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SPECIAL SOLUTIONS OF THE RICCATI EQUATION WITH
APPLICATIONS TO THE GROSS-PITAEVSKII NONLINEAR

PDE

ANAS AL BASTAMI, MILIVOJ R. BELIĆ, NIKOLA Z. PETROVIĆ

Abstract. A method for finding solutions of the Riccati differential equation

y′ = P (x) + Q(x)y + R(x)y2 is introduced. Provided that certain relations

exist between the coefficient P (x), Q(x) and R(x), the above equation can
be solved in closed form. We determine the required relations and find the

general solutions to the aforementioned equation. The method is then applied

to the Riccati equation arising in the solution of the multidimensional Gross-
Pitaevskii equation of Bose-Einstein condensates by the F-expansion and the

balance principle techniques.

1. Introduction

The Riccati equation (RE), named after the Italian mathematician Jacopo Fran-
cesco Riccati [10], is a basic first-order nonlinear ordinary differential equation
(ODE) that arises in different fields of mathematics and physics [15]. It has the
form

y′ = P (x) +Q(x)y +R(x)y2, (1.1)

which can be considered as the lowest order nonlinear approximation to the deriv-
ative of a function in terms of the function itself. It is assumed that y, P , Q and
R are real functions of the real argument x. It is well known that solutions to the
general Riccati equation are not available, and only special cases can be treated
[5, 3, 14, 7, 23, 12]. Even though the equation is nonlinear, similar to the second
order inhomogeneous linear ODEs one needs only a particular solution to find the
general solution.

In a standard manner Riccati equation can be reduced to a second-order linear
ODE [10, 5] or to a Schrödinger equation (SE) of quantum mechanics [16]. In fact,
Riccati equation naturally arises in many fields of quantum mechanics; in partic-
ular, in quantum chemistry [4], the Wentzel-Kramers-Brillouin approximation [17]
and SUSY theories [8]. Recently, methods for solving the Gross-Pitaevskii equation
(GPE) arising in Bose-Einstein condensates (BECs) [1, 20] based on Riccati equa-
tion were introduced. Our objective is to find new solutions of Riccati equation by
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utilizing relations between the coefficient functions P (x), Q(x) and R(x) for which
the above equation can be solved in closed form.

It is well known that any equation of the Riccati type can always be reduced to
the second order linear ODE

u′′ −
[
Q(x) +

R′(x)
R(x)

]
u′ + P (x)R(x)u = 0 (1.2)

by a substitution y = −u′/(uR). It is also known that if one can find a particular
solution yp to the original equation, then the general solution can be written as
y = yp + 1/w [18], where w is the general solution of an associated linear ODE

w′ + [Q(x) + 2R(x)yp]w +R(x) = 0 (1.3)

which does not contain P (x). Solving this equation we get [13]: w = w0e
−φ(x) −

e−φ(x)
∫ x

x0
R(ξ)eφ(ξ) dξ, where φ(x) =

∫ x

x0
[Q(ξ)+2R(ξ)yp] dξ. It is clearly seen from

the relation above that w0 = 1
y0−yp0

. The general solution is therefore given by
[13]:

y = yp + eφ(x)
[ 1
y0 − yp0

−
∫ x

x0

R(ξ)eφ(ξ) dξ
]−1

. (1.4)

This article contains four sections. Section 2 introduces the solution method,
Sec. 3 presents an application and Sec. 4 brings a conclusion.

2. Solution method

Equation (1.1) cannot be solved in closed form for arbitrary functions P (x),
Q(x) and R(x). However, if certain relations exist between these functions, then
the above equation can be transformed into a second order linear ODE, which can
be easily solved in two cases: If it contains constant coefficients, or if it contains
certain coefficient functions.

For the sake of making our calculations clearer, we make the following two sub-
stitutions: a(x) = −(Q+ R′/R) and b(x) = P (x)R(x). Now the above ODE for u
becomes

d2u

dx2
+ a(x)

du

dx
+ b(x)u = 0. (2.1)

Consider an arbitrary function of x, z ≡ f(x), which we choose to be a new indepen-
dent variable. The substitution looks arbitrary, but it will be made more specific
in a moment. We compute the first and second derivatives of u with respect to x,
but now in terms of the new independent variable z:

du

dx
=
du

dz

dz

dx
(2.2)

d2u

dx2
=
d2z

dx2

du

dz
+

(dz
dx

)2 d2u

dz2
. (2.3)

We plug the last results into the differential equation (2.1), to get:(dz
dx

)2 d2u

dz2
+

[d2z

dx2
+ a(x)

dz

dx

]du
dz

+ b(x)u = 0. (2.4)
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Finally, dividing by
(

dz
dx

)2, we obtain [19]:

d2u

dz2
+

[ d2z
dx2 + a(x) dz

dx(
dz
dx

)2

]du
dz

+
[ b(x)(

dz
dx

)2

]
u = 0 (2.5)

≡ d2u

dz2
+ 2A

du

dz
+Bu = 0, (2.6)

provided dz/dx is not equal to 0. The obtained equation can easily be solved in
closed form if A and B are either constants [19] or if they are some special functions
for which the closed-form solutions to (2.6) are known. In this paper we consider
only the two special cases, namely when A and B > 0 are constants, or when A = 0
and B is an arbitrary function B(x).

If b(x) is positive, by considering the coefficient of u we define z to be the
following function:

z ≡ z0 + s

∫ x

x0

√
b(ξ)
B

dξ, (2.7)

where s = ±1. The requirement that b(x) is positive is equivalent to the condition
that the product P (x)R(x) is positive. To simplify bookkeeping, let c = b/B; then
we have the following relations:

dz

dx
= sc1/2, (2.8)

d2z

dx2
=

c′

2sc−1/2
. (2.9)

From (2.8) it is clear that dz/dx cannot be equal to 0. Now we compare the
coefficients of du/dz and use relations (2.8) and (2.9) to get:

c′

2sc1/2
+ asc1/2 − 2Ac = 0, (2.10)

or ( b
B

)′ + 2a
( b
B

)
− 4As

( b
B

)3/2 = 0. (2.11)

At this point it is more convenient to consider the two cases separately.

2.1. Case 1: A and B are constants. If (2.6) has constant coefficients 2A and
B, then it is easily solvable in closed form. This means:

b′ + 2ab− 4sA√
B
b3/2 = 0 (2.12)

or:
b′(x) + 2a(x)b(x)

[b(x)]3/2
=

4sA√
B
. (2.13)

Substituting back the original expressions for a(x) and b(x), we get the final result:

[P (x)R(x)]′ − 2 [Q(x) +R′(x)/R(x)]P (x)R(x)
[P (x)R(x)]3/2

=
4sA√
B
. (2.14)

At this point a few comments are in order. First, note that we are stating that if
the condition (2.14) is satisfied, then the general solution can be found. However,
when the condition is not satisfied, this does not mean that the general solution
cannot be found. In fact, most of the known special cases of Riccati equation (with
known solutions) [12] do not satisfy the relation obtained.
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Second, one may object that in place of the original nonlinear Riccati equation
we obtained another nonlinear equation for b(x), which might be equally difficult
to solve. Luckily, this is not the case; (2.12) has a constant coefficient in front of
the nonlinear term (which is also a variable parameter at our will) and hence is
more manageable. It often allows easy solutions, as we display below, for which
one can find nontrivial solutions of the original Riccati equation.

Now we proceed to solve (2.6). The general solution is given by:

u(x) = c1e
λ1z + c2e

λ2z, (2.15)

where z is the function defined in (2.7), c1 and c2 are some initial values, and λ1

and λ2 are the roots of the characteristic polynomial λ2 + 2Aλ+B = 0, given by:

λ1,2 = −A±
√
A2 −B. (2.16)

Hence, we assume that A2 ≥ B > 0, so that both lambdas are real and negative.
This condition is not necessary for the solution procedure, but is convenient for the
applications of solutions, which require real functions. We need only a particular
solution of (2.6), so we consider only up = eλz, where λ is any of the roots to the
polynomial.

From the substitution done in (1.2), namely y = −u′/[uR(x)], we find the par-
ticular solution to be:

yp = − sλ√
B

√
P (x)
R(x)

(2.17)

Finally, we plug yp into the expression for the general solution of Riccati equation,
to find:

y = − sλ√
B

√
P (x)
R(x)

+ eφ(x)
[ 1

y0 + sλ√
B

√
P (0)
R(0)

−
∫ x

x0

R(ξ)eφ(ξ) dξ
]−1

(2.18)

Note that we have substituted yp0 by its value. To recapitulate, here A and B
are two arbitrary constants satisfying A2 ≥ B > 0, λ is one of the roots of the
characteristic polynomial, y0 is the initial condition for y, and

φ(x) =
∫ x

x0

[
Q(ξ)− 2sλ√

B

√
P (ξ)R(ξ)

]
dξ (2.19)

is the integrating exponent. Below we apply this general result to some specific
examples.

2.2. Case 2: A = 0 and B = B(x). When A = 0, (2.10) reduces to the simple
equation c′ = −2ac. Solving for c, and remembering that c = b/B, we get the
simple relation

b

B
=

( b

B

)
0
exp

(
− 2

∫ x

x0

a dx
)
, (2.20)

where a(x) and b(x) are given by the original Riccati equation, and B(x) is still an
arbitrary function. Note that (2.6) now becomes

d2u

dz2
+B(z)u = 0, (2.21)
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where z is given by (2.7). When B(z) is chosen as B(z) = B0 +B1(z), then the last
equation becomes equivalent to the Schrödinger equation of quantum mechanics,
which is a linear second order differential equation of the form:

ψ′′ +
2m
~2

(E − V )ψ = 0. (2.22)

This is an equation for the wave function ψ = u(z) of a particle of mass m moving
in a potential V = −~2B1(z)/2m with an energy eigenvalue E = ~2B0/2m [9].
There are many specific potentials V for which the solutions ψn and the energies
En in the above equation are known. Here n denotes some set of quantum numbers.
Therefore, one can choose B(z) such that the solutions un(z) can be found. If un(z)
(and hence un(x)) are known, then the solutions yn to Riccati equation can be easily
written down from the substitution yn(x) = −u′n/(unR) mentioned above. This in
fact gives rise to various solutions of the various special cases of Riccati equation.

3. Application

In [11] we considered the generalized GPE in (3+1)D for the BEC wave function
u(x, y, z, t), with distributed time-dependent coefficients [1, 20, 2]:

i∂tu+
β(t)
2

∆u+ χ(t)|u|2u+ α(t)r2u = iγ(t)u. (3.1)

Here t is time, ∆ = ∂2
x + ∂2

y + ∂2
z is the 3D Laplacian, r =

√
x2 + y2 + z2 is the

position coordinate, and α(t) stands for the strength of the quadratic potential as
a function of time. The functions β, χ and γ stand for the diffraction, nonlinearity
and gain/loss coefficients, respectively.

According to the F-expansion and the balance principle techniques [22], in [11]
we sought the solution in the form:

u(x, y, z, t) =M(x, y, z, t) exp [iP(x, y, z, t)], (3.2)

where the magnitude M(x, y, z, t) and the phase P(x, y, z, t) are given by

M(x, y, z, t) = f(t)F (θ) + g(t)F−1(θ), (3.3)

θ = k(t)x+ l(t)y +m(t)z + ω(t), (3.4)

P(x, y, z, t) = a(t)r2 + b(t)(x+ y + z) + e(t). (3.5)

Here f , g, k, l, m, ω, a, b, e are parameter functions to be determined, and F is one
of the Jacobi elliptic functions. The functions a(t) and b(t) should not be confused
with the functions a(x) and b(x) used before. Of all the parameters, by far the
most important is the chirp function a(t), because all other parameters, as well as
the general solution of GPE, can be expressed in terms of a. On the other hand,
the equation for the determination of a is a Riccati equation of the following type
[11]:

da

dt
+ 2β(t)a2 − α(t) = 0. (3.6)

To this equation we apply the method developed in this paper. We take A and B
to be constant here.

Put in the form of the original Riccati equation, the coefficients are:

P (t) = α(t), Q(t) = 0, R(t) = −2β(t). (3.7)
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We write down relation (2.14) between α and β for which (3.6) is solvable in closed
form:

αβ′ − α′β
(−αβ)3/2

=
4
√

2sA√
B

. (3.8)

The prime is now the derivative with respect to t. Equation (3.8) can be manipu-
lated to become a simple differential equation for −α/β:(

− α
β

)′(
− α

β

)3/2
β

=
4
√

2sA√
B

. (3.9)

Solving this equation, one finds:√
−β
α

=
√
−β0

α0
− 2
√

2sA√
B

∫ t

0

β dt. (3.10)

Now one can write down the solution for a(t) from (2.18), provided the above
condition is satisfied:

a(t) = − sλ√
B

√
− α(t)

2β(t)
+ eφ(t)

[ 1

a0 + sλ√
B

√
− α0

2β0

+ 2
∫ t

0

β(τ)eφ(τ) dτ
]−1

, (3.11)

where φ(t) = −2
√

2sλ
∫ t

0

√
−α(τ)β(τ) dτ/

√
B. Note that the − sign in the square

root indicates that α and β have to be of the opposite signs, which is consistent
with the requirement that the original function b is positive. Hence, as long as the
ratio of the diffraction coefficient to the strength of the parabolic potential can be
made to satisfy (3.9), one can write down the exact solutions to GPE. It should
be mentioned that these functions are the material parameters in BECs that are
accessible to experimental manipulation.

Our solution method for the GPE requires that β be proportional to χ, and
χ in turn be proportional to the s-wave scattering length [21]. To validate our
proposed solution method, we present a couple of examples in which β, and hence
the scattering length, are given by some representative functions of time. In all the
examples we determine the corresponding chirp functions a(t), from which one can
write down the exact solutions of the GPEs in question [11]. To avoid singularities
that are likely to appear in α(t) and a(t) we are choosing s to be −1. Note that
the appearance of singularities is not detrimental to our method or to the theory
of BECs based on GPE, because that model is known to be valid only on a limited
time interval.

3.1. Example 1: β = 1
2 (e−δt + 1). We consider first the case when β is an expo-

nential function of time, β(t) = 1
2 (e−δt + 1), where δ is some arbitrary parameter.

This function describes a smooth change in β(t) from 1 to 1/2. First, (3.10) is
solved for α, to obtain:

α(t) = − 1 + e−δt

2
(
1 +

√
2(1−e−δt+δt)

δ

)2
(3.12)

Then one finds φ:

φ(t) = δt+ ln
∣∣ δ

−
√

2 + eδt
(√

2 + δ +
√

2δt
) ∣∣. (3.13)
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Taking α0 = −1, A = B = 1, and performing the calculations, we obtain the
following solution for a:

a(t) =
−δ

2− 2e−δt +
√

2δ + 2tδ
− δ

√
2eδt[

−
√

2 + eδt
(√

2 + δ +
√

2tδ
)]
ζ(t)

(3.14)

where

ζ(t) = δt+ ln
∣∣ δ

−
√

2 + etδ(
√

2 + δ +
√

2tδ)

∣∣− 2
1 +

√
2a0

.

Although this solution looks complicated, it allows simple expressions in the limit
δ → 0, when β becomes constant. Figure 1 presents some representative cases of α
and a functions for different values of δ.

Figure 1. Graphs of (a): α(t), (b): a(t) for a0 = 0, and (c): a(t)
for a0 = 1, for δ = 0.01, 0.1, 1, 10 (top to bottom).

3.2. Example 2: β =
∑N

n=0 βnt
n. Next, we consider the case when β is some

power series of the form
∑N

n=0 βnt
n, where β0 6= 0. We go through the same

procedure and solve (3.10) for α, to get:

α(t) = −
∑N

n=0 βnt
n(

1 + 2
√

2
∑N

n=0 βn
tn+1

n+1

)2 . (3.15)

Then we find φ to be:

φ(t) = ln
1∣∣1 + 2

√
2

∑N
n=0 βn

tn+1

n+1

∣∣ . (3.16)

Again, taking α0 = −1, A = B = 1, and performing the calculations, we arrive at
the following closed-form solution:

a(t) =
2
√

2a0 − (a0

√
2 + 1) ln

∣∣1 + 2
√

2
∑N

n=0 βn
tn+1

n+1

∣∣(
1 + 2

√
2

∑N
n=0 βn

tn+1

n+1

)[
2
√

2 + (2a0 +
√

2) ln
∣∣∣1 + 2

√
2

∑N
n=0 βn

tn+1

n+1

∣∣∣ ] .
(3.17)

These solutions for α and a are plotted in Fig. 2. Note that by choosing different
parameters βn and letting N → ∞ one can obtain closed-form expressions for
different functions β(t). Figure 3 presents the case with β = cos(Ωt).
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Figure 2. Same as Fig. 1. (a) α(t), (b) a(t) for a0 = 0, and (c)
a(t) for a0 = 1. Parameters: N = 0, 1, 2, 3, 4 (top to bottom at
t = 0.5 for α; bottom to top at t = 3 for a), βn = 1.

Figure 3. Same as Fig. 2, but for β(t) = cos(Ωt). (a) α(t), (b)
a(t) for a0 = 0, and (c) a(t) for a0 = 1. Here Ω = 6, 7, 8, 9, 10;
Curves with higher peaks correspond to lower values of Ω.

3.3. Example 3: β = β̃
(
1 − D

B1t−B0

)
. Finally, we consider the case when β is of

the form shown above. This form is dictated by the dependance of the scatter-
ing length on the magnetic field near the Feshbach resonance of cold BEC atoms
[21]. The magnetic field B(t) = B1t (again, not to be confused with the function
B(x) from the solution procedure) is assumed to be linearly ramped in time near
the resonance field B0. The parameter D stands for the width of the resonance.
Such a dependence is found relevant not only on theoretical grounds [21] but most
importantly experimentally [6].

The closed-form solution is again readily obtained; however, this time it includes
integrals that cannot be evaluated in terms of elementary functions. The results
for α, φ, and a are as follows:

α(t) = −β̃
1− D

B1t−B0[
1− 2

√
2β̃t+ 2

√
2β̃D

B1
ln

∣∣B1t−B0
B0

∣∣]2 , (3.18)

φ(t) = 2
√

2 β̃
∫ t

0

1− D
B1τ−B0

1− 2
√

2β̃τ + 2
√

2β̃D
B1

ln
∣∣B1τ−B0

B0

∣∣ dτ, (3.19)

a(t) =
1

√
2− 2β̃t+ 4β̃D

B1
ln

∣∣B1t−B0
B0

∣∣ +
eφ(t)

√
2

a0
√

2−1
+ 2β̃

∫ t

0

(
1− D

B1τ−B0

)
eφ(τ) dτ

.

(3.20)
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4. Conclusion

We conclude the paper by restating our results. Provided for the case 1 that
the following condition between the coefficient functions of Riccati equation P (x),
Q(x), and R(x) is met:

[P (x)R(x)]′ − 2 [Q(x) +R′(x)/R(x)]P (x)R(x)
[P (x)R(x)]3/2

=
4sA√
B
, (4.1)

then the general solution of Riccati equation is given by

y = − sλ√
B

√
P (x)
R(x)

+ eφ(x)
[ 1

y0 + sλ√
B

√
P (0)
R(0)

−
∫ x

x0

R(ξ)eφ(ξ) dξ
]−1

. (4.2)

Here A and B are two arbitrary constants satisfying A2 ≥ B > 0; λ = −A ±√
A2 −B is one of the two roots of the characteristic polynomial; y0, P (0), R(0)

are the given boundary conditions; and φ(x) =
∫ x

x0

[
Q(ξ)− 2sλ√

B

√
P (ξ)R(ξ)

]
dξ.

In the other case when A = 0 and B is some arbitrary function of x, provided
the following relation between the coefficient functions a and b is valid:

b

B
=

( b
B

)
0
exp

(
− 2

∫ x

x0

a dx
)
, (4.3)

then a simple relation between the second order ODE for u and the one-dimensional
Schrödinger equation exists. Hence, many of the known exact solutions to the
Schrödinger equation for different potentials can be utilized to arrive at the solutions
to various types of new special cases of Riccati equation.

When applied to the multidimensional GPE of BECs, the case with constant A
and B yields closed form solutions for the chirp function a(t) of the matter wave:

a(t) = − sλ√
B

√
− α(t)

2β(t)
+ eφ(t)

[ 1

a0 + sλ√
B

√
− α0

2β0

+ 2
∫ t

0

β(τ)eφ(τ) dτ
]−1

, (4.4)

given that the following relation holds between the diffraction coefficient β and the
strength of the parabolic potential α:√

−β
α

=
√
−β0

α0
− 2
√

2sA√
B

∫ t

0

β dt. (4.5)

Here φ(t) = −2
√

2sλ
∫ t

0

√
−α(τ)β(τ) dτ/

√
B. The chirp function is an essential

part of the exact solutions to GPE.
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