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INSTABILITY OF ELLIPTIC EQUATIONS ON COMPACT
RIEMANNIAN MANIFOLDS WITH NON-NEGATIVE RICCI

CURVATURE

ARNALDO S. NASCIMENTO, ALEXANDRE C. GONÇALVES

Abstract. We prove the nonexistence of nonconstant local minimizers for a

class of functionals, which typically appear in scalar two-phase field models,

over smooth N -dimensional Riemannian manifolds without boundary and non-
negative Ricci curvature. Conversely, for a class of surfaces possessing a simple

closed geodesic along which the Gauss curvature is negative, we prove the

existence of nonconstant local minimizers for the same class of functionals.

1. Introduction

LetM be a smoothN -dimensional compact Riemannian manifold without bound-
ary. Consider the functional E : H1(M) → R given by

E(u) =
∫
M
{ |∇u|

2

2
− F (u)} dµ, (1.1)

where F is a C2 real function and H1(M) the usual Sobolev space.
In this work, we are interested in knowing how locally minimizing functions of

E are related to the geometry of M.
We will say that u0 ∈ C∞(M) is a local minimizer of E if there exists δ > 0 such

that
E(u0) ≤ E(u) whenever ‖u− u0‖H1(M) ≤ δ.

In case the first inequality is strict, i.e., E(u0) < E(u), u0 is said to be a local
isolated minimizer. Our main results are stated in the following theorems.

Theorem 1.1. Suppose that the Ricci curvature of M is non-negative. Then any
local minimizer of E is a constant function.

An interesting condition that shows up in the computations of Theorem 1.1
provides some insight on the structure of M. For u ∈ H1(M) we denote by E ′′(u)
the second variation of E at u. If u is a non-constant critical point of E , the vector
field ∇u spans a real line bundle I in some open non-empty subset of M. Clearly,
it is not true, in general, that I can be extended to the whole M in a unique way.
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Nevertheless this is precisely the case when a simple analytical condition, given by
the next statement, holds for E ′′(u) and |∇u|.

Theorem 1.2. Keep the hypothesis of Theorem 1.1 and the previous notation for
u, E and I. Set v = |∇u|. Then if

(E ′′(u)v, v) = 0, (1.2)

the bundle I can be extended to M and is geodesic. There exists a complete Rie-
mannian submanifold N ⊂ M so that I|N is the normal bundle of N and is ori-
entable. The geodesic flow ϕ : R×N →M in the direction of I|N is an isometric
regular covering map. Denoting by K the group of covering transformations of ϕ,
then K is made of isometries, so that M is isometric to the quotient (R×N )/K.
If I is orientable, then K is generated by a nontrivial (affine) translation of R with
some isometry of N . Otherwise K is generated by two involutions of R×N .

Regarding Theroem 1.1, we show how to construct non-constant local minimizers
on some non-convex surfaces. For that purpose, we introduce a small positive
parameter ε in the functional; thus writing by considering the functional

Eε(u) =
∫
M
{ε |∇u|

2

2
− ε−1F (u)} dµ, (1.3)

and take as F a suitable nonnegative double-well potential which vanishes only at
α and β (α < β). As usual χA stands for the characteristic function of a set A.

Theorem 1.3. Let M be a surface diffeomorphic to S2. Assume that there exists
a simple closed geodesic γ0 ⊂ M so that the Gauss curvature K of M is negative
along γ0. Then for ε small enough there is a non-constant family {uε}ε>0 of local
minimizers of Eε. Moreover uε → 0, as ε→ 0, in L1(M) where u0 = αχMα+βχMβ

and M = Mα ∪ γ0 ∪Mβ is the partition of M determined by γ0 .

Remark 1.4. It will be shown, under the assumed hypotheses, that condition (1.2)
can only happen if Ric(∇u,∇u) ≡ 0. This fits naturally in the vast field of Ricci-flat
compact manifolds. The conclusions of Theorem 1.2 may be an extra analytical
tool in the study of such manifolds when combined with several deep results already
achieved in this field. Compare, for instance, with Theorem 4.1 of [6], where the
authors prove a factorization of a covering space of a Ricci-flat manifold Mn into
a product T k ×Mn−k, with T k a flat torus and Mn−k a lower dimension Ricci-flat
manifold, and k being the first Betti number of Mn. Also, after Yau’s results on the
existence of non-flat Ricci-flat manifolds it is evident that condition (1.2) cannot
happen in a K3-surface with its Ricci-flat metric.

Associating local minimizers of E with the geometry of the domain goes back to
1978 when the authors in [4] and [19] considered the evolution problem

ut = ∆u+ f(u) in R+ × Ω

∂νu = 0 on R+ × ∂Ω
(1.4)

where Ω ⊂ RN is a smooth bounded domain, f ∈ C2(Ω) and ∂ν stands for the
exterior normal derivative.

They showed that if Ω is convex then any non-constant solution to (1.4) is
unstable in the Lyapunov sense. In this case it amounts to saying that any local
minimizer of the corresponding energy functional is a constant function.
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Still for bounded convex domains with homogeneous zero Neumann boundary
condition, the same kind of result was obtained for systems of reaction-diffusion
equations [11] and [18], Ginzburg-Landau equation [12], reaction-diffusion systems
with skew-gradient structure [23], geometric parabolic equation [13] and in the con-
text of permanent currents for the full bi-dimensional Ginzburg-Landau functional
in [12], among others. In all of these works the proofs make use in a strong way of
the homogeneous Neumann boundary condition on a convex domain.

When M is a general Riemannian manifold without boundary, the Euler-La-
grange equation for E yields stationary solutions of the reaction-diffusion equation

ut = ∆u+ f(u) in R×M . (1.5)
The only result of this type regarding (1.5) over surfaces was considered in [21]
where it was shown that if M ⊂ R3 is a convex surface of revolution then the
only stable solutions are the constant ones. Actually the proof consists of showing
that (1.1), with F ′ = f , has no nonconstant local minimizer. In this particular
case writing the planar curve that generates the surface in appropriate coordinates
reduces the domain to an interval thus making the underlying analysis much easier
than the general case considered here.

The present work generalizes the latter not only in the dimension of the manifold,
but also by showing that only the sign of the (Ricci) curvature is what matters.

We should mention that after this work had been completed it was brought to
our attention that the conclusion of Theorem 1.1 had appeared in [10] but with
only sketched or incomplete proofs.

In case M is a bounded domain in RN typically Eε models the phase separa-
tion phenomenon in the context of van der Waals-Cahn-Hilliard theory whereby u
represents the density of a two-phase fluid and is also associated to the motion of
phase boundaries (interfaces) by mean curvature (see [9], for instance).

Equation (1.5) has been studied in the context of pattern formation; i.e., exis-
tence of nonconstant stable (in the sense of Lyapunov) stationary solution. It may
model bio-chemical processes over cell surfaces or propagation of calcium waves
over the surface of a fertilized egg, for instance.

In particular Theorem 1.1 implies that (1.5) has no pattern as long as M has
non-negative Ricci curvature. On the other hand Theorem 1.3 gives an example of
M for which (1.5), after a suitable scaling, develops patterns.

Setting f = F ′ then clearly critical points of E satisfy the semi-linear elliptic
equation

∆u+ f(u) = 0 on M. (1.6)
A smooth solution u of the above equation is said to be weakly stable if the quadratic
form satisfies

E(ϕ) =
∫
M
{ |∇ϕ|

2

2
− f ′(u)ϕ2} dµ ≥ 0, (1.7)

in H1(M). Otherwise u is called weakly unstable. Then it follows immediately
from the proof of Theorem 1.1 that any nonconstant solution to the above equation
is weakly unstable as long as M has non-negative Ricci curvature.

This article is organized as follows. In Section 2 in addition to recalling some
notation of Riemmanian Geometry we prove some preliminary results, Section 3 is
devoted to the proofs of Theorem 1.1 and Theorem 1.2 and Section 4 to the proof
of Theorem 1.3.
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2. Geometric background and notation

Let M be an N -dimension (N ≥ 2) Riemannian manifold without boundary,
and TM, T ∗M its tangent and cotangent bundles, respectively. Let T r

s (M) =
(TM)⊗r ⊗ (T ∗M)⊗s, for non-negative integers r and s. For an integer k ≥ 0 let
AkT ∗M be the alternate k-bundle of T ∗M. Given any real vector bundle F overM
we denote by G(F) the set of its smooth sections and by Gk(F) = G(AkT ∗M⊗F)
the smooth sections of k-forms on M with coefficients in F .

The contraction is a natural coupling c : T 1
1 (M) → T 0

0 (M) given by c(v ⊗ ω) =
ω(v), where v⊗ω is a decomposable tensor of TM⊗T ∗M. The contraction extends
to c : T r

s (M) → T r−1
s−1 (M) for any r, s ≥ 1, by putting c(v1⊗· · ·⊗vr⊗ωs⊗· · ·⊗ω1) =

ω1(v1) v2 ⊗ · · · ⊗ vr ⊗ ωs ⊗ · · · ⊗ ω2. Indeed, when r = s = 1 the contraction is just
the trace operator on linear homomorphisms TM→ TM.

Let ∇ : G(T 1
0 (M)) −→ G1(T 1

0 (M)) be the Levi-Civita connection on M.
It is well known that ∇ can be extended in a unique way to an operator ∇ :
G(T r

s (M)) −→ G1(T r
s (M)) such that Leibnitz rule is preserved and commutes

with the contraction [15]. We abuse notation and write ∇ = ∇ whenever r, s are
not both zero. When f ∈ G(T 0

0 (M)) is just a smooth function we preserve the
usual notation ∇f = (df)∗ ∈ G(T 1

0 (M)). It then follows that

∇(T ⊗W ) = ∇T ⊗W + T ⊗∇W, ∀T ∈ G(T r
s (M)) and ∀W ∈ G(T p

q (M)) ,
(2.1)

∇c(T ) = c(∇T ) , for any contraction c : T r
s (M) → T r−1

s−1 (M) . (2.2)

Notice that we identify

(TM)⊗r ⊗ (T ∗M)⊗s ⊗ (TM)⊗p ⊗ (T ∗M)⊗q

∼= (TM)⊗r ⊗ (TM)⊗p ⊗ (T ∗M)⊗s ⊗ (T ∗M)⊗q ,
(2.3)

and similarly, by sticking the 1-form component of a section of A1T ∗M⊗ (T r
s (M))

on the left of the covariant part we have A1T ∗M⊗ T r
s (M) ∼= T r

s+1(M). These
identifications are necessary for (2.1) and (2.2) to make sense. They also allow us
to define the composition ∇(∇T ) for any T ∈ G(T r

s (M)).
Some combinations of ⊗ and c(·) deserve special notation. For tensors T ∈

G(T 1
s (M)) and W ∈ G(T 1

q (M)) we write TW = c(W ⊗T ). When s = 1 and q = 1,
TW is the composition of the endomorphisms T with W , and if q = 0 TW is the
image of the vector W under T . In particular, if s ≥ 2 and W1,W2 are vector fields
we set T (W1,W2) = [TW2]W1.

Let F ∈ T 1
3 (M) be the Riemann tensor of M. Then for any vector fields X,Y, Z

and W locally defined we have

F (X,Y, Z,W ) :=〈[FZ](Y,X),W 〉
=〈∇X∇Y Z −∇Y∇XZ −∇[X,Y ]Z,W 〉 .

(2.4)

The proof of the next lemma is straightforward and is omitted.

Lemma 2.1. Let V ∈ G(T 1
0 (M)). Then the skew-symmetric component with re-

spect to the cotangent factors of ∇(∇V ) is FV . This is equivalent to

[∇(∇V )](X,Y )− [∇(∇V )](Y,X) = [FV ](Y,X)

for any vectors X,Y .
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We define the Ricci tensor of M as Ric(V,W ) = −c([FW ]V ), for any V,W
vector fields. Observe that if {si : i = 1, . . . , n} is any local orthonormal basis of
TM then Ric(V,W ) =

∑n
i=1 F (si, V,W, si).

By a non-negative Ricci manifold, M, is a manifold that satisfies Ric(V, V ) ≥ 0
for any V ∈ TM.

The following lemma will be useful in our approach.

Lemma 2.2. Let V and W be vector fields over U ⊂M open. Then

c([∇(∇V )]W −∇W (∇V )) = Ric(W,V ) . (2.5)

Proof. We choose an orthonormal basis {s1, s2, . . . , sn} locally defined and compute

c([∇(∇V )]W −∇W (∇V ))

=
∑

i

〈[∇si
(∇V )]W − [∇W (∇V )]si, si〉

=
∑

i

〈∇si [(∇V )W ]− (∇V )∇siW −∇W [(∇V )si] + (∇V )∇W si, si〉

=
∑

i

〈∇si
∇WV −∇W∇si

V −∇[si,W ]V, si〉

=
∑

i

F (si,W, V, si) = Ric(V,W ) .

�

Let M be a Riemann surface and let γ0 ⊂ M be a simple closed arcwise
parametrized geodesic. Assume there exists a smooth unitary orthogonal vector
field η defined along γ0, or equivalently, a neighborhood of γ0 is oriented. Extend η
to a geodesic vector field on a vicinity V of γ0. If ϕt(p) = ϕ(t, p) is the flow of η one
can restrict V, if necessary, and choose δ > 0 so that the map ϕ : [−δ, δ]× γ0 → V
is a diffeomorphism.

Let t and x be the coordinate functions of the inverse map ϕ−1 : V → [−δ, δ]×γ0,
ϕ−1(p) = (t(p), x(p)). For any σ : [0, 1] → V a smooth curve we denote by σ its
projection over γ0,

σ(s) = x ◦ σ(s) , 0 ≤ s ≤ 1 . (2.6)

Notice that we abuse language and denote by σ either a curve or its trace, accord-
ing to the context. Similarly, |σ| denotes the length of the curve, but for a two
dimensional region U ⊂M, |U | denotes its area.

The next lemma is well known to geometers, and can be found in the literature.

Lemma 2.3. Suppose that the gaussian curvature K is strictly negative on V. We
have:

(a) Let p0, p1 ∈ V and σ be any smooth simple curve joining p0 and p1. Then
(a1) |σ| ≥ |t(p1)− t(p0)| and equality holds if and only if σ reparametrizes

the geodesic segment t 7→ ϕt(p) between p0 and p1.
(a2) |σ| ≥ |σ| and equality holds if and only if σ = σ ⊂ γ0.

(b) Let J ⊂ γ0 be an interval or J = γ0. Let 0 < δ0 ≤ δ and U be any of the
sets ϕ([0, δ0]× J) or ϕ([−δ0, 0]× J). Then |U | > δ0 |J |.
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3. Nonexistence of nonconstant minimizers

This section is devoted to the proofs of Theorems 1.1 and 1.2, which in turn will
be applications of the identities established in the next two lemmas.

Recall that the Riemannian metric of M induces metrics in any tensor product
T r

s (M), as well as in their spaces of sections. If T,W ∈ T 1
1 (M) then their inner-

product (fiberwise) is computed as 〈T,W 〉 = c(c(T ⊗W ∗)), being W ∗ the (metric)
transpose of the endomorphism W : TM→ TM.

If V is a C1 vector field on M we set div(V ) = c(∇V ). The hessian of a C2

function u on M is Hu = ∇(∇u). The Laplacean of u is then ∆u = c(Hu) =
div(∇u).

The Riemannian measure on M will be denoted by dµ. By a component of a
topological space we always mean a connected component.

Lemma 3.1. Let V be a C2 vector field on M and u a C3 function on M. Then

∆(V u)− V (∆u) = div(∇V ∗∇u) + 〈Hu,∇V 〉+ Ric(∇u, V ) . (3.1)

Proof. We first notice that

∇(V u) = [d(V u)]∗ = ∇V ∗∇u+Hu V . (3.2)

Then

∆(V u)− V (∆u) = c(∇[∇V ∗∇u+Hu V ])− c(∇V Hu)

= c(∇[∇V ∗∇u]) + c([∇Hu]V +Hu∇V −∇V Hu)

= div(∇V ∗∇u) + c([∇Hu]V −∇V Hu) + c(Hu∇V ) .
(3.3)

Applying Lemma 2.2 to the second summand of term (3.3) and observing that
c(Hu∇V ) = 〈Hu,∇V 〉 we arrive at

∆(V u)− V (∆u) = div(∇V ∗∇u) + Ric(∇u, V ) + 〈Hu,∇V 〉 ,

and the proof is complete. �

Remark 3.2. Lemma 3.1 is central in the next constructions of this section. In-
deed, it somehow appears in [21], where its full geometric significance is shadowed
by the high symmetry of that case. The main idea there, which holds in general, is
a commutation relation between the Laplacian operator and a particular directional
derivative, namely, the normalized gradient of u.

Let u be a non-constant critical point of E with F ′ = f . Then

d

dt
E(u+ tv)|t=0 = −

∫
M

(∆u+ f(u)) v dµ = 0, ∀v ∈ H1(M) . (3.4)

The linearization of the operator ∆ + f(·) at u yields an operator L : H1(M) →
H−1(M) defined by

L(u)v = ∆v + i(f ′(u) v) , (3.5)

where i : H1(M) → H−1(M) is the Sobolev inclusion H1 ⊂ H−1. Let (·, ·) :
H−1 ×H1 → R be the canonical pairing of a vector space and its dual. Then

d2

dt2
E(u+ tv)|t=0 = (E ′′(u)v, v) = −(L(u)v, v) .
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For the next lemma we temporarily drop any hypothesis about Ricci curvature. It
will be immediate that for Ricci non-negative manifolds the quadratic form associ-
ated to L is not sign definite. Define

U := {∇u 6= 0} ⊂ M .

Let V be the unitary vector field V = ∇u
|∇u| over U .

Lemma 3.3. Let v = |∇u|. Then

(L(u)v, v) =
∫
M
|∇u|2

(
|∇V |2 + Ric(V, V )

)
dµ . (3.6)

Proof. The function u is of class C3, hence V is C2. In the open set U we have
V (∆u+ f(u)) = 0, thus

∆(V u) + f ′(u)(V u) = ∆(V u)− V (∆u) . (3.7)

Applying Lemma 3.1 directly to the righthand side of (3.3) we get

∆(V u) + f ′(u)(V u) = div(∇V ∗∇u) + 〈Hu,∇V 〉+ Ric(∇u, V ) . (3.8)

The covariant derivative of V is

∇V =
1

|∇u|
Hu −∇u⊗

(Hu∇u)∗

|∇u|3
. (3.9)

A computation shows that ∇V is orthogonal to the tensor ∇u⊗ (Hu∇u)∗

|∇u|3 . Recalling
that v = |∇u| = V u we obtain

〈Hu,∇V 〉 = |∇u|
〈 1
|∇u|

Hu −∇u⊗
(Hu∇u)∗

|∇u|3
,∇V

〉
= v |∇V |2 . (3.10)

Let W be any vector in the tangent space over a point of U . Since V is unitary we
have

〈∇V ∗V,W 〉 = 〈V,∇WV 〉 =
1
2
W |V |2 = 0 . (3.11)

Thus div(∇V ∗∇u) = div(v∇V ∗V ) vanishes identically. With the help of (3.10)
equation (3.8) turns into

∆v + f ′(u)v = v |∇V |2 + v Ric(V, V ) . (3.12)

Notice that v vanishes in M−U . Looking at the left-hand side of the above identity
as a distribution it becomes clear that its support is contained in U . Therefore,
applying it on v ∈ H1(M) one obtains

(L(u)v, v) =
∫
M
|∇u|2

(
|∇V |2 + Ric(V, V )

)
dµ , (3.13)

which completes the proof. �

Remark 3.4. Let p ∈M be a non-critical point of u. The level set S = {x : u(x) =
u(p)} is a regular hypersurface near p. It can be seen that ∇V = A+(∇V V )⊗V ∗,
where A : TS → TS is the shape operator respect to V of the second fundamental
form of the inclusion S ⊂ M . By setting c = |∇V V | the squared norm of ∇V
becomes

|∇V |2 = |A|2 + c2 . (3.14)
Therefore, |∇V |2 is the sum of the square of the principal curvatures of S plus the
square of the curvature of the flow of ∇u.
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Remark 3.5. In the unidimensional case M = S1 a direct proof of instability can
be given. Endow S1 with a metric so that |S1| = l. Functions on S1 are identified
with functions on [0, l] satisfying certain boundary conditions. In this case the
Euler-Lagrange equation for E is

u′′(t) + f(u(t)) = 0, 0 < t < l

u(0) = u(l), u′(0) = u′(l) .
(3.15)

Its linearization becomes L(u)v = v′′+f ′(u)v. Assume by contradiction that u is a
non-constant local minimizer of E . Then (L(u)v, v) ≤ 0, and due to Lemma 3.3 we
get L(u)v = 0. Hence v = |u′| is an eigenfunction associated to the zero eigenvalue.

A direct computation shows that u′ is also an eigenfunction of the zero eigenvalue
of L(u). Then w = u′ + |u′| is an eigenfunction and since w vanishes in an open
interval the Unique Continuation Theorem gives us w ≡ 0. Hence u′ ≡ 0, what
goes against the hypothesis. This shows that the first eigenvalue of L(u) is positive
and there are no non-constant local minimizers of E .

In view of Lemma 3.3 the proof of Theorem 1.1 is now immediate if we strengthen
the hypothesis to Ric > 0 on M. Indeed, one can show that Ric > 0 on some open
set of M suffices for the positivity of (L(u)v, v), by using the Unique Continuation
Theorem together with the contradiction assumption that the first eigenvalue of
L(u) is zero.

We will rather give a unified proof for the case Ric ≥ 0. This requires a few
more lemmas dealing with the more delicate case ∇V = 0 and Ric = 0 on U . It
will follow after a series of steps rich on tricky details. The main ingredients are
the level sets of u and the behaviour of the geodesics of M respect to the critical
points of u.

The remaining results of this section do not demand that u be bounded or belong
to any particular Sobolev Space. We will skip for a while any functional analytic
concerns, and assume that M is an arbitrary complete, not necessarily compact,
Riemann manifold, and u is a classical solution to equation (1.6). The compactness
of M will be implicitly invoked back only in the proofs of Theorems 1.1 and 1.2.

For the next six lemmas and corollaries, we assume that

|∇V | = 0 in U ,

unless otherwise stated. In particular we obtain that V is a parallel vector field
over U . From equation (3.9) we also get

Hu = V ⊗ (Hu V )∗ = ∆uV ⊗ V ∗ . (3.16)

For any p ∈M define Np as the component of the level set {x ∈M : u(x) = u(p)}
that contains p.

Lemma 3.6. If p ∈ U then Np ⊂ U . Further, Np is a complete geodesic Riemann-
ian submanifold of codimension 1 of M and |∇u| > 0 is constant on Np.

Proof. Let Up be a component of U and Cp a component of Up∩Np so that p ∈ Cp.
Clearly Cp is a codimension 1 submanifold of M. If X,Y ∈ T (Cp) ⊂ TU we have

〈∇XY, V 〉 = X〈Y, V 〉 − 〈Y,∇XV 〉 = 0 (3.17)

for V is parallel and X,Y are orthogonal to V . This shows that Cp is geodesic.
Letting q ∈ Cp and X ∈ Tq(Cp), we have ∇X∇u = Hu(X) = 0. Therefore ∇u

is parallel and |∇u| 6= 0 is constant along Cp. If q is an adherent point of Cp then
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∇u(q) is non-zero so that q ∈ Up. This shows that Cp is closed in M, and since Up

is open, Cp is also open as a topological subspace of Np. Therefore by the conexity
we have Cp = Np ⊂ Up.

The geodesic completeness of Np follows from the Theorem of Rinow and Hopf
[3] and the fact that M is complete. �

Lemma 3.7. Let γ : R → M be an arclength parametrized geodesic, and h(t) =
u(γ(t)) for all t ∈ R. Assume that h is non-constant, and let (a, b) be a component
of γ−1(U). Then

(a) h is strictly monotone in (a, b).
(b) Assume a ∈ R, and let p = γ(a). Then p is a critical point of u and

Hu(p) 6= 0.
(c) Under the same hypothesis as (b) let r = b−a ∈ R∪{+∞}. Then (a−r, a)

is also a component of γ−1(U). Further, h(t) is symmetric respect to t = a;
i.e., h(a− s) = h(a+ s) for all s ∈ R.

(d) Under the same hypothesis as (c), assume also b ∈ R. Then h is periodic
of period 2r.

Proof. For all t ∈ R we have h′(t) = 〈∇u, γ′(t)〉. This justifies the existence of
the interval (a, b), since h is non-constant. For all t ∈ (a, b) we can write h′(t) =
|∇u|〈V, γ′(t)〉. Both of V and γ′ are parallel along γ, hence 〈V, γ′(t)〉 = k is a
constant in (a, b). We must have k 6= 0, otherwise the geodesic γ would be entirely
contained in Nγ(t0), for any t0 ∈ (a, b), and h would be constant. Hence k and |∇u|
are non-zero in (a, b) and part (a) is proved.

We compute the second derivative of h for any t ∈ (a, b),

h′′(t) =
d

dt
〈∇u, γ′(t)〉 = 〈Hu(γ′(t)), γ′(t)〉 = ∆u(γ(t))k2 ,

in view of (3.16). Then h(t) is a solution to the 2nd order equation

h′′ + k2 f(h) = 0 (3.18)

on (a, b). If a ∈ R, h satisfies the initial condition h(a) = u(p), h′(a) = 0. By
uniqueness of the initial-value problem the constant function t 7→ u(p) is not a
solution of that problem, and therefore u(p) is not a root of f . Hence, h′′(a) =
−k2 f(u(p)) 6= 0, and Hu(p) does not vanish. This concludes part (b).

Due to h′′(a) 6= 0, there is a small left open neighborhood of a where h′(t) 6= 0,
and hence γ(t) ∈ U for t < 0 small. Therefore, there is a component of γ−1(U) of
the form (c, a), for some c ∈ (−∞, a). Let J = (0,min{r, a− c}).

We define h−(s) = h(a − s) and h+(s) = h(a + s) for all s ∈ R. Then h−(0) =
h+(0) = h(a), h′−(0) = h′+(0) = 0. Further, for s ∈ J there are suitable constants
k−, k+ that play the role of k on (3.18):

h′′− + k2
− f(h−) = 0 ,

h′′+ + k2
+ f(h+) = 0 .

Again uniqueness for this problem will give us h− ≡ h+ as long as we show that
k2
− = k2

+.
Let V−(s) = V (γ(a − s)) and V+(s) = V (γ(a + s)) for all s > 0 small. Both of

V− and V+ can be continuously extended by parallel transport along γ to vectors
Ṽ− and Ṽ+, respectively, on TpM. We claim that the (unitary) vectors Ṽ− and
Ṽ+ are colinear. The (symmetric polinomials on the) eigenvalues of the continuous
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symmetric tensor Hu are continuous. The special form of Hu on U , given by
equation (3.16), implies that for all small s > 0, Hu(γ(a± s)) has a zero eigenvalue
of multiplicity at least N−1, which is inherited by Hu(p). The remaining eigenvalue
of Hu(p), ∆u(p), has to be non-zero (after part (b)) and simple. This is an open
condition, and the eigenspace associated to this eigenvalue varies continuously, close
to p. It is generated by V on U , therefore, we have Ṽ− = ±Ṽ+. Since

k− = lim
s→0+

〈V−(s), γ′(a− s)〉 = 〈Ṽ−, γ′(a)〉

k+ = lim
s→0+

〈V+(s), γ′(a+ s)〉 = 〈Ṽ+, γ
′(a)〉 ,

(3.19)

we obtain |k−| = |k+|, hence h−(s) = h+(s) for s ∈ J . Critical points of h− and
h+ happen together in this range and correspond to intersections of γ(t) with the
border of U . Therefore 0 < s 7→ γ(a−s) cannot leave U before s = r, and since the
argument is symmetric, we conclude that a− c = r and γ−1(U) contains (a− r, a)
as a component, which proves part (c).

Part (d) is now immediate. Clearly the symmetry of h(t) holds with respect
to any critical point of h. If r = b − a is finite then we get h(a + r + s) =
h(a+ r− s) = h(a− r+ s) for any 0 < s < r. In particular, an inductive argument
shows that {a +mr : m ∈ Z} are all critical points of h(t). The period of h is 2r
since it intercalates increasing with decreasing intervals between consecutive critical
points. �

Remark 3.8. ¿From part (c) of the above lemma, we have h′(a+ s) = −h′(a− s).
Selecting s > 0 small, we obtain

h′(a+ s) = k+|∇u|γ(a+s) = −k−|∇u|γ(a−s) = −h′(a− s) . (3.20)

Therefore, k− = −k+ and Ṽ− = −Ṽ+.

As a consequence of Lemma 3.7 we get Hu(p) 6= 0 and ∆u(p) 6= 0 for any critical
point p of u, since there is a point q ∈ M with u(q) 6= u(p) and a geodesic γ(t)
joining p to q. Further, the set of critical points of u is ∂U = M − U .

Proof of Theorem 1.1. By Lemma 3.3 along with the condition Ric ≥ 0 we deduce
that (L(u)v, v) ≥ 0. We will show that this inequality is strict, so u cannot be a
local minimum of E . The case where ∇V 6= 0 is straightforward from the Lemma,
so we assume in the sequel that ∇V ≡ 0 on U .

Suppose by contradiction that the first eigenvalue of L(u) is non-positive. Then
(L(u)v, v) = 0 and v must be an eigenfunction of L(u) associated to the zero
eigenvalue. Since f ′(u)v is continuous, standard elliptic regularity applied to

∆v + f ′(u) v = 0 on M (3.21)

gives us v ∈ C2(M). Computing the gradient of v in U we obtain

∇v = ∇|∇u| = Hu(V ) = ∆uV . (3.22)

Let p be a critical point of u and γ(t) be a geodesic satisfying the hypotheses on
Lemma 3.7, so that γ(0) = p. Following the notation in the proof of the Lemma
we have, by part (b), that ∆u(p) 6= 0. On the other hand, Remark 3.8 gives us

lim
t→0+

Vγ(t) = − lim
t→0−

Vγ(t) 6= 0 . (3.23)
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This shows that ∇v is not even continuous at p, what contradicts the C2 regularity
of v. The only remedy is granting that the first eigenvalue of L(u) is positive, which
completes the proof. �

Note that V defines a line subundle of TM|U that can be extended over ∂U
by taking the only simple eigenspace of Hu (associated to the non-zero eigenvalue)
near critical points. This justifies the next result.

Corollary 3.9. There exists a geodesic line bundle I ⊂ TM so that I|U is spanned
by V .

Choose a point p0 ∈ U and let U0 be its correspondent component of U . Denote
N0 = Np0 . We would like to extend the field V |U0 to the whole of M by means of
the bundle I. The flow of such extension would, then, be generated by isometries,
and routine arguments would give us a covering map ϕ : R×N0 →M, from which
one would quickly derive the results of Theorem 1.2. This case has already been
researched in greater generality, for instance, in [2].

Here is where the orientability of I comes in. Clearly, such an extension of V |U0

is possible if and only if I is orientable (as a real vector bundle). Both of orientable
and non-orientable cases can happen to I, leading to two different constructions
for M. In order to keep generality and to shorten the proofs, we give a definition
of ϕ independent of I.

For any p ∈ N0 let t ∈ R 7→ ϕt(p) be the geodesic defined by ϕ0(p) = p and
ϕ′0(p) = Vp. Then ϕ : R×N0 →M is smooth.

Lemma 3.10. There is an open interval (a, b) so that ϕ : (a, b) ×N0 → U0 is an
isometry.

Proof. Let (a, b) 3 0 be the maximal interval for which ϕt(p0) belongs to U0. If
q ∈ N0 is any other point we see that u(ϕt(p0)) = u(ϕt(q)) for t ∈ R, since both
functions satisfy the same differential equation (3.18) with same initial conditions.
Due to Lemma 3.7 it follows that (a, b) keeps the maximality property above stated,
for any q ∈ N0.

Since V is parallel and equals ϕ′0(p) on p, it holds ϕ′t(p) = Vϕt(p) for all t ∈ (a, b).
Therefore t 7→ ϕt are integral curves of V |U0 . Two such curves do not intersect,
and because u(ϕt(p)) is monotone the curve ϕs(q) cannot be a reparametrization
of ϕt(p), for any (s, q) ∈ (a, b) × N0 with q 6= p. This concludes injectivity of
ϕ : (a, b)×N0 → U0. Notice that ϕ is the flow of V restricted to N0, hence it is an
isometry with its image. The set ϕ((a, b)×N0) is open.

Now we show that the image of ϕ is closed in U0. Let q ∈ U0 be an adherent
point of ϕ((a, b) × N0), and σ : [0, 1] → U0 be a smooth curve with σ(0) = p0,
σ(1) = q. Let I = σ−1(U0), I is open in [0, 1] and non-empty. Using that ϕ is
a local isometric coordinate chart one see that I is closed, hence I = [0, 1] and q
belongs to the image of ϕ. The image of ϕ is then open and closed in U0, and by
convexity, we have ϕ((a, b)×N0) = U0. �

Following the notation of Lemmas 3.7 and 3.10 we consider the case b ∈ R. Then
ϕb(N0) ⊂ ∂U0. Let p̂ = ϕb(p0). We have ϕb(N0) = Np̂, since ϕt preserves level
sets of u. Surprisingly, Np̂ may not be isometric to N0. This question relates to
whether the curve t 7→ ϕt(p) does leave U0 when it crosses the border at t = b.

Let U1 be the component of U that contains ϕt(N0) for all b < t < 2b− a.
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Lemma 3.11. Np̂ is a geodesic complete submanifold of M. The map ϕb : N0 →
Np̂ is a local isometry. It is a bijection if and only if I|U0∪Np̂

is orientable, and it
holds U1 6= U0. Otherwise ϕb is a two-fold covering map onto Np̂ and U1 = U0.

Proof. Let p ∈ N0 and V 3 ϕb(p) be a simply connected open neighborhood of
ϕb(p). There is a local trivialization of I|V by means of a unitary parallel vector
field Ṽ , so that Ṽϕb(p) = ϕ′b(p). By continuity, ϕ′b(q) = Ṽϕb(q) for any q ∈ ϕ−1

b (V).
Again, uniqueness of the parallel transport along a curve subject to the same initial
conditions gives us Ṽϕb+s

(q) = ϕ′b+s(q) for all s small enough. Restricting V if
necessary we see that ϕ is the flow of a unitary killing field defined on the open set
ϕ((a, b + ε) × ϕ−1

b (V)) ∪ V, for some ε > 0 small. Hence ϕb is a local isometry of
N0 onto Np̂. From that it also follows that Np̂ is geodesic and complete.

Now assume ϕb is injective. Then (t, q) ∈ (a, b] × N0 7→ ϕ′t(q) is a well defined
trivialization of I|U0∪Np̂

, so it is orientable. If ϕt(p) belongs to U0 for some t ∈
(b, 2b − a) then there is s ∈ (a, b) and q ∈ N0 with ϕs(q) = ϕt(p). Both geodesics
have velocities on the bundle I, so they must be opposite since u(ϕt(p)) is decreasing
on t. Therefore ϕt(p) is a backward reparametrization of ϕs(q) and we get ϕb(p) =
ϕb(q), contradicting injectivity. Hence there must be U0 6= U1.

On the other hand, if there are distinct points p, q ∈ N0 with ϕb(p) = ϕb(q)
one clearly has ϕ′b(p) = −ϕ′b(q), since both velocities lie in the same fiber of I and
cannot be equal. Therefore no orientation of I|U0 can be extended to a larger set on
M containing Np̂; i.e., I|U0∪Np̂

is non-orientable. In this case it holds ϕ2b(p) = q,
hence ϕ2b(N0) = N0, what indicates that U0 = U1. Restricting ϕb to suitable
vicinities Vp, Vq of p and q, respectively, we may write ϕ2b|Vp

= (ϕb|Vq
)−1 ◦ ϕb|Vp

,
what shows that ϕ2b is locally an isometry without fixed points and ϕ2

2b = IdN0 .
This proves that ϕb : N0 → Np̂ is a two-fold covering map. �

Recall that an involution of a Riemannian manifold is an isometry I such that
I2 = id.

Lemma 3.12. ϕ : R × N0 → M is a regular isometric covering map. Denote
by K = Aut(R × N0, ϕ) the group of covering transformations of ϕ. Then, if I
is orientable, K is either trivial or cyclic generated by the metric product of a
translation of R with an isometry of N0. If I is not orientable K is generated by
at most two involutions of R×N0.

Proof. If u has no critical points then U0 = U = M and ϕ is the (regular) trivial
covering map, I is orientable and K = {Id}. Otherwise ∂U0 6= ∅ and we assume b
on Lemma 3.10 is finite.

Following Lemma 3.11 we let Np̂ = ϕb(N0) be a component of the border of U0.
If there is another component U1 of U that cobounds U0 through Np̂ then we can
choose p1 ∈ U1 with u(p1) = u(p0) and let N1 = Np1 . Let ψ : (a, b) × N1 → U1

be the map analogous to ϕ. It can be seen from the proof of Lemma 3.11 that
ϕ′t(p) ∈ Iϕt(p) for all t ∈ R, p ∈ N0. Then ψb(N1) = ϕb(N0) = Np̂. It is clear that
ϕ2b(N0) = N1 and ϕb+s(p) = ψb−s(ϕ2b(p)) for all s ∈ R, p ∈ N0. Therefore ϕ is an
isometry from (a, 2b− a)×N0 onto U0 ∪Np̂ ∪ U1.

On the other hand, if U0 self-bounds at Np̂ as described by Lemma 3.11, the
function ψ above defined equals ϕ, and N1 = N0. Hence ϕ : (a, 2b − a) × N0 →
U0 ∪Np̂ is a two-fold isometric covering map.

If a = −∞ we are done. Otherwise there is another component Nq̂ of ∂U1, Nq̂ 6=
Np̂. The above constructions can be repeated, extending the isometric covering
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property of ϕ to the interval (a, 3b − 2a). This can also be performed backwards
on t, starting on t = a. An inductive argument gives us that ϕ : R×N0 →M is a
covering map, and a local isometry.

If ϕ is injective we have again the trivial covering, and K = {Id}. In this case
one clearly has I orientable. We assume in the remaining of this proof that ϕ is
not injective.

Suppose first that I is orientable. Let ϕt1(p1) = ϕt2(p2) for different pairs
(t1, p1), (t2, p2) ∈ R × N0. Then ϕ′t1(p1) = ϕ′t2(p2), so ϕt(p1) is an orientation
preserving reparametrization of ϕs(p2). There is τ > 0 with ϕτ (N0) = N0, and
τ can be taken the smallest positive number with such property. Then ϕτ is an
isometry of N0.

Consider the automorphism of the covering space R × N0 given by gτ (t, p) =
(t− τ, ϕτ (p)). A quick computation shows that the subgroup generated by gτ acts
transitively on the preimage ϕ−1(q) for all q ∈M. Since K is completely defined by
some subgroup of the permutations group of ϕ−1(q) it becomes K = {gn

τ : n ∈ Z},
and the covering map is regular.

Now consider I not orientable. Reasoning similarly to the previous case we
can find C 6= 0 so that ϕC : N0 → Np̂, p̂ = ϕC(p0), is a two-fold covering, and
ϕ2C : N0 → N0 is an involution. We can pick C so that |C| > 0 is minimum. Then
gC(t, p) = (2C−t, ϕ2C(p)) is an involution of R×N0 and a covering transformation.
If ϕ is a two-fold covering then the orbits of {Id, gC} acting on R×N0 are all the
preimages of points of M. Hence ϕ is regular and K = {Id, gC}.

If ϕ is not a two-fold covering let (t2, p2), (t1, p1) and gC(t1, p1) be three distinct
points in the preimage of a fixed point q ∈ M. The velocities of the geodesics
s 7→ ϕs(p1) and s 7→ ϕ2C−s(ϕ2C(p1)) are opposite over q, and we can assume,
without loss of generality, that ϕ′t2(p2) = ϕ′t1(p1). Again there is τ > 0 minimum
such that ϕτ (N0) = N0 and ϕ′τ (p) = Vϕτ (p) for any p ∈ N0. Define gτ as in the I
orientable case.

Now let (t, p) be any point in ϕ−1(q) 3 (t1, p1). If ϕ′t(p) = ϕ′t1(p1) then there is
an integer n such that (t, p) = gn

τ (t1, p1). Otherwise (t, p) = gn
τ ◦ gC(t1, p1). This

shows that the action of K is transitive on the preimages and the covering map is
regular. Further K is generated by {gτ , gC}. A careful check travelling forth and
back on the geodesics t 7→ ϕt(p) reveals that ϕτ ◦ ϕ2C ◦ ϕτ ◦ ϕ2C = IdN0 . Defining
D = C− τ

2 and gD(t, p) = (2D−t, ϕ2D(p)) we see that gD = gτ ◦gC is an involution
of R×N0 and {gC , gD} generates K. This completes the proof. �

Proof of Theorem 1.2. Let u be a non-constant critical point of E with (L(u)v, v) =
−(E ′′(u)v, v) = 0. Clearly the manifold N in the theorem stands for N0.

The proof then follows from the sequence of the lemmas and corollaries number-
ing from 3.6 through 3.12. The assertion that M' (R×N )/K is a standard fact
in Topology [20] and the metric is induced from R×N through the local isometry
ϕ. �

4. Existence of nonconstant minimizers

This section is devoted to showing that if M fails to have non-negative Ricci
curvature then Theorem 1.1 may not hold. This will be accomplished by showing
that there are non-convex surfaces for which Eε has non-constant local minimizers,
for ε small enough.



14 A. S. NASCIMENTO, A. C. GONÇALVES EJDE-2010/67

The procedure we follow consists of finding the limit of the energies Eε in the sense
of Γ−convergence and then using a result of De Giorgi which roughly states that
close (in some specified topology) to an isolated minimizer of the Γ-limit problem
there is a minimizer of the original one.

Throughout this section, M will denote a surface diffeomorphic to S2. For the
reader’s convenience we give the definition of Γ−convergence which is going to be
used.

A family {Λε}0<ε≤ε0 of real-extended functionals defined in L1(M) is said to
Γ-converge in L1(M) , as ε→ 0, to a functional Λ0 : L1(M) −→ R ∪ {∞}, if:

• For each v ∈ L1(M) and for any family {vε} in L1(M) such that vε → v
in L1(M), as ε→ 0, it holds that Λ0(v) ≤ lim infε→0 Λε(vε).

• For each v ∈ L1(M) there is a family {wε} in L1(M) such that wε → v in
L1(M), as ε→ 0 and Λ0(v) ≥ lim supε→0 Λε(wε).

Convergence in this sense will be denoted by Γ− limε→0+ Λε = Λ0. The defini-
tions and results we need about functions of bounded variation defined on M are
provided below. We set

G(M) := {g : g is a C1 section of TM, |g(x)| ≤ 1, ∀ x ∈M} (4.1)

and let HN denote the usual N -dimensional Hausdorff measure. Given u : M→ R
we define

|Du|(M) := sup
g∈G(M)

∫
M
u div(g) dH2 . (4.2)

A real function u ∈ L1(M) has bounded variation in M if |Du|(M) < ∞. See [7]
when M is a bounded domain in RN . The set

BV (M) := {u : M→ R; u ∈ L1(M) and |Du|(M) <∞}

is a Banach space with the norm ‖u‖BV = ‖u‖L1 + |Du|(M).
Letting χA denote the characteristic function of a set A ⊂M, we have

|DχA|(M) = sup
g∈G(M)

∫
A

div(g) dH2 . (4.3)

The perimeter of a set A ⊂M is defined by PerM(A) := |DχA|(M). If the border
of A in M is at least C2 then |DχA|(M) = H1(∂A ∩M).

Throughout this section we assume that the potential F in (3) satisfies:
• F : R → R is C2

• F ≥ 0 and F (t) = 0 if and only if t ∈ {α, β}, α < β.
• ∃ t0 > 0, c1 > 0, c2 > 0, k > 2 such that c1tk ≤ F (t) ≤ c2t

k, for |t| ≥ t0.
For convenience we denote the space of functions of bounded variation in M

taking only two values, α and β, by BV (M, {α, β}).
The computation of the Γ−limit of Eε when M is a bounded domain in RN is

standard by now. However no such result is available in the literature when M is a
surface. Nevertheless the proof found in [1] can be adapted to our case in a natural
manner thus yielding the following result.

Theorem 4.1. Let Eε : L1(M) → R be defined by

Eε(u) =

{∫
M

[
ε |∇u|2

2 − ε−1F (u)
]
dH2 if u ∈ H1(M)

∞ if u ∈ L1(M)\H1(M) .
(4.4)
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Then Γ− limε→0+ Eε = E0 where

E0(u) =

{
λ|Dχ{u=α}|(M) if u ∈ BV (M, {α, β})
∞ otherwise

(4.5)

and

λ =
∫ 1

0

√
F (s) ds . (4.6)

We say that v0 in L1(M) is an L1-local minimizer of the functional Λ0 : L1(M) 7→
R ∪ {∞} if there is r > 0 such that

Λ0(v0) ≤ Λ0(v) whenever 0 < ‖v − v0‖L1(M) < r .

Moreover, if Λ0(v0) < Λ0(v) for 0 < ‖v−v0‖L1(M) < r, then v0 is called an isolated
L1-local minimizer of Λ0.

The next result, which we use for finding a family of minimizers for (1.3), is
due to De Giorgi and can be found in its abstract form in [5]. A proof, with
the hypotheses on F given above, can be found in [16], since the replacement of
Lebesgue measure with Haussdorf measure does not affect the arguments used.

Theorem 4.2. Suppose that a sequence of real-extended functionals {Λε} and Λ0

satisfy
(i) Γ− limε→0+ Λε = Λ0

(ii) Any sequence {vε}ε>0 such that Λε(vε) ≤ C <∞ for all ε > 0, is compact
in L1(M).

(iii) There exists an isolated L1-local minimizer v0 of Λ0.
Then there exist ε0 > 0 and a family {vε}0<ε≤ε0 such that

• vε is an L1-local minimizer of Λε, and
• ‖vε − v0‖L1(M) → 0, as ε→ 0.

The growth condition on F is required in order to have the hypothesis on com-
pactness (ii) satisfied. We also take, without loss of generality, λ = 1 on equation
(4.6).

For any u ∈ BV (M, {α, β}) we denote by γ its boundary curve, i.e., γ = ∂{p ∈
M : u(p) = α}. Similarly, for any such γ there are exactly two distinct functions
in BV (M, {α, β}) with γ as boundary curve. It holds E0(u) = |γ|. Given r > 0
there exists ũ ∈ BV (M, {α, β}) so that γ̃ is the disjoint union of a finite number
of smooth closed curves satisfying

• ‖u− ũ‖BV < r;
• |γ| ≥ |γ̃|.

We set
BVs(M, {α, β})
= {u ∈ BV (M, {α, β}) : γ ⊂M is a smooth 1-dimensional submanifold} .

(4.7)

Now we assume that a simple closed geodesic γ0 is separable, i.e., M− {γ0} has
two components. Let u0 ∈ BVs(M, {α, β}) be the function associated to γ0 so that
u0 = αχMα + βχMβ

with Mi = {p ∈M : u0(p) = i} (i = α, β).

Theorem 4.3. Under the hypotheses and notation of Theorem 1.3 it holds that u0

is an L1(M)-local isolated minimizer of E0.
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Proof. Let V be the neighborhood constructed in preparation for Lemma 2.3. We
choose 0 < δ0 < δ and define V0 = ϕ([−δ0, δ0]×γ0). We claim that any r > 0 with

r < |β − α| δ0 min
{
δ − δ0,

|γ0|
2

}
(4.8)

will verify E0(u) > E0(u0) whenever u ∈ BV (M, {α, β}) and 0 < ‖u− u0‖L1 < r.
The discussion prior to the theorem allows us to restrict our attention to com-

peting functions u ∈ BVs(M, {α, β}). Let γ be the boundary curve of a given u. A
differential topology argument (see [8]) allows us to consider γ in generic position
with ∂V0 and ∂V, or equivalently, γ is transversal to the boundaries of V0 and
V. In particular, each connected component of γ ∩ V0 is diffeomorphic to either
S1 ⊂ intV0 or [0, 1] ⊂ V0 and endpoints contained in ∂V0. We define

D = {σ : σ is a component of γ ∩ V0} ,
I = ∪σ∈Dσ ⊂ γ0 .

Lemma 4.4. Let u ∈ BVs(M, {α, β}) with ‖u− u0‖ < r. Then

|I| > max
{
|γ0| − (δ − δ0),

|γ0|
2

}
.

Proof. For each σ ∈ D, σ is a closed segment of γ0. Hence,

J := γ0 − I = ∪m
i=1Ji ,

where each Ji is an open interval of γ0, and the Ji’s are pairwise disjoint. The
construction leading to J clearly yields

γ ∩ ϕ([−δ0, δ0]× Ji) = ∅ for 1 ≤ i ≤ m.

Therefore, u is constant in ϕ([−δ0, δ0]× Ji). Since u0 switches its value over Ji we
conclude that |u−u0| = |β−α| in one of the regions ϕ([−δ0, 0]×Ji) or ϕ([0, δ0]×Ji).
Applying Lemma 2.3 part (b) we derive

‖u− u0‖L1(ϕ([−δ0,δ0]×Ji)) > |β − α|δ0 |Ji| .

Thus

r > ‖u− u0‖L1 >

m∑
i=1

|β − α|δ0 |Ji| = |β − α|δ0(|γ0| − |I|)

⇒ |I| > |γ0| −
r

|β − α|δ0
.

Together with (4.8) the above inequality readily implies the Lemma. �

We set a little more notation: for any σ ∈ D let ρ = ρ(σ) be the component of
γ that contains σ as an arc. We are led to three cases:

(i) If there is some ρ(σ) 6⊂ V then there is an arc σ̃ ⊂ ρ joining a point of ∂V0 to
a point of ∂V. Lemma 2.3 (part (a)) gives us |σ̃| ≥ δ − δ0 and then

|γ| ≥ |σ̃|+
∑
σ∈D

|σ| ≥ δ − δ0 + |I| > |γ0| ,

in view of Lemma 4.4.
(ii) If there is some ρ(σ) ⊂ V that is freely homotopic to γ0 within V then the

intersection number of ρ with any geodesic ray t 7→ ϕt(x) is ±1. Denoting by ρ̄
the projection of ρ over γ0 we get ρ̄ = γ0. Hence, Lemma 2.3 part (a2) gives us
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|γ| ≥ |ρ| ≥ |γ0|. The strictness |γ| > |γ0| comes from ‖u − u0‖L1 > 0, since there
must be another component ρ′ 6= ρ of γ or ρ is not equal to γ0.

(iii) Assume that neither (i) nor (ii) occurs. If for some σ ∈ D we have ρ̄ = γ0

we conclude similarly to case (ii) above, hence |γ| > |γ0|. Otherwise, let p and q
be points of ρ so that their projections over γ0 are the end points of the segment
ρ̄ ⊂ γ0. Let σ1 and σ2 be the two distinct arcs of ρ joining p and q (σi ⊂ V,
i = 1, 2), with projections respectively σ̄1 and σ̄2. Since the intersection number of
ρ with the ray t 7→ ϕt(x) is 0 we have σ̄1 = σ̄2 = ρ̄. Hence |ρ| = |σ1|+ |σ2| > 2|σ̄1|.
Fixing ρ we see that any σ ∈ D that is an arc of ρ satisfies σ ⊂ σ̄1. Then∣∣ ⋃

σ∈D ,σ⊂ρ

σ
∣∣ ≤ |σ̄1| <

1
2
|ρ| ,

from which we derive

|γ| =
∑

ρ a component of γ

|ρ| > 2|I| > |γ0| . (4.9)

Therefore, E0(u) = |γ| > |γ0| = E0(u0) if 0 < ‖u − u0‖L1 < r and the theorem is
proved. �

Proof of Theorem 1.3. As mentioned before, Theorem 1.3 is just an application of
Theorem 4.2 for Λε = Eε, whose hypotheses we now verify. Indeed (i) is nothing
but Theorem 4.1 and (ii) may be found in [22], for instance. Although the proof of
(ii) in [22] is rendered for M a bounded domain in RN the proof holds equally well
in our case.

As for (iii) it has been verified in Theorem 4.3 above. �

The following result seems to be known, though we have not been able to find
it in the literature. It is a consequence of the procedure used in this section along
with Theorem 1.1.

Lemma 4.5. Let M be a compact Riemann surface with no boundary and having
nonnegative Gaussian curvature. Then M has no closed nonintersecting isolated
minimizing geodesic.
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