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POSITIVE SOLUTIONS FOR SINGULAR STURM-LIOUVILLE
BOUNDARY VALUE PROBLEMS ON THE HALF LINE

JIAFA XU, ZHILIN YANG

Abstract. This article concerns the existence and multiplicity of positive
solutions for the singular Sturm-Liouville boundary value problem

(p(t)u′(t))′ + h(t)f(t, u(t)) = 0, 0 < t <∞,

au(0)− b lim
t→0+

p(t)u′(t) = 0,

c lim
t→∞

u(t) + d lim
t→∞

p(t)u′(t) = 0.

We use fixed point index theory to establish our main results based on a priori
estimates derived by utilizing spectral properties of associated linear integral
operators.

1. Introduction

In this article, we study the singular Sturm-Liouville boundary value problem
on the half line

(p(t)u′(t))′ + h(t)f(t, u(t)) = 0, 0 < t <∞,

au(0)− b lim
t→0+

p(t)u′(t) = 0,

c lim
t→∞

u(t) + d lim
t→∞

p(t)u′(t) = 0,

(1.1) problem

where f ∈ C(R+ × R+,R+) (R+ := [0,∞)), h is nonnegative on R+ and belongs
to a weighted Lebesgue space on R+, p ∈ C(R+) ∩ C1(0,∞) with p > 0 on (0,∞)
and

∫∞
0

ds
p(s) <∞, a, b, c, d ≥ 0 with ρ := bc+ ad+ ac

∫∞
0

ds
p(s) > 0.

Boundary value problems on the half line arise in studying radially symmetric
solutions of nonlinear elliptic equations and in various applications, such as an
unsteady flow of gas through a semi-infinite porous media, theory of drain flows, and
plasma physics (see for example [2, 3, 5, 14]). This explains the reason that the last
two decades have witnessed an overgrowing interest in the research of such problems,
with many papers in this direction published. We refer the interested reader to
[1, 7, 8, 9, 10, 11, 12, 13, 15, 16, 18, 19, 20] and references therein. In [11], by using
fixed point theorems in a cone, Lian et al. considered problem (1.1) and obtained
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a set of sufficient conditions that guarantee existence, uniqueness, and multiplicity
of positive solutions for (1.1). An interesting feature in [11] is that the nonlinearity
f may be sign-changing. In [19], by using fixed point index theory, Zhang et al.
studied the existence of positive solutions for (1.1) with h(t)f(t, u(t)) replaced by
the semipositone nonlinearity f(t, u(t)) + q(t), generalizing and improving some
results due to Liu [8] and Zhang et al. [20].

Motivated by the works cited above, we discuss the existence and multiplicity
of positive solutions for (1.1). We use fixed point index theory to establish our
main results based on a priori estimates derived by utilizing spectral properties of
associated linear integral operators. This means that both our methodology and
results in this paper are different from those in [8, 10, 11, 19, 20].

The article is organized as follows. Section 2 contains some preliminary results,
including spectral properties of two linear integral operators. In Section 3, we state
and prove our main results. Four examples are given in Section 4 to illustrate
applications of Theorems 3.1–3.3.

2. Preliminaries

Let E = {u ∈ C(R+) : limt→∞ u(t) exists} be equipped with the supremum
norm ‖ · ‖ and P = {u ∈ E : u(t) ≥ 0, t ∈ R+}. Then (E, ‖ · ‖) is a real Banach
space and P a cone on E. For simplicity, we denote ξ(t) and η(t) by

ξ(t) := b+ a

∫ t

0

ds
p(s)

, η(t) := d+ c

∫ ∞

t

ds
p(s)

.

Clearly, cξ(t) + aη(t) = ρ. Let

G(t, s) :=
1
ρ

{
ξ(t)η(s), 0 ≤ t ≤ s <∞,

ξ(s)η(t), 0 ≤ s ≤ t <∞.
(2.1) Green

We assume the following conditions hold throughout this article.
(H1) h is Lebesgue measurable and nonnegative on R+, with

∫∞
0
G(s, s)h(s) ds ∈

(0,∞).
(H2) p ∈ C(R+) ∩ C1(0,∞), with p > 0 in (0,∞) and

∫∞
0

ds
p(s) <∞.

(H3) f ∈ C(R+ × R+,R+) is bounded on R+ × [0, R] for every R > 0.

lemma1 Lemma 2.1. Let (H1)-(H3) hold and G(t, s) be given in (2.1). Then (1.1) is equiv-
alent to the fixed point equation u = Au, where A : P → P is defined by

(Au)(t) :=
∫ ∞

0

G(t, s)h(s)f(s, u(s)) ds, t ∈ R+. (2.2) A

continous Lemma 2.2 ([9, 11, 19]). Let (H1)-(H3) hold. Then A : P → P is a completely
continuous operator.

rmk2.1 Remark 2.3. Note that G satisfies the following properties, which are obtained
from the monotonicity of ξ and η:

(1) G(t, s) is continuous and 0 ≤ G(t, s) ≤ G(s, s) for all t, s ∈ R+,
(2) G(t, s) ≥ γ(t)G(s, s) for all t, s ∈ R+, where

γ(t) := min
{ ξ(t)
ξ(∞)

,
η(t)
η(0)

}
, t ∈ R+. (2.3) gamma
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lemma2 Lemma 2.4 ([4]). Let Ω ⊂ E be a bounded open set and A : Ω ∩ P → P a com-
pletely continuous operator. If there exists u0 ∈ P \ {0} such that u − Au 6= µu0

for all µ ≥ 0 and u ∈ ∂Ω ∩ P , then i(A,Ω ∩ P, P ) = 0 , where i indicates the fixed
point index on P .

lemma3 Lemma 2.5 ([4]). Let Ω ⊂ E be a bounded open set with 0 ∈ Ω. Suppose A :
Ω ∩ P → P is a completely continuous operator. If u 6= µAu for all u ∈ ∂Ω ∩ P
and 0 ≤ µ ≤ 1, then i(A,Ω ∩ P, P ) = 1.

To establish our main results, we need two extra completely continuous linear
operators T and S, defined by

(Tu)(t) :=
∫ ∞

0

G(t, s)h(s)u(s) ds, u ∈ E, (2.4) T

(Sv)(s) :=
∫ ∞

0

G(t, s)h(s)v(t) dt, v ∈ L(R+).

Condition (H1) implies S : L(R+) → L(R+) maps every nonnegative function in
L(R+) to a nonnegative function. Note that T can be viewed as the dual operator of
S for the reason that T can be extended to a bounded linear operator T : L∞(R+) →
L∞(R+), satisfying T (L(R+)) ⊂ E. It is easy to prove that the spectral radius of
T , denoted by r(T ), is positive. Now the well-known Krein-Rutman [6] theorem
asserts that there exist a ϕ ∈ P\{0} and a nonnegative ψ ∈ L(R+) \ {0} such that
Tϕ = r(T )ϕ and Sψ = r(T )ψ, which can be written as∫ ∞

0

G(t, s)h(s)ϕ(s) ds = r(T )ϕ(t), (2.5) Krein-Rutman-1

and ∫ ∞

0

G(t, s)h(s)ψ(t) dt = r(T )ψ(s). (2.6) Krein-Rutman-2

Note that ψ may be required to satisfy∫ ∞

0

ψ(t) dt = 1. (2.7) integral

rmk2.2 Remark 2.6. Let λ1 = 1/r(T ) > 0. Then (2.5) can be written in the form

(p(t)ϕ′(t))′ + λ1h(t)ϕ(t) = 0, 0 < t <∞,

aϕ(0)− b lim
t→0+

p(t)ϕ′(t) = 0,

c lim
t→+∞

ϕ(t) + d lim
t→+∞

p(t)ϕ′(t) = 0.

(2.8) eigenvalue

This says that λ1 is the first eigenvalue of the above eigenvalue problem, with ϕ
being a positive eigenfunction corresponding to λ1.

The following is a result that is of crucial importance in our proofs and, by
Remark 2.3, can be proved as in [17, Lemma 4].

lemma4 Lemma 2.7. Let

P0 :=
{
u ∈ E :

∫ ∞

0

ψ(t)u(t) dt ≥ ω‖u‖
}
,

where ψ(t) is determined by (2.6) and (2.7), and ω :=
∫∞
0
γ(t)ψ(t) dt > 0. Then

T (P ) ⊂ P0 and, in particular, ϕ ∈ P0 .
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3. Main results

Let Bδ := {u ∈ E : ‖u‖ < δ} for δ > 0.

thm1 Theorem 3.1. Let (H1)-(H3) hold. Suppose

lim inf
u→0+

f(t, u)
u

> λ1, (3.1) sublinear-1

lim sup
u→∞

f(t, u)
u

< λ1 (3.2) sublinear-2

uniformly for t ∈ R+. Then (1.1) has at least one positive solution.

Proof. By (3.1), there exist r > 0 and ε > 0 such that

f(t, u) ≥ (λ1 + ε)u, ∀t ∈ R+, u ∈ [0, r],

and thus for any u ∈ Br ∩ P , we have

(Au)(t) ≥ (λ1 + ε)
∫ ∞

0

G(t, s)h(s)u(s) ds = (λ1 + ε)(Tu)(t), t ∈ R+. (3.3) Inequ-A-1

Next we shall show that

u−Au 6= µϕ, ∀u ∈ ∂Br ∩ P, µ ≥ 0, (3.4) notequ-1

where ϕ is defined by (2.5). If the claim is false, then there exist u1 ∈ ∂Br∩P, µ1 ≥ 0
such that u1−Au1 = µ1ϕ. Thus u1 = Au1+µ1ϕ ∈ P0 by Lemma 2.7 and u1 ≥ Au1.
Combining the preceding inequality with (3.3) (replacing u by u1) leads to

u1(t) ≥ (λ1 + ε)
∫ ∞

0

G(t, s)h(s)u1(s) ds, t ∈ R+. (3.5) Inequ-A-2

Multiply the above by ψ(t) and integrate over R+ and use (2.6) and (2.7) to obtain∫ ∞

0

u1(t)ψ(t) dt ≥ λ−1
1 (λ1 + ε)

∫ ∞

0

u1(t)ψ(t) dt,

so that
∫∞
0
u1(t)ψ(t) dt = 0. Recalling u1 ∈ P0, we have u1 ≡ 0, a contradiction

with u1 ∈ ∂Br ∩ P . As a result, (3.4) holds. Now Lemma 2.4 implies

i(A,Br ∩ P, P ) = 0. (3.6) index1-0

On the other hand, by (3.2) and (H3), there exist 0 < σ < 1 and M > 0 such that

f(t, u) ≤ σλ1u+M, ∀u ≥ 0, t ∈ R+. (3.7) Inequ-A-3

We shall prove that the set

M1 := {u ∈ P : u = µAu, 0 ≤ µ ≤ 1}. (3.8)

is bounded. Indeed, for any u2 ∈M1 we have by (3.7)

u2(t) ≤ σλ1

∫ ∞

0

G(t, s)h(s)u2(s) ds+ u0(t) = σλ1(Tu2)(t) + u0(t),

where u0 ∈ P is defined by u0(t) = M
∫∞
0
G(t, s)h(s) ds. Notice r(σλ1T ) =

λ1σr(T ) < 1. This implies I − σλ1T is invertible and its inverse equals

(I − σλ1T )−1 = I + σλ1T + σ2λ2
1T

2 + · · ·+ σnλn
1T

n + . . . .

Now we have (I − σλ1T )−1(P ) ⊂ P and u2 ≤ (I − σλ1T )−1u0. Therefore, M1 is
bounded. Choosing R > max{r, sup{‖u‖ : u ∈M1}}, we have by Lemma 2.5

i(A,BR ∩ P, P ) = 1. (3.9) index1-1
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Now (3.6) and (3.9) imply

i(A, (BR \Br) ∩ P, P ) = i(A,BR ∩ P, P )− i(A,Br ∩ P, P ) = 1. (3.10)

Thus the operator A has at least one fixed point on (BR \Br)∩P and hence (1.1)
has at least one positive solution. The proof is completed. �

thm2 Theorem 3.2. Let (H1)-(H3) hold. Suppose

lim inf
u→∞

f(t, u)
u

> λ1 (3.11) superlinear-1

and

lim sup
u→0+

f(t, u)
u

< λ1 (3.12) superlinear-2

uniformly for t ∈ R+. Then (1.1) has at least one positive solution.

Proof. By (3.11) and (H3), there exist ε > 0 and b > 0 such that

f(t, u) ≥ (λ1 + ε)u− b, ∀u ≥ 0, t ∈ R+. (3.13) fsuper

This implies

(Au)(t) ≥ (λ1 + ε)
∫ ∞

0

G(t, s)h(s)u(s) ds− b

∫ ∞

0

G(t, s)h(s) ds (3.14) Ineq-2

for all u ∈ P and t ∈ R+. We shall prove that the set

M2 := {u ∈ P : u = Au+ µϕ, µ ≥ 0}. (3.15) notequ-2

is bounded, where ϕ ∈ P is given by (2.5). Indeed, if u ∈M2, then we have u ≥ Au
by definition and u ∈ P0 by Lemma 2.7. This together with (3.14) leads to

u(t) ≥ (λ1 + ε)
∫ ∞

0

G(t, s)h(s)u(s) ds− b

∫ ∞

0

G(t, s)h(s) ds, t ∈ R+.

Multiply the above by ψ(t) and integrate over R+ and use (2.6) and (2.7) to obtain∫ ∞

0

ψ(t)u(t) dt ≥ (λ1 + ε)λ−1
1

∫ ∞

0

ψ(t)u(t) dt− bλ−1
1 ,

so that
∫∞
0
ψ(t)u(t) dt ≤ bε−1 for all u ∈ M2. Recalling u ∈ P0, we obtain

‖u‖ ≤ (εω)−1b for all u ∈ M2, and thus M2 is bounded, as required. Taking
R > sup{‖u‖ : u ∈M2}, we have

u−Au 6= µϕ, ∀u ∈ ∂BR ∩ P, µ ≥ 0. (3.16)

Now Lemma 2.4 yields
i(A,BR ∩ P, P ) = 0. (3.17) index2-0

By (3.12), there exist r ∈ (0, R) and σ ∈ (0, λ1) such that

f(t, u) ≤ (λ1 − σ)u, ∀0 ≤ u ≤ r, 0 ≤ t <∞,

so that

(Au)(t) ≤ (λ1 − σ)
∫ ∞

0

G(t, s)h(s)u(s) ds (3.18) Inequ-1

for all u ∈ Br ∩ P and t ∈ R+. We claim that

u 6= µAu, ∀u ∈ ∂Br ∩ P, 0 ≤ µ ≤ 1. (3.19) hom
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Suppose, to the contrary, there exist u1 ∈ ∂Br ∩ P and µ1 ∈ [0, 1] such that
u1 = µ1Au1. Then we have u1 ∈ P0 by Lemma 2.7 and

u1(t) ≤ (λ1 − σ)
∫ ∞

0

G(t, s)h(s)u1(s) ds, t ∈ R+

by (3.18). Multiply the above by ψ(t) and integrate over R+ and use (2.6) and
(2.7) to obtain ∫ ∞

0

ψ(t)u1(t) dt ≤ λ1 − σ

λ1

∫ ∞

0

ψ(t)u1(t) dt,

so that
∫∞
0
ψ(t)u1(t) dt = 0. Recalling u1 ∈ P0, we obtain u1 = 0, a contradiction

with u1 ∈ ∂Br ∩ P . As a result, (3.19) is true. Now Lemma 2.5 yields

i(A,Br ∩ P, P ) = 1. (3.20) index2-1

Combining (3.17) and (3.20) gives

i(A, (BR \Br) ∩ P, P ) = i(A,BR ∩ P, P )− i(A,Br ∩ P, P ) = −1. (3.21)

Consequently the operator A has at least one fixed point on (BR \ Br) ∩ P , and
hence (1.1) has at least one positive solution. The proof is completed. �

thm3 Theorem 3.3. Let (H1)-(H3) hold. Suppose that f(t, u) satisfies (3.1) and (3.11).
Moreover, f(t, u) is nondecreasing in u, and that there exists N > 0 such that

f(t,N) <
N

κ
, a.e. t ∈ R+, (3.22) nondecreasing

where κ :=
∫∞
0
G(s, s)h(s) ds > 0. Then (1.1) has at least two positive solutions.

Proof. The monotonicity of f implies that for all u ∈ BN ∩P and t ∈ R+, we have

(Au)(t) =
∫ ∞

0

G(t, s)h(s)f(s, u(s)) ds <
∫ ∞

0

G(s, s)h(s)
N

κ
ds = N, (3.23)

so that ‖Au‖ < ‖u‖ for all u ∈ ∂BN ∩ P . A consequence of this is

u 6= µAu,∀u ∈ ∂BN ∩ P, 0 ≤ µ ≤ 1.

Now Lemma 2.5 implies

i(A,BN ∩ P, P ) = 1. (3.24) index3-1

On the other hand, in view of (3.1) and (3.11), we may take R > N and r ∈ (0, N)
so that (3.6) and (3.17) hold (see the proofs of Theorems 3.1 and 3.2). Combining
(3.6), (3.17) and (3.24), we arrive at

i(A, (BR\BN ) ∩ P, P ) = 0− 1 = −1, i(A, (BN\Br) ∩ P, P ) = 1− 0 = 1.

Consequently the operator A has at least two fixed points, one on (BR\BN ) ∩ P
and the other on (BN\Br) ∩ P . Hence (1.1) has at least two positive solutions.
The proof is completed. �
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4. Examples

In this section, we provide four examples to illustrate applications of Theorems
3.1–3.3. Let us consider the boundary value problem

((1 + t2)u′(t))′ + t−1/2e−tf(t, u) = 0, 0 < t <∞,

u(0) = u(∞) = 0,
(4.1) example

where f ∈ C(R+ × R+,R+) satisfies (H3). Now we have p(t) = 1 + t2, h(t) =
t−1/2e−t, a = c = 1, b = d = 0,

G(t, s) =
2
π

{
(π

2 − arctan(t)) arctan(s), 0 ≤ s ≤ t <∞,

(π
2 − arctan(s)) arctan(t), 0 ≤ t ≤ s <∞,

and

γ(t) =
2
π

min
{π

2
− arctan(t), arctan(t)

}
, t ∈ R+.

Since ∫ ∞

0

dr
p(r)

=
π

2
<∞, κ =

∫ ∞

0

G(s, s)h(s) ds <
π3/2

8
<∞,

conditions (H1)-(H3) hold. By elementary calculus, we have

arctan(s) ≥ se−2s,
π

2
− arctan(s) ≥ se−2s, s ∈ R+.

The inequalities above, along with Gelfand’s theorem, enable us to derive the es-
timation 8π−3/2 < λ1 <

1372
√

7
15 π3/2, where λ1 denotes the first eigenvalue of the

eigenvalue problem associated with (4.1).

exa4.1 Example 4.1. Let f(t, u) := uα, t, u ∈ R+, where α ∈ (0, 1)∪ (1,∞). If α ∈ (0, 1),
then (3.1) and (3.2) are satisfied. If α ∈ (1,∞), then (3.11) and (3.12) are satisfied.
By Theorems 3.1 and 3.2, Equation (4.1) has at least one positive solution.

exa4.2 Example 4.2. Let

f(t, u) :=

{
2λ1u, 0 ≤ u ≤ 1,
λ1u
2 + 3λ1

2 , u ≥ 1.

Now (3.1) and (3.2) are satisfied. By Theorem 3.1, Equation (4.1) has at least one
positive solution.

exa4.3 Example 4.3. Let

f(t, u) :=

{
λ1u
2 , 0 ≤ u ≤ 1,

2λ1u− 3λ1
2 , u ≥ 1.

Now (3.11) and (3.12) are satisfied. By Theorem 3.2, Equation (4.1) has at least
one positive solution.

exa4.4 Example 4.4. Let f(t, u) := λ(ua + ub), where 0 < a < 1 < b, 0 < λ ≤ 4π−3/2.
Now (3.1), (3.11) and (3.22) are satisfied. By Theorem 3.3, Equation (4.1) has at
least two positive solutions.
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