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EXISTENCE AND UPPER SEMICONTINUITY OF GLOBAL
ATTRACTORS FOR NEURAL FIELDS IN AN UNBOUNDED

DOMAIN

SEVERINO HORÁCIO DA SILVA

Abstract. In this article, we prove the existence and upper semicontinuity

of compact global attractors for the flow of the equation

∂u(x, t)

∂t
= −u(x, t) + J ∗ (f ◦ u)(x, t) + h, h > 0,

in L2 weighted spaces.

1. Introduction

We consider here the non local evolution equation

∂u(x, t)
∂t

= −u(x, t) + J ∗ (f ◦ u)(x, t) + h, h > 0, (1.1)

where u(x, t) is a real-valued function on R×R+, h is a positive constant, J ∈ C1(R)
is a non negative even function supported in the interval [−1, 1], and, f is a non
negative nondecreasing function. The ∗ above denotes convolution product, namely:

(J ∗ u)(x) =
∫

R
J(x− y)u(y)dy. (1.2)

Equation (1.1) was derived by Wilson and Cowan, [18], to model a single layer
of neurons in 1972. The function u(x, t) denotes the mean membrane potential of
a patch of tissue located at position x ∈ (−∞,∞) at time t ≥ 0. The connection
function J(x) determines the coupling between the elements at position x and
position y. The non negative nondecreasing function f(u) gives the neural firing
rate, or averages rate at which spikes are generated, corresponding to an activity
level u. The neurons at a point x are said to be active if f(u(x, t)) > 0. The
parameter h denotes a constant external stimulus applied uniformly to the entire
neural field, (see [1], [4], [6], [8], [9], [10], [15] and [16]).
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An equilibrium of (1.1) is a solution for (1.1) that is constant with respect to t.
Thus, if u is an equilibrium for (1.1) then u satisfies

u(x) = J ∗ (f ◦ u)(x) + h. (1.3)

In the literature, there are already several works dedicated to the analysis of
this model. In [1] lateral inhibition type coupling is studied. Furthermore, when
f is a Heaviside step function, [1] also treats the behavior of time dependent pe-
riodic solutions as well as traveling waves for systems of equations. Existence and
uniqueness of monotone traveling waves was investigated in [6]. An another prove
of existence of monotone travelling waves is given in [4]. In [8], the existence of
a non-homogeneous stationary solution referred to as “bump” is proved. One link
between the integral equations given by (1.3) and ODEs is given in [9]. In [10], the
existence of a non-homogeneous stationary solution of the type “double-bump” is
proved. In [15] is proved that solutions as “bump” can exist and be linearly stable
in neural population models without recurrent excitation. In [16], assuming that f
is Lipschitz and bounded, is proved the existence of global attractor, for the flow
generated by (1.1), in weighted space.

We consider here the unique additional condition on f which will is used as
hypothesis in our results when necessary.

(H1) The function f : R → R is Lipschitz, that is, there exists k1 > 0 such that

|f(x)− f(y)| ≤ k1|x− y|, ∀x, y ∈ R, (1.4)

From (1.4), follows that there exists constant k2 ≥ 0 such that

|f(x)| ≤ k1|x|+ k2. (1.5)

This paper is organized as follows. In Section 2 we prove that, under hypothesis
(H1), in the phase space L2(R, ρ) = {u ∈ L1

loc(R) :
∫

u2ρ(x)dx < ∞}, the Cauchy
problem for (1.1) is well posed with globally defined solutions. In Section 3 we prove
that the system is dissipative in the sense of [7], that is, it has a global compact
attractor. Our proof is stronger of what the given one in [16] because we do not use
no hypothesis of limitation on f . In our proof, we only use the Sobolev’s compact
embedding H1([−l, l]) ↪→ L2([−l, l]) and some ideias from [12], where the equation
ut = −u + tanh(βJ ∗ u + h) is considered (see also [2], [11], [13] and [14] for related
work). In Section 4, we prove an uniform estimate for the attractor and finally,
in Section 5, after obtaining some estimates for the flow of (1.1), we prove the
upper semicontinuity property of the attractors with respect to function J present
in (1.1).

2. Well-posedness

In this section we consider the flow generated by (1.1) in the space L2(R, ρ)
defined by

L2(R, ρ) =
{
u ∈ L1

loc(R) :
∫

R
u2(x)ρ(x)dx < +∞

}
,

with norm ‖u‖L2(R, ρ) =
(∫

R u2(x)ρ(x)dx
)1/2. Here ρ is an integrable positive even

function with
∫

R ρ(x)dx = 1. Note that in this space the constant function equal to
1 has norm 1. The corresponding higher-order Sobolev space Hk(R, ρ) is the space
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of functions u ∈ L2(R, ρ) whose distributional derivatives up to order k are also in
L2(R, ρ), with norm

‖u‖Hk(R,ρ) =
( k∑

i=1

‖∂iu

∂xi
‖2L2(R,ρ)

)1/2

.

To obtain some convenient estimates we will need the following additional hy-
pothesis on the function ρ.

(H2) There exists constant K > 0 such that

sup{ρ(x) : x ∈ R, y − 1 ≤ x ≤ y + 1} ≤ Kρ(y), ∀ y ∈ R.

Remark 2.1. When ρ(x) = 1
π (1 + x2)−1, the hypothesis (H2), is verified with

K = 3, (see, [12]).

Lemma 2.2. Suppose that (H2) holds. Then

‖J ∗ u‖L2(R,ρ) ≤
√

K‖J‖L1‖u‖L2(R,ρ).

Proof. Since J is bounded and compact supported, (J ∗ u)(x) is well defined for
u ∈ L1

loc(R). Thus, using (1.2) and Holder’s inequality (see [3]), we obtain

‖J ∗ u‖2L2(R,ρ) =
∫

R
|(J ∗ u)(x)|2ρ(x)dx

≤
∫

R

( ∫
R
(J(x− y))1/2(J(x− y))1/2|u(y)|dy

)2

ρ(x)dx

≤
∫

R

([ ∫
R

J(x− y)dy
]1/2[ ∫

R
J(x− y)|u(y)|2dy

]1/2)2

ρ(x)dx

= ‖J‖L1

∫
R

( ∫
R

J(x− y)|u(y)|2dy
)
ρ(x)dx

= ‖J‖L1

∫
R

( ∫
R

J(x− y)ρ(x)dx
)
|u(y)|2dy

≤ ‖J‖L1

∫
R

( ∫ x=y+1

x=y−1

J(x)ρ(x)dx
)
|u(y)|2dy

≤ ‖J‖L1

∫
R

(
Kρ(y)

∫ x=y+1

x=y−1

J(x)dx
)
|u(y)|2dy

≤ K‖J‖2L1

∫
R
|u(y)|2ρ(y)dy

= K‖J‖2L1‖u‖2L2(R,ρ).

It conclude the result. �

Remark 2.3. Under hypothesis (H1), for each u ∈ L2(R, ρ), we have

|J ∗ (f ◦ u)(x)| ≤ k1(J ∗ |u|)(x) + k2‖J‖L1 . (2.1)

In fact, using (1.5) we obtain

|J ∗ (f ◦ u)(x)| ≤
∫

R
J(x− y)[k1|u(y)|+ k2]dy

= k1

∫
R

J(x− y)|u(y)|dy + k2

∫
R

J(x− y)dy

= k1J ∗ |u|(x) + k2‖J‖L1 .
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Proposition 2.4. Suppose that the hypotheses (H1) and (H2) hold. Then the
function

F (u) = −u + J ∗ (f ◦ u) + h

is globally Lipschitz in L2(R, ρ).

Proof. From triangle inequality and Lemma 2.2, it follows that

‖F (u)− F (v)‖L2(R,ρ) ≤ ‖v − u‖L2(R,ρ) + ‖J ∗ (f ◦ u)− J ∗ (f ◦ v)‖L2(R,ρ)

≤ ‖v − u‖L2(R,ρ) +
√

K‖J‖L1‖(f ◦ u)− (f ◦ v)‖L2(R,ρ).

Using (1.4), we have

‖(f ◦ u)− (f ◦ v)‖2L2(R,ρ) ≤
∫

R
k2
1|u(x)− v(x)|2ρ(x)dx = k2

1‖u− v‖2L2(R,ρ).

Then
‖F (u)− F (v)‖L2(R,ρ) ≤ (1 +

√
K‖J‖L1k1)‖u− v‖L2(R,ρ).

Therefore, F is globally Lipschitz in L2(R, ρ). �

Remark 2.5. Since the right-hand side of (1.1) defines a Lipschitz map in L2(R, ρ),
from standard results of ODEs in Banach spaces, follows that the Cauchy problem
for (1.1) is well posed in L2(R, ρ) with globally defined solutions, (see [3] and [5]).

3. Existence of a global attractor

In this section, we prove the existence of a global maximal invariant compact
set A ⊂ L2(R, ρ) for the flow of (1.1), which attracts each bounded set of L2(R, ρ)
(the global attractor, see [7] and [17]).

To obtain the existence of a global attractor we will need the following additional
hypothesis on the function J .

(H3) The function J satisfies k1

√
K‖J‖L1 < 1.

Remark 3.1. In the particular case that ρ(x) = 1
π (1 + x2)−1 and f = tanh,

whenever ‖J‖L1 < 1√
3
, the hypothesis (H3) is satisfied.

In what follows, we denote by S(t) the flow generated by (1.1).
We recall that a set B ⊂ L2(R, ρ) is an absorbing set for the flow S(t) in L2(R, ρ)

if, for any bounded set B ⊂ L2(R, ρ), there is a t1 > 0 such that S(t)B ⊂ B for any
t ≥ t1, (see [17]).

Lemma 3.2. Assume that (H1), (H2), (H3) hold. Let

R =
2(k2‖J‖L1 + h)
1− k1

√
K‖J‖L1

.

Then the ball with center at the origin of L2(R, ρ) and radius R is an absorbing set
for the flow S(t).

Proof. Let u(x, t) be the solution of (1.1), then
d

dt

∫
R
|u(x, t)|2ρ(x)dx

=
∫

R
2u(x, t)

d

dt
u(x, t)ρ(x)dx

= −2
∫

R
u2(x, t)ρ(x)dx + 2

∫
R

u(x, t)[J ∗ (f ◦ u)(x, t) + h]ρ(x)dx.
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Using Holder inequalit’s, (2.1) and Lemma 2.2, we obtain∫
R

u(x, t)[J ∗ (f ◦ u)(x, t) + h]ρ(x)dx

≤
( ∫

R
u(x, t)2ρ(x)dx

)1/2( ∫
R
|J ∗ (f ◦ u)(x, t) + h|2ρ(x)dx

)1/2

≤ ‖u(·, t)‖L2(R,ρ)

( ∫
R
[k1J ∗ |u(x, t)|+ k2‖J‖L1 + h]2ρ(x)dx

)1/2

= ‖u(·, t)‖L2(R,ρ)‖k1J ∗ |u(·, t)|+ k2‖J‖L1 + h‖L2(R,ρ)

≤ k1

√
K‖J‖L1‖u(·, t)‖2L2(R,ρ) + (k2‖J‖L1 + h)‖u(·, t)‖L2(R,ρ).

Hence
d

dt

∫
R
|u(x, t)|2ρ(x)dx ≤ 2‖u(·, t)‖2L2(R)

[
− 1 + k1

√
K‖J‖L1 +

(k2‖J‖L1 + h)
‖u(·, t)‖L2(R,ρ)

]
.

Since k1

√
K‖J‖L1 < 1, let ε = 1− k1

√
K‖J‖L1 > 0. Then, while ‖u(·, t)‖L2(R,ρ) >

2(k2‖J‖L1+h)

ε , we have

d

dt
‖u(·, t)‖2L2(R,ρ) ≤ 2‖u(·, t)‖2L2(R,ρ)(−ε +

ε

2
) = −ε‖u(·, t)‖2L2(R,ρ).

Therefore,

‖u(·, t)‖L2(R,ρ) ≤ e−εt‖u(·, 0)‖L2(R,ρ)

= e−(1−k1
√

K‖J‖L1 )t‖u(·, 0)‖L2(R,ρ).

This concludes the proof. �

Remark 3.3. From Lemma 3.2, follows that the ball of center in the origin and
radius R is invariant set under flow S(t).

Lemma 3.4. Besides the assumptions from Lemma 3.2 we also suppose that the
functions J and ρ satisfy the relation J(x) ≤ Cρ(x), ∀x ∈ [−1, 1], for some constant
C > 0. Let R = 2(k2‖J‖L1+h)

1−k1
√

K‖J‖L1
be, then, for any η > 0, there exists tη such that

S(tη)B(0, R) has a finite covering by balls of L2(R, ρ) with radius smaller than η.

Proof. From Lemma 3.2, it follows that B(0, R) is invariant. Now, the solutions
of (1.1) with initial condition u0 ∈ B(0, R) is given, by the variation of constant
formula, by

u(x, t) = e−tu0(x) +
∫ t

0

e−(t−s)[(J ∗ (f ◦ u))(x, s) + h]ds.

Write

v(x, t) = e−tu0(x), w(x, t) =
∫ t

0

e−(t−s)[(J ∗ (f ◦ u))(x, s) + h]ds.

Let η > 0 given. We may find t(η) such that if t ≥ t(η) then ‖v(·, t)‖L2(R,ρ) ≤ η
2 .

In fact,
‖v(·, t)‖L2(R,ρ) = e−t‖u0‖L2(R,ρ),

then for t > ln(
2‖u0‖L2(R,ρ)

η ), we have ‖v(·, t)‖L2(R,ρ) < η
2 for any u0 ∈ B(0, R).
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Now, from (H1) it follows that

|J ∗ (f ◦ u)(x, s)| ≤ k1

∫
J(x− y)|u(y, s)|dy + k2

∫
J(x− y)dy

= k1

∫
J(y − x)|u(y, s)|dy + k2‖J‖L1

= k1

∫ y=x+1

y=x−1

J(y)|u(y, s)|dy + k2‖J‖L1 .

Since that ρ is a positive function, J is supported in the interval [−1, 1] and J(x) ≤
Cρ(x), ∀x ∈ [−1, 1], we obtain

|J ∗ (f ◦ u)(x, s)| ≤ Ck1

∫ y=x+1

y=x−1

ρ(y)|u(y, s)|dy + k2‖J‖L1

≤ Ck1

∫
ρ(y)|u(y, s)|dy + k2‖J‖L1

= Ck1

∫
ρ1/2(y)|u(y, s)|ρ1/2(y)dy + k2‖J‖L1

≤ Ck1

( ∫
ρ(y)|u(y, s)|2dy

)1/2( ∫
ρ(y)dy

)1/2

+ k2‖J‖L1 .

Then

|J ∗ (f ◦ u)(x, s)| ≤ Ck1‖u(·, s)‖L2(R,ρ) + k2‖J‖L1 . (3.1)

Thus, using (3.1) and that ‖u(·, s)‖L2(R,ρ) ≤ R, results

|w(x, t)| ≤
∫ t

0

e−(t−s)[|J ∗ (f ◦ u)(x, s)|+ h]ds

≤
∫ t

0

e−(t−s)(Ck1R + k2‖J‖L1 + h).

Hence

|w(x, t)| ≤ Ck1R + k2‖J‖L1 + h. (3.2)

Now, since

J ′ ∗ |u|(x, s) =
∫ x+1

x−1

J ′(x− y)|u(y, s)|ds

≤
( ∫ x+1

x−1

|J ′(x− y)|2dy
)1/2( ∫ x+1

x−1

|u(y, s)|2dy
)1/2

≤ ‖J ′‖L2

( ∫ x+1

x−1

|u(y, s)|2dy
)1/2

,

if x ∈ [−l, l], we obtain

J ′ ∗ |u|(x, s) ≤ ‖J ′‖L2

( ∫ l+1

l−1

|u(y, s)|2dy
)1/2

≤ ‖J ′‖L2

( ∫
R
|u(y, s)|2χl+1ρ(y)

1
ρl

dy
)1/2
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where χl is the characteristic function of the interval [−l, l] and ρl = inf{|ρ(x)| :
x ∈ [−l − 1, l + 1]}. Then if u0 ∈ B(0, R), then

J ′ ∗ |u|(x, s) ≤ R‖J ′‖L2

√
ρl

. (3.3)

Furthermore, differentiating w with respect to x, for t ≥ 0, we have

∂w

∂x
(x, t) =

∫ t

0

e−(t−s) (J ′ ∗ (f ◦ u)) (x, s)ds.

Thus ∣∣∂w(x, t)
∂x

∣∣ ≤ ∫ t

0

e−(t−s)|J ′ ∗ (f ◦ u)(x, s)|L2(R,ρ)ds

≤
∫ t

0

e−(t−s)[k1J
′ ∗ |u(x, s)|+ k2‖J ′‖L1 ]ds.

But, proceeding as in the proof of (2.1), we obtain

|J ′ ∗ (f ◦ u)(x, s)| ≤ k1(J ′|u|)(x, s) + k2‖J ′‖L1 .

Hence, using (3.3), results∣∣∂w(x, t)
∂x

∣∣ ≤ k1
R
√

ρl
‖J ′‖L2 + k2‖J ′‖L2 . (3.4)

From (3.2) and (3.4) follows that the restriction of w(·, t) to the interval [−l, l] is
bounded in H1([−l, l]) (by a constant independent of u0 ∈ B(0, R) and of t), and
therefore the set {χlw(·, t)} with w(·, 0) ∈ B(0, R) is relatively compact subset of
L2(R, ρ) for any t > 0 and, hence, it can be covered by a finite number of balls with
radius smaller than η

4 .
Now, from Lemma 3.2, follows that, for all t ≥ 0 and any u0 ∈ B(0, R),

‖w(·, t)‖L2(R,ρ) ≤ 2R. (3.5)

Then, let l > 0 be such that

2R(Ck1R + k2‖J‖L1 + h)
( ∫

R
(1− χl(x))4ρ(x)dx

)1/2

≤ η

4
. (3.6)

Hence, using (3.2), (3.5) and (3.6), we obtain

‖(1− χl)w(·, t)‖2L2(R,ρ)

=
∫

R

[
w(x, t)ρ(x)1/2(1− χl)2(x)w(x, t)ρ(x)1/2

]
dx

≤
( ∫

R
|w(x, t)|2ρ(x)dx

)1/2( ∫
R
(1− χl)4(x)|w(x, t)|2ρ(x)dx

)1/2

≤ ‖w(·, t)‖L2(R,ρ)

(
(Ck1R + k2‖J‖L1 + h)2

∫
R
(1− χl)4(x)ρ(x)dx

)1/2

≤ 2R(Ck1R + k2‖J‖L1 + h)
(∫

R
(1− χl)4(x)ρ(x)dx

)1/2

≤ η

4
.

Therefore, since

u(·, t) = v(·, t) + χlw(·, t) + (1− χl)w(·, t),
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it follows that S(tη)B(0, R) has a finite covering by balls of L2(R, ρ) with radius
smaller than η because

‖u(·, t)‖L2(R,ρ) = ‖v(·, t)‖L2(R,ρ) + ‖χlw(·, t)‖L2(R,ρ) + ‖(1− χl)w(·, t)‖L2(R,ρ).

�

We denote by ω(D) the ω-limit of a set D.

Theorem 3.5. Assume the hypotheses in Lemma 3.4. Then A = ω(B(0, R)), is a
global attractor for the flow S(t) generated by (1.1) in L2(R, ρ) which is contained
in the ball of radius R.

Proof. From Lemma 3.2, it follows that A is contained in the ball of radius R and
center in the origin of L2(R, ρ). Now, being A invariant by flow S(t), it follows
that A ⊂ S(t)B(0, R), for any t ≥ 0 and then, from Lemma 3.4, it results that the
measure of noncompactness of A is zero. Hence A is relatively compact and, since
A is closed, follows that A is also compact. Finally, if D is bounded set in L2(R, ρ)
then S(t0)D ⊂ B(0, R) for t0 big enough and, therefore, ω(D) ⊂ ω(B(0, R)). �

4. Boundedness results

In this section we prove uniform estimates for the attractor whose existence was
proved in the Theorem 3.5.

Theorem 4.1. Assume the same hypotheses from Theorem 3.5, and J ∈ Cr(R),
for some integer r > 0. Then the attractor A is bounded in Cr

ρ(R).

Proof. Let u(x, t) be a solution of (1.1) in A. Then, by the variation of constants
formula

u(x, t) = e−(t−t0)u(x, t0) +
∫ t

t0

e−(t−s)[J ∗ (f ◦ u)(x, s) + h]ds.

From Theorem 3.5 follows that ‖u(·, t)‖L2(R,ρ) ≤ R, where R = 2(k2‖J‖L1+h)

1−k1
√

K‖J‖L1
. Since

‖u(·, t0)‖L2(R,ρ) ≤ R, letting t0 → −∞, we obtain

u(x, t) =
∫ t

−∞
e−(t−s)[J ∗ (f ◦ u)(x, s) + h]ds, (4.1)

where the equality in (4.1) is in the sense of L2(R, ρ).
Using that J ∈ C1(R) follows, from (4.1), that u(x, t) is differentiable with

respect to x and

∂u(x, t)
∂x

=
∫ t

−∞
e−(t−s)J ′ ∗ (f ◦ u)(x, s)ds. (4.2)

Now, using that J ′ ∈ C1(R) follows, from (4.2), that ∂u(x,t)
∂x is differentiable with

respect to x and

∂2u(x, t)
∂x2

=
∫ t

−∞
e−(t−s)J ′′ ∗ (f ◦ u)(x, s)ds.

Following this idea, using that J (r−1) ∈ C1(R), we have that ∂r−1u(x,t)
∂xr−1 is differen-

tiable with respect to x and

∂ru(x, t)
∂xr

=
∫ t

−∞
e−(t−s)Jr ∗ (f ◦ u)(x, s)ds. (4.3)
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Now, since J is bounded and compact supported, it also follows that J (r) is bounded
and compact supported. Thus J (r) ∗ v is well defined for v ∈ L1

loc(R). Hence,
proceeding as in the Lemma 2.2, obtain

‖J (r) ∗ v‖L2(R,ρ) ≤
√

K‖J (r)‖L1‖v‖L2(R,ρ).

Thus,

‖J (r) ∗ (f ◦ u)(·, t)‖L2(R,ρ) ≤
√

K‖J (r)‖L1‖(f ◦ u)(·, t)‖L2(R,ρ).

Using (1.5), we have

‖f(u(·, s))‖L2(R,ρ) ≤ k1‖u(·, s)‖L2(R,ρ) + k2. (4.4)

Since the ball B(0, R) is invariant, ‖u(·, t)‖L2(R,ρ) ≤ R, from (4.4) results

‖(f ◦ u)(·, t)‖L2(R,ρ) ≤ k1R + k2.

Hence

‖J (r) ∗ (f ◦ u)(·, t)‖L2(R,ρ) ≤
√

K‖J (r)‖L1(k1R + k2). (4.5)

Therefore, from (4.3) and (4.5), follows that

∥∥∂ru(x, t)
∂xr

∥∥
L2(R,ρ)

≤
∫ t

−∞
e−(t−s)‖J (r) ∗ (f ◦ u)(·, t)‖L2(R,ρ)ds

≤
√

K‖J (r)‖L1(k1R + k2)
∫ t

−∞
e−(t−s)ds

=
√

K‖J (r)‖L1(k1R + k2).

Therefore, we can obtain boundedness for the derivatives of u of any order, in terms
only of J and of the derivatives of J , concluding the proof. �

Theorem 4.2. Assume the same hypotheses from Theorem 3.5. Then the attractor
A belongs to the ball ‖ · ‖∞ ≤ a, where a = Ck1R + k2‖J‖L1 + h.

Proof. Let u(x, t) be a solution of (1.1) in A. Then as we see in (4.1)

u(x, t) =
∫ t

−∞
e−(t−s)[J ∗ (f ◦ u)(x, s) + h]ds,

where the equality above is in the sense of L2(R, ρ). Thus, using (3.1), obtain

|u(x, t)| ≤
∫ t

−∞
e−(t−s)[|J ∗ (f ◦ u)(x, s)|+ h]ds

≤
∫ t

−∞
(Ck1R + k2‖J‖L1 + h)e−(t−s)ds

=
∫ t

−∞
ae−(t−s)ds = a.

�
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5. Upper semicontinuity of attractors with respect to J

A natural question to examine is the dependence of this attractors on the function
J present in (1.1). We denote byAJ the global attractor whose existence was proved
in the Theorem 3.5

Let us recall that a family of subsets {AJ}, is upper semicontinuous at J0 if

dist(AJ ,AJ0) → 0, as J → J0,

where

dist(AJ ,AJ0) = sup
x∈AJ

dist(x,AJ0) = sup
x∈AJ

inf
y∈AJ0

‖x− y‖L2(R,ρ).

In this section, we prove that the family of attractors is upper semicontinuous,
in L2(R, ρ), with respect to function J at J0 with J ∈ C1(R) non negative even
and supported in the interval [−1, 1] and J(x) ≤ Cρ(x), ∀x ∈ [−1, 1], where C is
the constant given in the Lemma 3.4.

Lemma 5.1. Assume (H1), (H2), (H3) hold. Then the flow SJ(t) is continuous
with respect to variations of J , in the L1 − norm, at J0, uniformly for t ∈ [0, b]
with b < ∞ and u in bounded sets.

Proof. As shown above the solutions of (1.1) satisfy the variations of constants
formula,

SJ(t)u = e−tu +
∫ t

0

e−(t−s)[J ∗ (f ◦ SJ(s)u + h]ds.

Let J0 ∈ C1(R) be a non negative even function supported in the interval [−1, 1],
b > 0 and D a bounded set in L2(R, ρ), for example the ball B(0, R) (Although R
depends on J , it can be uniformly chosen in a neighborhood of J0) . Given ε > 0,
we want to find δ > 0 such that ‖J − J0‖L1 < δ implies

‖SJ(t)u− SJ0(t)u‖L2(R,ρ) < ε,

for t ∈ [0, b] and u ∈ D. Note that

‖SJ(t)u−SJ0(t)u‖L2(R,ρ) ≤
∫ t

0

e−(t−s)‖J ∗(f ◦SJ(s)u)−J0 ∗(f ◦SJ0(s)u‖L2(R,ρ)ds.

Subtracting and summing the term J0 ∗ (f ◦SJ(s)u) and using Lemma 2.2, for any
t > 0, we obtain

‖SJ(t)u− SJ0(t)u‖L2(R,ρ) ≤
∫ t

0

e−(t−s)[‖(J − J0) ∗ (f ◦ SJ(s)u)‖L2(R,ρ)

+ ‖J0 ∗ [f ◦ SJ(s)u− f ◦ SJ0(s)u]‖L2(R,ρ)]ds

≤
∫ t

0

e−(t−s)[
√

K‖J − J0‖L1‖f ◦ SJ(s)u‖L2(R,ρ)

+
√

K‖J0‖L1‖f ◦ SJ(s)u− f ◦ SJ0(s)u‖L2(R,ρ)]ds.

Using (4.4), we obtain

‖f ◦ SJ(s)u‖L2(R,ρ) ≤ k1‖u(·, s)‖L2(R,ρ) + k2 ≤ k1R + k2

and, using (H1), we obtain

‖f ◦ SJ(s)u− f ◦ SJ0(s)u‖L2(R,ρ) ≤ k1‖SJ(s)u− SJ0(s)u‖L2(R,ρ).
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Therefore,

‖SJ(t)u− SJ0(t)u‖L2(R,ρ) ≤ (k1R + k2)
√

K‖J − J0‖L1

+
∫ t

0

e−(t−s)
√

K‖J0‖L1k1‖SJ(s)u− SJ0(s)u‖L2(R,ρ).

Hence

et‖SJ(t)u− SJ0(t)u‖L2(R,ρ) ≤ (k1R + k2)
√

K‖J − J0‖L1et

+
∫ t

0

es
√

K‖J0‖L1k1‖SJ(s)u− SJ0(s)u‖L2(R,ρ).

Therefore, by Gronwall’s Lemma, it follows that

‖SJ(t)u− SJ0(t)u‖L2(R,ρ) ≤ (k1R + k2)
√

K‖J − J0‖L1e(
√

K‖J0‖L1k1)t.

From this, the results follows immediately. �

Theorem 5.2. Assume the same hypotheses as in Lemma 5.1. Then the family of
attractors AJ is upper semicontinuous with respect to J at J0.

Proof. From hypotheses of the theorem, it follows that, for every J ∈ C1(R), suf-
ficiently close to J0 in the L1-norm, non negative even supported in [−1, 1] and
satisfying J(x) ≤ Cρ(x), for all x ∈ [−1, 1], the attractor, AJ , given by Theorem
3.5 is in the closed ball B[0, R] in L2(R, ρ). Therefore

∪JAJ ⊂ B[0, R].

Since AJ0 is global attractor and B[0, R] is a bounded set then, for every ε > 0,
there exists t∗ > 0 such that SJ0(t)B[0, R] ⊂ Aε/2

J0
, for all t ≥ t∗, where A

ε
2
J0

is
ε
2 -neighborhood of AJ0 .

From Lemma 5.1, it follows that SJ(t) is continuous at J0, uniformly for u in a
bounded set and t in compacts. Thus, there exists δ > 0 such that

‖J − J0‖L1 < δ ⇒ ‖SJ(t∗)u− SJ0(t
∗)u‖L2(R,ρ) <

ε

2
, ∀u ∈ B[0, R].

We will show that if ‖J − J0‖ < δ then AJ ⊂ Aε
J0

. In fact, let u ∈ AJ . Since AJ

is invariant, v = SJ(−t∗)u ∈ AJ ⊂ B[0, R]. Therefore,

SJ0(t
∗)v ∈ Aε/2

J0
, (5.1)

‖SJ(t∗)v − SJ0(t
∗)v‖L2(R,ρ) <

ε

2
. (5.2)

From (5.1) and (5.2), it follows that

u = SJ(t∗)SJ(−t∗)u = SJ(t∗)v ∈ Aε
J0

and the upper semicontinuity of AJ follows. �

Remark 5.3. Similar results can be obtained for the flow of (1.1) in

Cρ(R) ≡ {f : R → R continuous with the norm ‖ · ‖ρ},

where
‖u‖ρ = sup

x∈R
{|u(x)|ρ(x)} < ∞,

being ρ a positive continuous function on R.
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