Electronic Journal of Differential Equations, Vol. 2010(2010), No. 16, pp. 1-5. ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu ftp ejde.math.txstate.edu

EXISTENCE OF ENTIRE POSITIVE SOLUTIONS FOR A CLASS OF SEMILINEAR ELLIPTIC SYSTEMS

ZHIJUN ZHANG

$$
\begin{aligned}
& \text { AbSTRACT. Under simple conditions on } f_{i} \text { and } g_{i} \text {, we show the existence of } \\
& \text { entire positive radial solutions for the semilinear elliptic system } \\
& \qquad \begin{array}{l}
\Delta u=p(|x|) f_{1}(v) f_{2}(u) \\
\Delta v=q(|x|) g_{1}(v) g_{2}(u),
\end{array} \\
& \text { where } x \in \mathbb{R}^{N}, N \geq 3 \text {, and } p, q \text { are continuous functions. }
\end{aligned}
$$

1. Introduction

The purpose of this paper is to investigate the existence of entire positive radial solutions to the semilinear elliptic system

$$
\begin{array}{ll}
\Delta u=p(|x|) f_{1}(v) f_{2}(u), & x \in R^{N}, \\
\Delta v=q(|x|) g_{1}(v) g_{2}(u), & x \in R^{N} \tag{1.1}
\end{array}
$$

where $N \geq 3$. We assume that $p, q, f_{i}, g_{i}(i=1,2)$ satisfy the following hypotheses.
(H1) The functions $p, q, f_{i}, g_{i}:[0, \infty) \rightarrow[0, \infty)$ are continuous;
(H2) the functions f_{i} and g_{i} are increasing on $[0, \infty)$.
Denote

$$
\begin{gathered}
P(\infty):=\lim _{r \rightarrow \infty} P(r), \quad P(r)=\int_{0}^{r} t^{1-N}\left(\int_{0}^{t} s^{N-1} p(s) d s\right) d t, \quad r \geq 0 \\
Q(\infty):=\lim _{r \rightarrow \infty} Q(r), \quad Q(r)=\int_{0}^{r} t^{1-N}\left(\int_{0}^{t} s^{N-1} q(s) d s\right) d t, \quad r \geq 0 \\
F(\infty) \\
:=\lim _{r \rightarrow \infty} F(r), \quad F(r)=\int_{a}^{r} \frac{d s}{f_{1}(s) f_{2}(s)+g_{1}(s) g_{2}(s)}, \quad r \geq a>0
\end{gathered}
$$

We see that $F^{\prime}(r)=\frac{1}{f_{1}(r) f_{2}(r)+g_{1}(r) g_{2}(r)}>0$, for $r>a$ and F has the inverse function F^{-1} on $[a, \infty)$.

This problem arises in many branches of mathematics and physics and has been discussed by many authors; see, for instance, [1- $8, ~ 10,11,12$ and the references therein.

[^0]When $f_{2}=g_{1} \equiv 1, f_{1}(v)=v^{\alpha}, g_{2}(u)=u^{\beta}, 0<\alpha \leq \beta$, Lair and Wood 8 , considered the existence and nonexistence of entire positive radial solutions to 1.1. Their results were extended by Cîrstea and Rădulescu [1], Wang and Wood [12], Ghergu and Rădulescu [6], Peng and Song [11], Ghanmi, Mâagli, Rădulescu and Zeddini [5], and the authors of this article in [10].

When $f_{1}(v)=v^{\alpha_{1}}, f_{2}(u)=u^{\alpha_{2}}, g_{1}(v)=v^{\beta_{1}}, g_{2}(u)=u^{\beta_{2}}$, where $\alpha_{1}>0, \beta_{2}>0$, $\alpha_{2}>1$ and $\beta_{1}>1$, García-Melián and Rossi 3, García-Melián 4] have studied the existence, uniqueness and exact blow-up rate near the boundary of positive solutions to system (1.1) on a bounded domain.

In this paper, we give simple conditions on f_{i} and g_{i} to show the existence of entire positive radial solutions to 1.1 . Our main results are as the following.

Theorem 1.1. Under hypotheses (H1)-(H2) and
(H3) $F(\infty)=\infty$,
system 1.1 has one positive radial solution $(u, v) \in C^{2}([0, \infty))$. Moreover, when $P(\infty)<\infty$ and $Q(\infty)<\infty$, u and v are bounded; when $P(\infty)=\infty=Q(\infty)$, $\lim _{r \rightarrow \infty} u(r)=\lim _{r \rightarrow \infty} v(r)=\infty$.

Theorem 1.2. Under hypotheses (H1)-(H2) and
(H4) $F(\infty)<\infty$;
(H5) $P(\infty)<\infty, Q(\infty)<\infty$;
(H6) there exist $b>a$ and $c>a$ such that $P(\infty)+Q(\infty)<F(\infty)-F(b+c)$,
system (1.1) has one positive radial bounded solution $(u, v) \in C^{2}([0, \infty))$ satisfying

$$
\begin{array}{ll}
b+f_{1}(c) f_{2}(b) P(r) \leq u(r) \leq F^{-1}(F(b+c)+P(r)+Q(r)), & \forall r \geq 0 \\
c+g_{1}(c) g_{2}(b) Q(r) \leq v(r) \leq F^{-1}(F(b+c)+P(r)+Q(r)), & \forall r \geq 0
\end{array}
$$

Remark 1.3. From (H1)-(H2), we see that (H3) implies

$$
\begin{equation*}
\int_{a}^{\infty} \frac{d s}{f_{1}(s) f_{2}(s)}=\int_{a}^{\infty} \frac{d s}{g_{1}(s) g_{2}(s)}=\infty \tag{1.2}
\end{equation*}
$$

Remark 1.4. When $f_{1}(v)=v^{\alpha_{1}}, f_{2}(u)=u^{\alpha_{2}}, g_{1}(v)=v^{\beta_{1}}, g_{2}(u)=u^{\beta_{2}}$, where α_{i} and β_{i} are positive constants, we see that (H3) holds provided $\max \left\{\alpha_{1}+\alpha_{2}\right.$, $\left.\beta_{1}+\beta_{2}\right\} \leq 1$ and (H4) holds provided $\alpha_{1}+\alpha_{2}>1$ or $\beta_{1}+\beta_{2}>1$.

Remark 1.5. By [9], we see that $P(\infty)=\infty$ if and only if $\int_{0}^{\infty} s p(s) d s=\infty$.

2. Proof of Theorems 1.1 and 1.2

Note that radial solutions of 1.1 are solutions of the ordinary differential equation system

$$
\begin{aligned}
u^{\prime \prime}+\frac{N-1}{r} u^{\prime} & =p(r) f_{1}(v) f_{2}(u) \\
v^{\prime \prime}+\frac{N-1}{r} v^{\prime} & =q(r) g_{1}(v) g_{2}(u)
\end{aligned}
$$

Thus solutions of 1.1) are simply solutions of

$$
\begin{aligned}
& u(r)=b+\int_{0}^{r} t^{1-N}\left(\int_{0}^{t} s^{N-1} p(s) f_{1}(v(s)) f_{2}(u(s)) d s\right) d t, \quad r \geq 0 \\
& v(r)=c+\int_{0}^{r} t^{1-N}\left(\int_{0}^{t} s^{N-1} q(s) g_{1}(v(s)) g_{2}(u(s)) d s\right) d t, \quad r \geq 0
\end{aligned}
$$

Let $\left\{u_{m}\right\}_{m \geq 0}$ and $\left\{v_{m}\right\}_{m \geq 0}$ be the sequences of positive continuous functions defined on $[0, \infty)$ by

$$
\begin{gathered}
u_{0}(r) \equiv b, \quad v_{0}(r) \equiv c \\
u_{m+1}(r)=b+\int_{0}^{r} t^{1-N}\left(\int_{0}^{t} s^{N-1} p(s) f_{1}\left(v_{m}(s)\right) f_{2}\left(u_{m}(s)\right) d s\right) d t, \quad r \geq 0 \\
v_{m+1}(r)=c+\int_{0}^{r} t^{1-N}\left(\int_{0}^{t} s^{N-1} q(s) g_{1}\left(v_{m}(s)\right) g_{2}\left(u_{m}(s)\right) d s\right) d t, \quad r \geq 0
\end{gathered}
$$

Obviously, for all $r \geq 0$ and $m \in \mathbb{N}, u_{m}(r) \geq b, v_{m}(r) \geq c$ and

$$
v_{0} \leq v_{1}, \quad u_{0} \leq u_{1}, \quad \forall r \geq 0
$$

Hypothesis (H2) yields

$$
u_{1}(r) \leq u_{2}(r), \quad v_{1}(r) \leq v_{2}(r), \quad \forall r \geq 0
$$

Continuing this line of reasoning, we obtain that the sequences $\left\{u_{m}\right\}$ and $\left\{v_{m}\right\}$ are increasing on $[0, \infty)$. Moreover, we obtain by (H1) and (H2) that, for each $r>0$,

$$
\begin{aligned}
u_{m+1}^{\prime}(r)= & r^{1-N} \int_{0}^{r} s^{N-1} p(s) f_{1}\left(v_{m}(s)\right) f_{2}\left(u_{m}(s)\right) d s \\
\leq & f_{1}\left(v_{m}(r)\right) f_{2}\left(u_{m}(r)\right) P^{\prime}(r) \\
\leq & f_{1}\left(v_{m+1}(r)+u_{m+1}(r)\right) f_{2}\left(v_{m+1}(r)+u_{m+1}(r)\right) P^{\prime}(r) \\
\leq & {\left[f_{1}\left(v_{m+1}(r)+u_{m+1}(r)\right) f_{2}\left(v_{m+1}(r)+u_{m+1}(r)\right)\right.} \\
& \left.+g_{1}\left(v_{m+1}(r)+u_{m+1}(r)\right) g_{2}\left(v_{m+1}(r)+u_{m+1}(r)\right)\right] P^{\prime}(r) \\
v_{m+1}^{\prime}(r)= & r^{1-N} \int_{0}^{r} s^{N-1} q(s) g_{1}\left(v_{m}(s)\right) g_{2}\left(u_{m}(s)\right) d s \\
\leq & g_{1}\left(v_{m}(r)\right) g_{2}\left(u_{m}(r)\right) Q^{\prime}(r) \\
\leq & g_{1}\left(v_{m+1}(r)+u_{m+1}(r)\right) g_{2}\left(v_{m+1}(r)+u_{m+1}(r)\right) Q^{\prime}(r) \\
\leq & {\left[f_{1}\left(v_{m+1}(r)+u_{m+1}(r)\right) f_{2}\left(v_{m+1}(r)+u_{m+1}(r)\right)\right.} \\
& \left.+g_{1}\left(v_{m+1}(r)+u_{m+1}(r)\right) g_{2}\left(v_{m+1}(r)+u_{m+1}(r)\right)\right] Q^{\prime}(r)
\end{aligned}
$$

and

$$
\int_{b+c}^{v_{m+1}(r)+u_{m+1}(r)} \frac{d \tau}{f_{1}(\tau) f_{2}(\tau)+g_{1}(\tau) g_{2}(\tau)} \leq Q(r)+P(r)
$$

Consequently,

$$
\begin{equation*}
F\left(u_{m}(r)+v_{m}(r)\right)-F(b+c) \leq P(r)+Q(r), \quad \forall r \geq 0 \tag{2.1}
\end{equation*}
$$

Since F^{-1} is increasing on $[0, \infty)$, we have

$$
\begin{equation*}
u_{m}(r)+v_{m}(r) \leq F^{-1}(F(b+c)+P(r)+Q(r)), \quad \forall r \geq 0 \tag{2.2}
\end{equation*}
$$

(i) When (H3) holds, we see that

$$
\begin{equation*}
F^{-1}(\infty)=\infty . \tag{2.3}
\end{equation*}
$$

It follows that the sequences $\left\{u_{m}\right\}$ and $\left\{v_{m}\right\}$ are bounded and equicontinuous on [$0, c_{0}$] for arbitrary $c_{0}>0$. It follows by Arzela-Ascoli theorem that $\left\{u_{m}\right\}$ and $\left\{v_{m}\right\}$ have subsequences converging uniformly to u and v on $\left[0, c_{0}\right]$. By the arbitrariness of $c_{0}>0$, we see that (u, v) are positive entire solutions of 1.1). Moreover, when $P(\infty)<\infty$ and $Q(\infty)<\infty$, we see by (2.2) that

$$
u(r)+v(r) \leq F^{-1}(F(b+c)+P(\infty)+Q(\infty)), \quad \forall r \geq 0
$$

and, when $P(\infty)=\infty=Q(\infty)$, by (H2) and the monotones of $\left\{u_{m}\right\}$ and $\left\{v_{m}\right\}$,

$$
u(r) \geq b+f_{1}(c) f_{2}(b) P(r), \quad v(r) \geq c+g_{1}(c) g_{2}(b) Q(r), \quad \forall r \geq 0
$$

Thus $\lim _{r \rightarrow \infty} u(r)=\lim _{r \rightarrow \infty} v(r)=\infty$.
(ii) When (H4)-(H6) hold, we see by (2.1) that

$$
\begin{equation*}
F\left(u_{m}(r)+v_{m}(r)\right) \leq F(b+c)+P(\infty)+Q(\infty)<F(\infty)<\infty \tag{2.4}
\end{equation*}
$$

Since F^{-1} is strictly increasing on $[0, \infty)$, we have

$$
\begin{equation*}
u_{m}(r)+v_{m}(r) \leq F^{-1}(F(b+c)+P(\infty)+Q(\infty))<\infty, \quad \forall r \geq 0 \tag{2.5}
\end{equation*}
$$

The last part of the proof follows from (i). Thus the proof is complete.

References

[1] F. Cîrstea, V. Rădulescu; Entire solutions blowing up at infinity for semilinear elliptic systems, J. Math. Pures Appl. 81 (2002), 827-846.
[2] N. Dancer, Y. Du; Effects of certain degeneracies in the predator-prey model, SIAM J. Math. Anal. 34 (2002), 292-314.
[3] J. García-Melián, J. Rossi; Boundary blow-up solutions to elliptic systems of competitive type, J. Diff. Eqns. 206 (2004), 156-181.
[4] J. García-Melián; A remark on uniqueness of large solutions for elliptic systems of competitive type, J. Math. Anal. Appl. 331 (2007), 608-616.
[5] A. Ghanmi, H. Mâagli, V. Rădulescu, N. Zeddini; Large and bounded solutions for a class of nonlinear Schrödinger stationary systems, Analysis and Applications 7(4) (2009), 1-14.
[6] M. Ghergu, V. Rădulescu; Explosive solutions of semilinear elliptic systems with gradient term, RACSAM Revista Real Academia de Ciencias (Serie A, Matemáticas) 97 (2003), 437445.
[7] J. López-Gómez; Coexistence and metacoexistence for competitive species, Houston J. Math. 29 (2003), 483-536.
[8] A. V. Lair, A. W. Wood; Existence of entire large positive solutions of semilnear elliptic systems, J. Diff. Equations 164 (2000), 380-394.
[9] A. V. Lair, A. W. Shaker; Entire solution of a singular semilinear elliptic problem, J. Math. Anal. Appl. 200 (1996), 498-505.
[10] H. Li, P. Zhang, Z. Zhang; A remark on the existence of entire positive solutions for a class of semilinear elliptic systems, J. Math. Anal. Appl. 365 (2010), 338-341.
[11] Y. Peng, Y. Song; Existence of entire large positive solutions of a semilinear elliptic system, Appl. Math. Comput. 155 (2004), 687-698.
[12] X. Wang, A. W. Wood; Existence and nonexistence of entire positive solutions of semilinear elliptic systems, J. Math. Anal. Appl. 267 (2002), 361-362.

Zhijun Zhang

School of Mathematics and Information Science, Yantai University, Yantai, Shandong, 264005, China

E-mail address: zhangzj@ytu.edu.cn

[^0]: 2000 Mathematics Subject Classification. 35J55, 35J60, 35J65.
 Key words and phrases. Semilinear elliptic systems; entire solutions; existence. (C) 2010 Texas State University - San Marcos.

 Submitted October 22, 2009. Published January 27, 2010.
 Supported by grants 10671169 from NNSF of China, and 2009ZRB01795 from NNSF of
 Shandong Province.

