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EXISTENCE OF ENTIRE POSITIVE SOLUTIONS FOR A CLASS
OF SEMILINEAR ELLIPTIC SYSTEMS

ZHIJUN ZHANG

Abstract. Under simple conditions on fi and gi, we show the existence of

entire positive radial solutions for the semilinear elliptic system

∆u = p(|x|)f1(v)f2(u)

∆v = q(|x|)g1(v)g2(u),

where x ∈ RN , N ≥ 3, and p, q are continuous functions.

1. Introduction

The purpose of this paper is to investigate the existence of entire positive radial
solutions to the semilinear elliptic system

∆u = p(|x|)f1(v)f2(u), x ∈ RN ,

∆v = q(|x|)g1(v)g2(u), x ∈ RN ,
(1.1)

where N ≥ 3. We assume that p, q, fi, gi (i = 1, 2) satisfy the following hypotheses.
(H1) The functions p, q, fi, gi : [0,∞) → [0,∞) are continuous;
(H2) the functions fi and gi are increasing on [0,∞).

Denote

P (∞) := lim
r→∞

P (r), P (r) =
∫ r

0

t1−N
( ∫ t

0

sN−1p(s)ds
)
dt, r ≥ 0,

Q(∞) := lim
r→∞

Q(r), Q(r) =
∫ r

0

t1−N
( ∫ t

0

sN−1q(s)ds
)
dt, r ≥ 0,

F (∞) := lim
r→∞

F (r), F (r) =
∫ r

a

ds

f1(s)f2(s) + g1(s)g2(s)
, r ≥ a > 0.

We see that F ′(r) = 1
f1(r)f2(r)+g1(r)g2(r)

> 0, for r > a and F has the inverse
function F−1 on [a,∞).

This problem arises in many branches of mathematics and physics and has been
discussed by many authors; see, for instance, [1]-[8], [10, 11, 12] and the references
therein.
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When f2 = g1 ≡ 1, f1(v) = vα, g2(u) = uβ , 0 < α ≤ β, Lair and Wood
[8] considered the existence and nonexistence of entire positive radial solutions to
(1.1). Their results were extended by Ĉırstea and Rădulescu [1], Wang and Wood
[12], Ghergu and Rădulescu [6], Peng and Song [11], Ghanmi, Mâagli, Rădulescu
and Zeddini [5], and the authors of this article in [10].

When f1(v) = vα1 , f2(u) = uα2 , g1(v) = vβ1 , g2(u) = uβ2 , where α1 > 0, β2 > 0,
α2 > 1 and β1 > 1, Garćıa-Melián and Rossi [3], Garćıa-Melián [4] have studied
the existence, uniqueness and exact blow-up rate near the boundary of positive
solutions to system (1.1) on a bounded domain.

In this paper, we give simple conditions on fi and gi to show the existence of
entire positive radial solutions to (1.1). Our main results are as the following.

Theorem 1.1. Under hypotheses (H1)–(H2) and

(H3) F (∞) = ∞,

system (1.1) has one positive radial solution (u, v) ∈ C2([0,∞)). Moreover, when
P (∞) < ∞ and Q(∞) < ∞, u and v are bounded; when P (∞) = ∞ = Q(∞),
limr→∞ u(r) = limr→∞ v(r) = ∞.

Theorem 1.2. Under hypotheses (H1)–(H2) and

(H4) F (∞) < ∞;
(H5) P (∞) < ∞, Q(∞) < ∞;
(H6) there exist b > a and c > a such that P (∞) + Q(∞) < F (∞)− F (b + c),

system (1.1) has one positive radial bounded solution (u, v) ∈ C2([0,∞)) satisfying

b + f1(c)f2(b)P (r) ≤ u(r) ≤ F−1
(
F (b + c) + P (r) + Q(r)

)
, ∀r ≥ 0;

c + g1(c)g2(b)Q(r) ≤ v(r) ≤ F−1
(
F (b + c) + P (r) + Q(r)

)
, ∀r ≥ 0.

Remark 1.3. From (H1)–(H2), we see that (H3) implies∫ ∞

a

ds

f1(s)f2(s)
=

∫ ∞

a

ds

g1(s)g2(s)
= ∞. (1.2)

Remark 1.4. When f1(v) = vα1 , f2(u) = uα2 , g1(v) = vβ1 , g2(u) = uβ2 , where
αi and βi are positive constants, we see that (H3) holds provided max{α1 + α2,
β1 + β2} ≤ 1 and (H4) holds provided α1 + α2 > 1 or β1 + β2 > 1.

Remark 1.5. By [9], we see that P (∞) = ∞ if and only if
∫∞
0

sp(s)ds = ∞.

2. Proof of Theorems 1.1 and 1.2

Note that radial solutions of (1.1) are solutions of the ordinary differential equa-
tion system

u′′ +
N − 1

r
u′ = p(r)f1(v)f2(u),

v′′ +
N − 1

r
v′ = q(r)g1(v)g2(u).
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Thus solutions of (1.1) are simply solutions of

u(r) = b +
∫ r

0

t1−N
( ∫ t

0

sN−1p(s)f1(v(s))f2(u(s))ds
)
dt, r ≥ 0,

v(r) = c +
∫ r

0

t1−N
( ∫ t

0

sN−1q(s)g1(v(s))g2(u(s))ds
)
dt, r ≥ 0.

Let {um}m≥0 and {vm}m≥0 be the sequences of positive continuous functions de-
fined on [0,∞) by

u0(r) ≡ b, v0(r) ≡ c,

um+1(r) = b +
∫ r

0

t1−N
( ∫ t

0

sN−1p(s)f1(vm(s))f2(um(s))ds
)
dt, r ≥ 0,

vm+1(r) = c +
∫ r

0

t1−N
( ∫ t

0

sN−1q(s)g1(vm(s))g2(um(s))ds
)
dt, r ≥ 0.

Obviously, for all r ≥ 0 and m ∈ N, um(r) ≥ b, vm(r) ≥ c and

v0 ≤ v1, u0 ≤ u1, ∀r ≥ 0.

Hypothesis (H2) yields

u1(r) ≤ u2(r), v1(r) ≤ v2(r), ∀r ≥ 0.

Continuing this line of reasoning, we obtain that the sequences {um} and {vm} are
increasing on [0,∞). Moreover, we obtain by (H1) and (H2) that, for each r > 0,

u′m+1(r) = r1−N

∫ r

0

sN−1p(s)f1(vm(s))f2(um(s))ds

≤ f1(vm(r))f2(um(r))P ′(r)

≤ f1

(
vm+1(r) + um+1(r)

)
f2

(
vm+1(r) + um+1(r)

)
P ′(r)

≤
[
f1

(
vm+1(r) + um+1(r)

)
f2

(
vm+1(r) + um+1(r)

)
+ g1

(
vm+1(r) + um+1(r)

)
g2

(
vm+1(r) + um+1(r)

)]
P ′(r) ,

v′m+1(r) = r1−N

∫ r

0

sN−1q(s)g1(vm(s))g2(um(s))ds

≤ g1

(
vm(r))g2(um(r)

)
Q′(r)

≤ g1

(
vm+1(r) + um+1(r)

)
g2

(
vm+1(r) + um+1(r)

)
Q′(r)

≤
[
f1

(
vm+1(r) + um+1(r)

)
f2

(
vm+1(r) + um+1(r)

)
+ g1

(
vm+1(r) + um+1(r)

)
g2

(
vm+1(r) + um+1(r)

)]
Q′(r)

and ∫ vm+1(r)+um+1(r)

b+c

dτ

f1(τ)f2(τ) + g1(τ)g2(τ)
≤ Q(r) + P (r).

Consequently,

F
(
um(r) + vm(r)

)
− F (b + c) ≤ P (r) + Q(r), ∀r ≥ 0. (2.1)
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Since F−1 is increasing on [0,∞), we have

um(r) + vm(r) ≤ F−1
(
F (b + c) + P (r) + Q(r)

)
, ∀r ≥ 0. (2.2)

(i) When (H3) holds, we see that

F−1(∞) = ∞. (2.3)

It follows that the sequences {um} and {vm} are bounded and equicontinuous on
[0, c0] for arbitrary c0 > 0. It follows by Arzela-Ascoli theorem that {um} and {vm}
have subsequences converging uniformly to u and v on [0, c0]. By the arbitrariness
of c0 > 0, we see that (u, v) are positive entire solutions of (1.1). Moreover, when
P (∞) < ∞ and Q(∞) < ∞, we see by (2.2) that

u(r) + v(r) ≤ F−1
(
F (b + c) + P (∞) + Q(∞)

)
, ∀r ≥ 0;

and,when P (∞) = ∞ = Q(∞), by (H2) and the monotones of {um} and {vm},

u(r) ≥ b + f1(c)f2(b)P (r), v(r) ≥ c + g1(c)g2(b)Q(r), ∀r ≥ 0.

Thus limr→∞ u(r) = limr→∞ v(r) = ∞.
(ii) When (H4)–(H6) hold, we see by (2.1) that

F (um(r) + vm(r)) ≤ F (b + c) + P (∞) + Q(∞) < F (∞) < ∞. (2.4)

Since F−1 is strictly increasing on [0,∞), we have

um(r) + vm(r) ≤ F−1
(
F (b + c) + P (∞) + Q(∞)

)
< ∞, ∀r ≥ 0. (2.5)

The last part of the proof follows from (i). Thus the proof is complete.
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