Xavier Carvajal Paredes, Pedro Gamboa Romero
Abstract:
In this article, we prove that the initial value problem associated with
the Korteweg-de Vries equation is well-posed in weighted
Sobolev spaces
,
for
and the initial value problem
associated with the nonlinear Schrodinger equation is
well-posed in weighted Sobolev spaces
,
for
. Persistence property has been
proved by approximation of the solutions and using
a priori estimates.
Submitted October 18, 2010. Published November 24, 2010.
Math Subject Classifications: 35A07, 35Q53.
Key Words: Schrodinger equation; Korteweg-de Vries equation;
global well-posed; persistence property; weighted Sobolev spaces.
Show me the PDF file (246 KB), TEX file, and other files for this article.
![]() |
Xavier Carvajal IM UFRJ, Av. Athos da Silveira Ramos P.O. Box 68530. CEP 21945-970. RJ. Brazil email: carvajal@im.ufrj.br, Phone 55-21-25627520 |
---|---|
![]() |
Pedro Gamboa Romero IM UFRJ, Av. Athos da Silveira Ramos P.O. Box 68530. CEP 21945-970. RJ. Brazil email: pgamboa@im.ufrj.br, Phone 55-21-25627520 |
Return to the EJDE web page