{0}}\left(t^{*}\right) v \in \mathcal{A}_{J_{0}}^{\varepsilon / 2} \tag{5.1}\\
\left\|S_{J}\left(t^{*}\right) v-S_{J_{0}}\left(t^{*}\right) v\right\|_{L^{2}(\mathbb{R}, \rho)}<\frac{\varepsilon}{2} \tag{5.2}
\end{gather*}
$$

From (5.1) and (5.2), it follows that

$$
u=S_{J}\left(t^{*}\right) S_{J}\left(-t^{*}\right) u=S_{J}\left(t^{*}\right) v \in \mathcal{A}_{J_{0}}^{\varepsilon}
$$

and the upper semicontinuity of \mathcal{A}_{J} follows.
Remark 5.3. Similar results can be obtained for the flow of (1.1) in

$$
C_{\rho}(\mathbb{R}) \equiv\left\{f: \mathbb{R} \rightarrow \mathbb{R} \text { continuous with the norm }\|\cdot\|_{\rho}\right\}
$$

where

$$
\|u\|_{\rho}=\sup _{x \in \mathbb{R}}\{|u(x)| \rho(x)\}<\infty
$$

being ρ a positive continuous function on \mathbb{R}.

Acknowledgments. The author would like to thank the anonymous referee for his/her careful reading of the manuscript. He also would like to thank professors Antonio L. Pereira, for his suggestions, and Vandik E. Barbosa for the encouragement received.

References

[1] S. Amari; Dynamics of pattern formation in lateral-inhibition type neural fields, Biol. Cybernetics, 27 (1977), 77-87.
[2] S. R. M. Barros, A. L. Pereira, C. Possani, and A. Simonis; Spatial Periodic Equilibria for a Non local Evolution Equation, Discrete and Continuous Dynamical Systems, 9 (2003), no. 4, 937-948.
[3] H. Brezis; Análisis funcional teoria y aplicaciones, Alianza, Madrid, 1984.
[4] F. Chen, Travelling waves for a neural network, Electronic Journal Differential Equations, 2003 (2003), no. 13, 1-14.
[5] J. L. Daleckii, and M. G. Krein; Stability of Solutions of Differential Equations in Banach Space; American Mathematical Society Providence, Rhode Island, 1974,
[6] G. B. Ermentrout and J. B. McLeod; Existence and uniqueness of traveliing waves for a neural network, Procedings of the Royal Society of Edinburgh, 123A (1993), 461-478.
[7] J. K. Hale; Asymptotic Behavior of dissipative Systems, American Surveys and Monographs, N. 25, 1988.
[8] K. Kishimoto and S. Amari; Existence and Stability of Local Excitations in Homogeneous Neural Fields, J. Math. Biology, 07 (1979), 303-1979.
[9] E. P. Krisner; The link between integral equations and higher order ODEs, J. Math. Anal. Appl., 291 (2004), 165-179.
[10] C. R. Laing, W. C. Troy, B. Gutkin and G. B. Ermentrout; Multiplos Bumps in a Neural Model of Working Memory, SIAM J. Appl. Math., 63 (2002), no. 1, 62-97.
[11] A. de Masi, E. Orland, E. Presutti and L. Triolo; Glauber evolution with Kac potentials: I. Mesoscopic and macroscopic limits, interface dynamics, Nonlinearity, 7 (1994), 633-696.
[12] A. L. Pereira; Global attractor and nonhomogeneous equilibria for a non local evolution equation in an unbounded domain, J. Diff. Equations, 226 (2006), 352-372.
[13] A. L. Pereira and S. H. Silva; Existence of global attractor and gradient property for a class of non local evolution equation, Sao Paulo Journal Mathematical Science, 2, no. 1, (2008), 1-20.
[14] A. L. Pereira and S. H. Silva; Continuity of global attractor for a class of non local evolution equation, Discrete and continuous dynamical systems, 26, no. 3, (2010), 1073-1100.
[15] J. E. Rubin and W. C. Troy; Sustained spatial patterns of activity in neural populations without recurrent Excitation, SIAM J. Appl. Math., 64 (2004), 1609-1635.
[16] S. H. Silva and A. L. Pereira; Global attractors for neural fields in a weighted space. Matemática Contemporanea, 36 (2009), 139-153.
[17] R. Teman; Infinite Dimensional Dynamical Systems in Mechanics and Physics, Springer, 1988.
[18] H. R. Wilson and J. D. Cowan; Excitatory and inhibitory interactions in localized populations of model neurons, Biophys. J., 12 (1972), 1-24.

Severino Horácio da Silva
Unidade Acadêmica de Matemática e Estatística UAME/CCT/UFCG, Rua Aprígio Veloso, 882, Bairro Universitário CEP 58429-900, Campina Grande-PB, Brasil

E-mail address: horacio@dme.ufcg.edu.br

[^0]: 2000 Mathematics Subject Classification. 45J05, 45M05, 34D45.
 Key words and phrases. Well-posedness; global attractor; upper semicontinuity of attractors. © 2010 Texas State University - San Marcos.
 Submitted March 16, 2010. Published September 27, 2010.
 Supported by grants 620150/2008 from CNPq-Brazil Casadinho, and 5733523/2008-8
 from INCTMat.

