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MULTIPLICITY RESULTS FOR p-SUBLINEAR p-LAPLACIAN
PROBLEMS INVOLVING INDEFINITE EIGENVALUE
PROBLEMS VIA MORSE THEORY

KANISHKA PERERA, RAVI P. AGARWAL, DONAL O’REGAN

ABSTRACT. We establish some multiplicity results for a class of p-sublinear p-
Laplacian problems involving indefinite eigenvalue problems using Morse the-
ory.

1. INTRODUCTION

The purpose of this note is to establish some multiplicity results for a class
of p-sublinear p-Laplacian problems involving indefinite eigenvalue problems using
Morse theory.

As motivation, we begin by recalling a well-known result for the semilinear elliptic
boundary value problem

Au = f(z,u) inQ (L.1)
u=0 on 0N

where 2 is a bounded domain in R", n > 1, f is a Carathéodory function on Q x R
satisfying the sublinear growth condition

[flz ) < C (It~ +1) (1.2)

for some r € (1,2), and C denotes a generic positive constant. Weak solutions of
(T.1)) coincide with the critical points of the C'-functional

@(u)z/g%|Vu|27F(z,u), u € HJ(Q)

where F(z,t) = fos f(x,s)ds is the primitive of f. By , ® is bounded from
below and satisfies the (PS) condition.
Assume that
lim fz.t)
t—0 t
which implies f(z,0) = 0 a.e. and hence has the trivial solution u(z) = 0. Let
A1 < A2 < ... denote the Dirichlet eigenvalues of the negative Laplacian on Q. If
A > A; and is not an eigenvalue, then has at least two nontrivial solutions.

=), uniformly a.e., (1.3)
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Indeed, if Ay < A < Agy1, then the (cohomological) critical groups of ® at zero are
given by

C(P,0) = dg1 G
where G is the coefficient group and .. denotes the Kronecker delta (see, e.g.,
Chang [3] or Mawhin and Willem [I0]), so ® has two nontrivial critical points by
the following “three critical points theorem” of Chang [2] and Liu and Li [9].

Proposition 1.1. Let ® be a C'-functional defined on a Banach space. If ® is
bounded from below, satisfies (PS), and C*(®,0) # 0 for some k > 1, then ® has
two nontrivial critical points.

Remark 1.2. Li and Willem [6] used a local linking to obtain a similar result when
A is an eigenvalue and f satisfies a suitable sign condition near zero.

The above result can be extended to the corresponding p-sublinear p-Laplacian
problem
—Apu= f(z,u) inQ

u=0 on 0N (1.4)

where Apu = div (|Vu|1”*2 Vu) is the p-Laplacian of u, p € (1,00), and f now
satisfies (1.2)) with r € (1, p). Then the associated variational functional

1
B0) = [ VP~ Fau), ue W3
Q
is bounded from below and satisfies (PS). Assume that

flzt) :
e A, uniformly a.e. (1.5)

The associated quasilinear eigenvalue problem
~Apu=Auf?u in Q
u=0 on 0N

is far more complicated. It is known that the first eigenvalue \; is positive, simple,
and has an associated eigenfunction ¢; that is positive in Q (see Anane [I] and
Lindqvist [7), 8]). Moreover, A; is isolated in the spectrum o(—A,), so the second
eigenvalue Ao = inf o(—A,)N (A1, 00) is well-defined. In the ODE case n = 1, where
Q) is an interval, the spectrum consists of a sequence of simple eigenvalues A\ o,
and the eigenfunction ¢, associated with A has exactly k — 1 interior zeroes (see,
e.g., Drabek []). In the PDE case n > 2, an increasing and unbounded sequence
of eigenvalues can be constructed using a standard minimax scheme involving the
Krasnoselskii’s genus, but it is not known whether this gives a complete list of the
eigenvalues.

Perera [II] used a minimax scheme involving the Zs-cohomological index of
Fadell and Rabinowitz [5] to construct a new sequence of eigenvalues \p /' o0
such that if Ay < A < Agyq1 in , then

C*(®,0)#0

and hence ® has two nontrivial critical points by Proposition Thus, problem
(1.4) has at least two nontrivial solutions when A > A; is not an eigenvalue from
this particular sequence.
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Note that (1.5)) implies ¢ f(x,t) > 0 for t # 0 near zero when A > 0. Naturally we
may ask whether these results hold without such a sign condition. More specifically,

can we replace (1.5) with
f(z,t)

10 [Hr2t

= AV(z), uniformly a.e. (1.6)

and let V' change sign?
This leads us to the indefinite eigenvalue problem

~Apu=AV(z) [ulf2u inQ

1.7
u=0 on 0f. (L.7)
We assume that the weight function V' € L?(Q) for some
>n/p, p<n
s (1.8)

=1, p>n.

Then the smallest positive and largest negative eigenvalues of (1.7]) are given by

A= inf fQ |Vu| Al = sup fQ \Vu\p
1= 1=
wewir @) Jo V(@) JulP’ weEWLP(Q) Jo V(@) |ulp’
Jo V(@) ul">0 Jo, V(@) [ulP <0

respectively. Noting that ((1.6) implies
A
F(z,t) = =V(x)[t|’ + o(]t|’) ast— 0, uniformly a.e., (1.9)
p

we shall prove the following result.

Theorem 1.3. Assume (1.2) with r € (1,p), V € L5(Q ) with s satisfying (1.8)),
and (L.9). If X ¢ (AT, A\]) and is not an eigenvalue of (L.7)), then problem (1.4)

has at least two nontrivial solutions.

Since A\] = —oo when V' > 0 a.e. and )\f = 400 when V < 0 a.e., this theorem
applies in all possible cases:
(i) V changes sign: --- < A] <0<\ <...,
(ii) V>0ae and 20: —co =\ <0<\ <...,
(ii)) V<0ae. and Z0: --- < A\] <0< A = +oo,
(iv) V =0: —0o = A\] < A = 400 (in this case the theorem is vacuously true).
Our proof will be based on an abstract framework for indefinite eigenvalue prob-
lems introduced in Perera, Agarwal, and O’Regan [12], which we will recall in the
next section.

2. PRELIMINARIES

In this section we recall an abstract framework for indefinite eigenvalue problems
introduced in Perera, Agarwal, and O’Regan [12].
Let (W, ]| -||) be a real reflexive Banach space with the dual (W*,|| - ||) and the
duality pairing (-,-). We consider the nonlinear eigenvalue problem
Apu=AByu (2.1)

in W*, where 4, € C(W,W*) is
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(A1) (p— 1)-homogeneous and odd for some p € (1, c0):
Ap(an) = [aP2aAd,u YueW, a€R,
(A2) uniformly positive: J¢g > 0 such that
(Apu,u) > co|lul|P YueW,
(A3) a potential operator: there is a functional I, € C*(W, R), called a potential
for A,, such that
L(u)=Ayu YueW,
(A4) of type (S): for any sequence {u;} C W,
uj =~ u, (Apuju;—u)—0 = u; —u,
and B, € C(W,W*) is
(B1) (p — 1)-homogeneous and odd,
(B2) a compact potential operator.

The following proposition is often useful for verifying (A4).
Proposition 2.1 ([12, Proposition 1.0.3]). If W is uniformly convex and
(Apu,o) < rllulPHoll,  (Apu,u) =rulf Yu,oeW
for some r > 0, then (A4) holds.

By [I2, Proposition 1.0.2], the potentials I, and J, of A, and B, satisfying
I,(0) = 0 = J,(0) are given by

I(u) = }) (Apu,u),  Jyp(u) = % (B u,u),

respectively, and are p-homogeneous and even. Let
M={uecW:ILu) =1}, M*={uecM:J,(u) =0}

Then M C W\ {0} is a bounded complete symmetric C'-Finsler manifold radially
homeomorphic to the unit sphere in W, M¥* are symmetric open submanifolds of
M, and the positive (resp. negative) eigenvalues of coincide with the critical
values of the even C'-functionals

U (u) =

, uwe M*
Jp(u)
(see [12 Sections 9.1 and 9.2]).
Denote by F* the classes of symmetric subsets of M* and by (M) the Fadell-
Rabinowitz cohomological index of M € F*. Then
A= inf sup UT(u), 1<k<i(M™),
MeFt ueM
i(M)>k
A, = sup inf U (u), 1<k<i(M7)
MeF— ueM
i(M)>k

define nondecreasing (resp. nonincreasing) sequences of positive (resp. negative)
eigenvalues of that are unbounded when i(M*) = oo (see [12, Theorems 9.1.2
and 9.2.1]). When M* = (), we set A\i = +oo for convenience.

Now we consider the operator equation

Apu=F'(u) (2.2)
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where F' € CY(W,R) with F’ compact, whose solutions coincide with the critical
points of the functional

®(u) =1Ip(u) — F(u), uweW.
The following proposition is useful for verifying the (PS) condition for ®.

Proposition 2.2 ([12] Lemma 3.1.3]). Every bounded (PS) sequence of ® has a
convergent subsequence.

Suppose that v = 0 is a solution of (2.2)) and the asymptotic behavior of F' near
zero is given by
F(u) = XJp(u) + o(||ul”) asu—0. (2.3)

Proposition 2.3 ([I2, Proposition 9.4.1]). Assume (A1) - (A4), (B1), (B2), and
(2.3) hold, F’ is compact, and zero is an isolated critical point of ®.

(1) If AT <A< AT, then CU(®,0) ~ 640 Zo.
(i) If Apyy <A< A, or A < A< AL, then C*(®,0) # 0.
3. PROOF OF THEOREM

First let us verify that our problem fits into the abstract framework of the pre-
vious section. Let W = W,"*(Q),

(Apu,v) = / |Vu|1’*2 Vu-Vv, (Bpu,v)= / V(x) |u|p72 w,
Q Q
and
F(u) = / F(z,u).
Q

Then (Al) and (B1) are clear, (A, u,u) = ||u||? in (A2), and (A3) and (B2) hold
with

I,(u) = % /Q Vul?, Jy(u) = }D / V() [ul?,

respectively. By the Holder inequality,

-1 1/p
(pu) < ([ 9ur) ([ wep) " = ut ol

so (A4) follows from Proposition 2.1} By (L.2)) and (L.9), (2:3) also holds.

Since A ¢ (A7, AT) and is not an eigenvalue of (L.7)), it now follows from Propo-
sitionthat Ck(®,0) # 0 for some k > 1. By (1.2),
|[F(z,t)] < C(t]" + 1),
so by the Sobolev imbedding,

1
®(u) = Zull” = C(ful"+1) vue Wy ().

Since p > r, it follows that ® is bounded from below and coercive. Then every (PS)
sequence of ® is bounded and hence ® satisfies the (PS) condition by Proposition
Thus, ® has two nontrivial critical points by Proposition [I.1

Remark 3.1. Note that it suffices to assume A ¢ (A, \]) is not an eigenvalue
from the particular sequences (/\f)
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