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GRADIENT ESTIMATION OF A p-HARMONIC MAP

BEI WANG, LI MA

Abstract. This article presents Lp estimates for the gradient of p-harmonic
maps. Since the system satisfies a natural growth condition, it is difficult to

use standard elliptic estimates. We use spherical coordinates to convert the

system into another system with angle functions. The new system can be
estimate by the standard elliptic technique.

1. Results

Let G ⊂ Rn (n ∈ {2, 3}) be a bounded and simply connected domain with
smooth boundary ∂G. Denote Sn−1 = {x ∈ Rn : x2

1 + x2
2 + · · ·+ x2

n = 1}. Let g be
a smooth map from ∂G into Sn−1 satisfying deg(g, ∂G) = d = 0. Denote by {ei}n

i=1

an orthogonal basis of Rn. We are concerned with the estimate of the gradient of
p-harmonic maps on G, where p > 2.

We call u ∈ W 1,p(G,Sn−1) a p-harmonic map on G, if it is a weak solution of
(cf. [4])

−div |∇u|p−2∇u) = u|∇u|p. (1.1)

The Lp estimate of the gradient of the weak solutions of p-Laplace system is essential
for the better regularity (cf. [3, 4, 5, 6, 7, 11, 12]). Thus, in this paper we prove
the following theorem.

Theorem 1.1. If u is a p-harmonic map on G and u = g on ∂G, then there exists
a constant C > 0 which only depends on G, g, p, n, such that

‖∇u‖Lp(G) ≤ C.

Different from [12], it is not easy to estimate the weak solution since (1.1) satisfies
the natural growth condition. In [11], a sharp Gagliardo-Nirenberg inequality is
used for obtaining regularity of the W 2,p-solution. For the W 1,p weak solution, this
estimate can not be used.

To prove the main theorem, we should list some preliminaries.

Proposition 1.2. The p-harmonic map u on G satisfies∫
G

|∇u|p−2(u ∧∇u)∇ζdx = 0, ∀ζ ∈W 1,p
0 (G). (1.2)
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On the contrary, the function u ∈ W 1,p(G,Sn−1) satisfying (1.2) must be a p-
harmonic map on G.

Proof. For simplicity, we only calculate formally. Taking the wedge product (1.1)
with u, we have

−u ∧ div |∇u|p−2∇u) = 0.
Noting ∇u ∧∇u = 0, we have

−div |∇u|p−2u ∧∇u) = 0.

It is easy to see that it satisfies (1.2). On the contrary, if u ∈W 1,p(G,Sn−1) satisfies
(1.2), namely

−div |∇u|p−2u ∧∇u) = 0,
which is equivalent to

−u ∧ div |∇u|p−2∇u) = 0.
This means that there exists λ ∈ R such that

−div |∇u|p−2∇u) = λu.

Taking the inner product with u and noting |u| = 1, it is not difficult to deduce
that λ = |∇u|p a.e. in G. Thus, u is a p-harmonic map on G. �

Proposition 1.3. If n = 2 and u is a p-harmonic map on G, and u = g on ∂G,
then

‖∇u‖p
Lp(G) = min{

∫
G

|∇u|pdx, u ∈W 1,p(G,Sn−1), u|∂G = g}.

Proof. When n = 2, by virtue of g ∈ Sn−1 and deg(g, ∂G) = 0, we can write (cf.
[1, Eq. (7)])

g = cosφ0e1 + sinφ0e2.

Here φ0 ∈ C∞(∂G, [0, 2π]) is a single-valued function. According to [10, Proposition
2.4], we know that there exists a unique weak solution φ of the boundary value
problem

−div |∇φ|p−2∇φ) = 0, in G, (1.3)

φ|∂G = φ0. (1.4)

Set
u = cosφe1 + sinφe2. (1.5)

It is not difficult to verify by Proposition 1.2 that u is a weak solution of (1.1) with
u|∂G = g if and only if φ in (1.5) is a weak solution of (1.3) and (1.4). Therefore,
u in (1.5) is the unique weak solution.

In view of d = 0, the class W 1,p
g (G,Sn−1) = {v ∈ W 1,p(G,Sn−1), u|∂G = g} is

not empty. In fact, the smooth harmonic map with the boundary value g belongs
to this class. Consider the minimizing problem

min{
∫

G

|∇u|pdx, u ∈W 1,p
g (G,Sn−1)}.

Clearly, the minimizer exists, and it is also a p-harmonic map on G. In view of the
uniqueness, this minimizer must be u in (1.5). It is easy to see our conclusion. The
proof is complete. �

When n = 3, we can also convert (1.1) into the form (1.3).
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Proposition 1.4. Let n = 3 and u be a p-harmonic map on G. Then there exist
single-valued functions φ1(x) ∈ W 1,p(G, [0, π]) and φ2(x) ∈ W 1,p(G, [0, 2π]), such
that ∫

G

|∇u|p−2
[
(cosφ2∇φ1 − sinφ1 cosφ1 sinφ2∇φ2)e1

+ (sinφ2∇φ1 − sinφ1 cosφ1 cosφ2∇φ2)e2

+ sin2 φ1∇φ2e3]∇ζdx = 0, ∀ζ ∈W 1,p
0 (G).

(1.6)

Proof. Since G is a simply connected domain and |u| = 1, we have the formula of
3-dimension spherical coordinates,

u = cosφ1e1 + sinφ1 cosφ2e2 + sinφ1 sinφ2e3.

Here φj = dθ+ψj , j = 1, 2. Both ψ1 ∈W 1,p(G, [0, π]) and ψ2 ∈W 1,p(G, [0, 2π]) are
single-valued functions (cf. [2, 6]). In view of d = 0, φj = ψj must be single-valued.
By calculation,

∇u = − sinφ1∇φ1e1 + (cosφ1 cosφ2∇φ1 − sinφ1 sinφ2∇φ2)e2
+ (cosφ1 sinφ2∇φ1 + sinφ1 cosφ2∇φ2)e3;

|∇u|2 = |∇φ1|2 + sin2 φ1|∇φ2|2;
u ∧∇u = sin2 φ1∇φ2e1 − (sinφ2∇φ1 + sinφ1 cosφ1 cosφ2∇φ2)e2

+ (cosφ2∇φ1 − sinφ1 cosφ1 sinφ2∇φ2)e3.

(1.7)

Inserting this result into (1.2) yields our conclusion. �

Different from the single equation (1.3), Equation (1.6) is a system when n = 3.
The uniqueness is not true anymore. The Lp estimate is more complicate than the
case n = 2. We shall adopt the idea in [8] to establish this estimate.

Proposition 1.5. Let B(y0, 4R) ⊂⊂ G, then for any ξ ∈ C∞0 (B(y0, 3R)), there
holds ∫

B(y0,3R)

|∇u|p−2 sin2 φ1|∇φ2|2ξpdy ≤ C
( ∫

B(y0,3R)

|∇u|pξpdy
)1− 2

p

.

Proof. The equality corresponding with the vector e1 in the integral system (1.6)
is ∫

B(y0,3R)

|∇u|p−2 sin2 φ1∇φ2∇ζdy = 0, ∀ζ ∈W 1,p
0 (B(y0, 3R)).

Letting ζ = φ2ξ
p where ξ ∈ C∞0 (B(y0, 3R)), we have∫

B(y0,3R)

|∇u|p−2 sin2 φ1|∇φ2|2ξpdy

≤ |
∫

B(y0,3R)

|∇u|p−2 sin2 φ1(ξp−1φ2)∇φ2∇ξdy|.
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Using Hölder’s inequality, we obtain that, for any δ ∈ (0, 1),∫
B(y0,3R)

|∇u|p−2 sin2 φ1|∇φ2|2ξpdy

≤ δ

∫
B(y0,3R)

|∇u|p−2 sin2 φ1|∇φ2|2ξpdy

+ C(δ)
∫

B(y0,3R)

|∇u|p−2 sin2 φ1|∇ξ|2ξp−2φ2
2dy.

Letting δ be sufficiently small, we obtain∫
B(y0,3R)

ξp|∇u|p−2 sin2 φ1|∇φ2|2dy ≤ C

∫
B(y0,3R)

|∇u|p−2ξp−2dy

≤ C
( ∫

B(y0,3R)

|∇u|pξpdy
)1− 2

p

.

The proof is complete. �

Proposition 1.6. Let B(y0, 4R) ⊂⊂ G, then for any ξ ∈ C∞0 (B(y0, 3R)), there
holds ∫

B(y0,3R)

|∇u|p−2|∇φ1|2ξpdy ≤ C
( ∫

B(y0,3R)

|∇u|pξpdy
)1− 2

p

.

Proof. The equalities corresponding with e2 and e3 in (1.6) are∫
B(y0,3R)

|∇u|p−2(sinφ2∇φ1 − sinφ1 cosφ1 cosφ2∇φ2)∇ζdy = 0,∫
B(y0,3R)

|∇u|p−2(cosφ2∇φ1 + sinφ1 cosφ1 sinφ2∇φ2)∇ζdy = 0.

Take ζ = φ1ξ
p sinφ2 and ζ = φ1ξ

p cosφ2 in two equalities above, respectively.
Then, adding one to the other, we obtain∫

B(y0,3R)

|∇u|p−2|∇φ1|2ξpdy ≤
[
|
∫

B(y0,3R)

|∇u|p−2φ1∇φ1∇ξpdy|

+ 2|
∫

B(y0,3R)

|∇u|p−2 sinφ1(∇φ1∇φ2)ξpdy|

+ 2|
∫

B(y0,3R)

|∇u|p−2φ1 sinφ1∇φ2∇ξpdy|
]

+ 2|
∫

B(y0,3R)

|∇u|p−2φ1 sinφ1 cosφ1|∇φ2|2ξpdy|

:= J1 + J2.

(1.8)
Similar to the proof of Proposition 1.5, by applying Hölder’s inequality, we also
have

J1 ≤ δ

∫
B(y0,3R)

|∇u|p−2|∇φ1|2ξpdy + C(
∫

B(y0,3R)

|∇u|pξpdy)1−2/p. (1.9)

To estimate J2, we firstly consider φ1 ∈ [0, π/2]. Since limφ1→0
sin φ1

φ1
= 1, we

can find δ0 > 0 such that as 0 < φ1 < δ0, there holds 1− sin φ1
φ1

≤ 1/2 which means
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φ1 ≤ 2 sinφ1. When δ0 ≤ φ1 ≤ π/2, there holds sinφ1 ≥ sin δ0 > 0. Thus, by
Proposition 1.5,

J2 ≤ 2
∫

B(y0,3R)∩[φ1<δ0]

|∇u|p−2 sin2 φ1|∇φ2|2ξpdy

+
π

2 sin δ0

∫
B(y0,3R)∩[δ0≤φ1≤π/2]

|∇u|p−2 sin2 φ1|∇φ2|2ξpdy

≤ C(
∫

B(y0,3R)

|∇u|pξpdy)1−2/p.

When φ1 ∈ [π/2, π], we can replace φ1 in the test functions ζ by π−φ1. we can also
deduce the same result. Substituting this results and (1.9) into (1.8) and choosing
δ sufficiently small, we can complete the proof. �

Proof of Theorem 1.1. Interior estimate. Combining Propositions 1.5 and 1.6, and
noting (1.7), we can derive∫

B(y0,3R)

|∇u|pξpdy ≤ C
( ∫

B(y0,3R)

|∇u|pξpdy
)1−2/p

.

Using Young’s inequality, and letting ξ = 1 on B(x, 2R), we can deduce that∫
B(y0,2R)

|∇u|pdy ≤ C. (1.10)

The interior estimate is obtained.
In the following, we shall investigate the estimation near the boundary. Let

y0 ∈ ∂G. Since g, G are smooth and d = 0, we can find single-valued functions
Φ1 ∈ C∞(∂G, [0, π]) and Φ2 ∈ C∞(∂G, [0, 2π]), such that

g = cos Φ1e1 + sinΦ1 cos Φ2e2 + sinΦ1 sinΦ2e3.

Since ∂G is smooth, Ψi is extended into G (a neighborhood of ∂G). Replacing
φi by φi − Φi in the test function ζ as we deal with the interior estimation just
now, and arguing as above, we can also deduce that

∫
G∩B(y0,R)

|∇u|pdy ≤ C, where
C > 0 only depends on n,G,R, p and g. Combining this with (10), we complete
the proof. �

Remark. Similar to the argument of n = 3, we can generalize Theorem 1.1 to
the case n ≥ 4. In fact, we can write a Sn−1-valued map w under the spherical
coordinates as

w = cos θ1e1 + sin θ1 cos θ2e2 + sin θ1 sin θ2 cos θ3e3 + . . .

+ sin θ1 . . . sin θn−2 cos θn−1en−1 + sin θ1 . . . sin θn−2 sin θn−1en,

where (θ1, . . . , θn−1) ∈ [0, π]× · · · × [0, π]× [0, 2π], and each θi ∈ W 1,p(G). Hence,
we have a result as (1.7),

|∇w|2 = |∇θ1|2 + sin2 θ1|∇θ2|2 + sin2 θ1 sin2 θ2|∇θ3|2 + . . .

+ sin2 θ1 . . . sin2 θn−2|∇θn−1|2.
(1.11)

Thus, (1.2) becomes a system on θi(i = 1, 2, . . . , n−1), which contains n(n−1)
2 single

equations. Using the idea in [9, §2], we also estimate Lp/2-norm of each term of the
right hand side of (1.11) by choosing some equations from the system properly.
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