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SCHRÖDINGER-POISSON EQUATIONS WITH SUPERCRITICAL
GROWTH

CLAUDIANOR O. ALVES, SÉRGIO H. M. SOARES, MARCO A. S. SOUTO

Abstract. In this article, we study a class of Schrödinger-Poisson equations
in R3 with supercritical growth. We prove the existence of positive solutions,
using variational methods combined with perturbation arguments. The solu-
tions to subcritical Schrödinger-Poisson equations are estimated using the L∞

norm.

1. Introduction

The system
−∆u + V (x)u + φu = |u|p−2u in R3,

−∆φ = u2 in R3
(1.1)

has great importance for describing the interaction of a charged particle with an
electromagnetic field; see for example [2, 3, 4, 12, 17, 18]. Recent studies have
focused attention on existence, nonexistence and symmetry of solutions to (1.1).
However, most of the references presented here are devoted to pure power type
nonlinearities |u|p−2u, where p is a subcritical or critical exponent. For example,
Ruiz [17] studies the subcritical case and shows that if p ≤ 3, the problem (1.1) does
not admit any nontrivial solution, and if 3 < p < 6, there exists a nontrivial radial
solution of (1.1). A multiplicity result for the subcritical case has been established
by Gaetano [12]. The critical case has been treated by Azzollini and Pomponio [3]
and Zhao and Zhao [19].

In this article, we consider the stationary Schrödinger-Poisson system

−∆u + V (x)u + φu = f(u), in R3,

−∆φ = u2, in R3,
(1.2)

where V : R3 → R is a bounded locally Hölder continuous function satisfying:
(V0) There exists α > 0 such that V (x) ≥ α > 0, ∀x ∈ R3.
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(V1) V (x) = V (x + y), for all x ∈ R3, y ∈ Z3.
The function f ∈ C(R, R) can be written as

f(s) = fo(s) + λg(s),

where λ is a positive real parameter, fo and g are locally Hölder continuous functions
satisfying:

(F1) fo(0) = g(0) = 0 and g(s) ≥ 0 for all s;
(F2) lim|s|→0+ fo(s)/s = 0 and lim|s|→0+ g(s)/s = 0;
(F3) There exists q ∈ (4, 2∗), 2∗ = 6, such that

|fo(s)| ≤ |s|q−1, ∀s ∈ R;

(F4) lim|s|→+∞ Fo(s)/s4 = +∞, where Fo(s) =
∫ s

0
fo(t)dt;

(F5) For α > 0 given by (V0), there exists σ ∈ (0, α) such that

sfo(s)− 4Fo(s) ≥ −σs2 and sg(s)− 4G(s) ≥ 0

for all s 6= 0, where G(s) =
∫ s

0
g(t)dt;

(F6) There exists a sequence of positive real numbers, (Mn), converging to +∞
such that

g(s)
sq−1

≤ g(Mn)
Mq−1

n

, for all s ∈ [0,Mn], n ∈ N.

Since u ≡ 0 is a solution of (1.2), the aim of the present article is to prove
the existence of nontrivial solutions for (1.2). However, it should be point out
that we can not apply variational methods directly because the Euler-Lagrange
functional on H1(R3) associated with (1.2) is not well defined in general. Our
technique combines perturbation arguments, estimate for solutions to a subcritical
Schrödinger-Poisson equation in terms of the L∞ norm and the mountain pass
theorem. Our main result is as follows.

Theorem 1.1. Suppose that V satisfies (V0)–(V1), and f satisfies (F1)–(F6).
Then there is a λo > 0 such that (1.2) possesses a positive solution for all λ ≤ λo.

To prove the above theorem, we argue as in Alves and Souto [1]. We first provide
an estimate involving the L∞-norm of a solution related to a subcritical problem.
To do so we modify the nonlinearity obtaining a family of functionals of class C1.
Employing conditions (F1)–(F4), we show that these functionals satisfy uniformly
the geometric hypotheses of the mountain pass theorem. Using this fact and the
estimate, we verify the existence of a sequence in H1(R3) converging weakly to a
solution of (1.2). It is important to stress that our proof does not require a growth
assumption on g; consequently, on f . We observe that the condition (F6) holds if

lim
|s|→+∞

g(s)
sq−1

= +∞.

In particular, f may be f(s) = sq−1 + sp−1, for all p > 6 > q, or f(s) may behave
like es at infinity.

In addition, since the term
∫

R3 φuu2 dx is homogeneous of degree 4, the corre-
sponding Ambrosetti-Rabinowitz condition on f is the following:

(AR) There exists θ > 4 such that

0 < θF (s) ≤ sf(s), ∀s ∈ R.
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This condition is important not only to ensure that the functional I (see (3.2)
below) has the mountain pass geometry, but also to guarantee that the Palais-
Smale, or Cerami, sequences associated with I are bounded. We observe that
f(s) = sq−1 + λ(1 + cos s)sp−1, with 4 < q < 6 ≤ p, satisfies the conditions
(F1)–(F6), but not the Ambrosetti-Rabinowitz condition. Moreover, the function
f considered here does not belong to any class of nonlinearities in the above-cited
papers.

Since we intend to prove the existence of positive solutions, we consider f : R →
R satisfying (F1)–(F6) on [0,+∞) and defined as zero on (−∞, 0].

2. A solution estimate

This section we obtain an estimate involving the L∞ norm of a solution to a
subcritical problem. This result works for any dimension N ≥ 3.

Proposition 2.1. Let v ∈ H1(RN ) be a weak solution of the problem

−∆v + b(x)v = h(x, v), in RN , (2.1)

where h : RN × RN → RN is a continuous functions verifying, for some 2 < q <
2∗ = 2N/(N−2), |h(x, s)| ≤ 2|s|q−1, for all s > 0, and b is a non-negative function
in RN . Then, for all C > 0, there exists a constant k = k(q, C) > 0 such that if
‖v‖2 ≤ C, then ‖v‖∞ ≤ k.

Proof. For each m ∈ N and β > 1, consider

Am = {x ∈ RN : |v|β−1 ≤ m}, Bm = RN \Am,

vm =

{
v|v|2(β−1), in Am,

m2v, in Bm.

Observe that vm ∈ H1(RN ), vm ≤ |v|2β−1 and

∇vm = (2β − 1)|v|2(β−1)∇v in Am, ∇vm = m2∇v in Bm. (2.2)

Using vm as a test function in (2.1), we obtain∫
RN

(∇v∇vm + b(x)vvm) dx =
∫

RN

h(x, v)vm dx.

From (2.2),∫
RN

∇v∇vm dx = (2β − 1)
∫

Am

|v|2(β−1)|∇v|2 dx + m2

∫
Bm

|∇v|2 dx. (2.3)

Let

ωm =

{
v|v|(β−1), in Am,

mv, in Bm.

Then
ω2

m = vvm ≤ |v|2β , 0 ≤ b(x)ω2
m = b(x)vvm, in RN

and
∇ωm = β|v|(β−1)∇v in Am, ∇ωm = m∇v in Bm. (2.4)

Hence, ∫
RN

|∇ωm|2 dx = β2

∫
Am

|v|2(β−1)|∇v|2 dx + m2

∫
Bm

|∇v|2 dx. (2.5)



4 C. O. ALVES, S. H. M. SOARES, M. A. S. SOUTO EJDE-2011/01

From (2.3)-(2.5), we obtain∫
RN

(|∇ωm|2 + b(x)ω2
m) dx−

∫
RN

(∇v∇vm + b(x)vvm) dx

= (β − 1)2
∫

Am

|v|2(β−1)|∇v|2 dx.

From (2.3) and b(x) ≥ 0, we have

(2β − 1)
∫

Am

|v|2(β−1)|∇v|2 dx ≤
∫

RN

(∇v∇vm + b(x)vvm) dx,

and consequently∫
RN

(|∇ωm|2 + b(x)ω2
m) dx ≤ [

(β − 1)2

2β − 1
+ 1]

∫
RN

(∇v∇vm + b(x)vvm) dx.

Since (2.1) holds for v, we have∫
RN

(|∇ωm|2 + b(x)ω2
m) dx ≤ β2

2β − 1

∫
RN

h(x, v)vm dx

and ∫
RN

(|∇ωm|2 + b(x)ω2
m) dx ≤ β2

∫
RN

h(x, v)vm dx, (2.6)

because 2β − 1 > 1. Let E denote the Sobolev space

E =
{
u ∈ H1(RN ) :

∫
RN

b(x)u2 dx < ∞
}

endowed with the norm

‖u‖2 =
∫

RN

(|∇u|2 + b(x)u2) dx.

Throughout the proof, r denotes 2∗ = 2N/(N − 2). Let S be the best constant of
the Sobolev immersion of H1(RN ) in Lr(RN ). Thus,

‖u‖2
r ≤ S

∫
RN

|∇u|2 dx

for every u ∈ H1(RN ). From (2.6) , since |h(x, s)| ≤ 2|s|q−1 for all s > 0, we have[ ∫
Am

|ωm|r dx
]2/r

≤
[ ∫

RN

|ωm|r dx
]2/r

≤ Sβ2

∫
RN

h(x, v)vm dx.

Observing that

h(x, v)vm =
h(x, v)

v
vvm =

h(x, v)
v

w2
m,

we obtain [ ∫
Am

|ωm|r dx
]2/r

≤ 2Sβ2

∫
RN

|v|q−2ω2
m dx.

For q1 such that 1/q1 + (q− 2)/r = 1, it then follows from Hölder’s inequality that[ ∫
Am

|ωm|r dx
]2/r

≤ Sβ2‖v‖q−2
r

[ ∫
RN

|ωm|2q1 dx
]1/q1

.

Since |ωm| ≤ |v|β in RN and |ωm| = |v|β in Am, we have[ ∫
Am

|v|rβ
]2/r

≤ Sβ2‖v‖q−2
r

[ ∫
RN

|v|2q1β dx
]1/q1

.
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By the Monotone Convergence Theorem, we obtain

‖v‖rβ ≤ β1/β(S‖v‖q−2
r )1/(2β)‖v‖2βq1 . (2.7)

Since q < r, we have r > 2q1. Set σ = r/2q1 > 1. Setting β = σ in (2.7), we obtain
2q1β = r and

‖v‖rσ ≤ σ1/σ(S‖v‖q−2
r )1/(2σ)‖v‖r. (2.8)

Taking β = σ2 in (2.7), we obtain 2q1β = rσ and

‖v‖rσ2 ≤ σ2/σ2
(S‖v‖q−2

r )1/(2σ2)‖v‖rσ. (2.9)

From (2.8) and (2.9), we find

‖v‖rσ2 ≤ σ
1
σ + 2

σ2 (S‖v‖q−2
r )

1
2 ( 1

σ + 1
σ2 )‖v‖r. (2.10)

The result is obtained by iteration of the estimate (2.7). Taking β = σj , j =
1, 2, . . . , yields

‖v‖rσm ≤ σ
1
σ + 2

σ2 + 3
σ3 +...+ j

σj (S‖v‖q−2
r )

1
2 ( 1

σ + 1
σ2 + 1

σ3 +...+ 1
σj )‖v‖r. (2.11)

Since the series bellow are convergent and
∞∑

j=1

j

σj
=

σ

(σ − 1)2
,

1
2

∞∑
j=1

1
σj

=
1

2(σ − 1)
,

from (2.11), we have

‖v‖p ≤ σσ/(σ−1)2(S‖v‖q−2
r )

1
2(σ−1) ‖v‖r,

for all p ≥ r. Since b(x) is nonnegative, we have ‖v‖r ≤ S1/2C1/2. Using that

‖v‖∞ = lim
p→+∞

‖v‖p,

we conclude that Proposition 2.1 is valid for

k = σ
σ

(σ−1)2 (Sq/2C(q−2)/2)
1

2(σ−1) S1/2C1/2.

�

3. Auxiliary problem

In this section we study the existence of a solution for the Schrödinger-Poisson
system with subcritical growth. This result will be useful for obtaining our main
result. More precisely, we consider the system

−∆u + V (x)u + φu = h(u), in R3,

−∆φ = u2, in R3,
(3.1)

where V : R3 → R is a bounded locally Hölder continuous that satisfies (V0) and
(V1), and the function h ∈ C(R+, R) and satisfies:

(H1) h(0) = 0;
(H2) lims→0+ h(s)/s = 0;
(H3) There exist C > 0 and p ∈ (4, 6) such that

|h(s)| ≤ C(|s|+ |s|p−1),∀s ∈ R+;

(H4) lims→+∞ H(s)/s4 = +∞, where H(s) =
∫ s

0
h(t)dt;
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(H5) For α > 0 given by (V0), there exists σ ∈ (0, α) such that

sh(s)− 4H(s) ≥ −σs2

for all s 6= 0.
Next we review some of the standard facts on the Schrödinger-Poisson equations

(see [3, 12, 17, 19]). We begin by observing that (3.1) can be transformed into
a Schrödinger equation with a nonlocal term. In fact, by Lax-Milgram theorem,
given u ∈ H1(R3), there exists a unique φ = φu ∈ D1,2(R3) such that

−∆φ = u2.

The function φu has the following properties (see [8]):

Lemma 3.1. (i) There exists C > 0 such that ‖φu‖D1,2(R3) ≤ C‖u‖2 and∫
R3
|∇φu|2 dx =

∫
R3

φuu2 dx ≤ C‖u‖4, ∀u ∈ H1(R3);

(ii) φu ≥ 0, ∀u ∈ H1(R3);
(iii) φtu = t2φu, ∀t > 0, u ∈ H1(R3).
(iv) If y ∈ R3 and ũ(x) = u(x + y), then φũ(x) = φu(x + y) and∫

R3
φũũ2 dx =

∫
R3

φuu2 dx;

(v) if un ⇀ u in H1(R3), then φun ⇀ φu in D1,2(R3).

From (V0), we can see that the H1(R3) norm is equivalent to

‖u‖2 =
∫

R3
(|∇u|2 + V (x)u2) dx.

Let I be the functional on H1(R3) defined by

I(u) =
1
2

∫
R3

(|∇u|2 + V (x)u2) dx +
1
4

∫
R3

φuu2 dx−
∫

R3
H(u) dx. (3.2)

From the conditions on h, the functional I ∈ C1(H1(R3), R) and its Gateaux
derivative is

I ′(u)v =
∫

R3
(∇u · ∇v + V (x)uv) dx +

∫
R3

φuuv dx−
∫

R3
h(u)v dx,

for every u, v ∈ H1(R3). Hence, corresponding to each critical point of I there is a
weak solution of the Schrödinger equation with a nonlocal term:

−∆u + V (x)u + φuu = h(u), in R3. (3.3)

Lemma 3.2. Suppose that V satisfies (V0) and h satisfies (H1)–(H5). If (un) ⊂
H1(R3) is a Cerami sequence of I; i. e., (I(un)) is bounded and (1+‖un‖)I ′(un) →
0, then (un) is bounded in H1(R3).

Proof. From (H5),

4I(un)− I ′(un)(un) = ‖un‖2 +
∫

R3
[(un)h(un)− 4H(un)] dx

≥ ‖un‖2 − σ

∫
R3

u2
n dx ≥

(
1− σ

α

)
‖un‖2.

Since (4I(un)−I ′(un)(un)) is bounded, we conclude that (un) is bounded in H1(R3).
�
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Lemma 3.3. Suppose that V satisfies (V0) and h satisfies (H1)–(H4). Then, there
exist ρ > 0 and e ∈ H1(R3) with ‖e‖ > ρ, such that

b
.= inf
‖u‖=ρ

I(u) > I(0) = 0 ≥ I(e).

Proof. From (H2)–(H3), for each ε > 0 there exists Cε > 0 such that

H(s) ≤ εs2 + Cεs
p, ∀ s ∈ R.

By Sobolev inequalities, there exist positive constants α and β such that

I(u) ≥
[
(
1
2
− εα)− βCε‖u‖p−2

]
‖u‖2

We can assume, by decreasing ε if necessary, that there exist positive numbers b, ρ
such that b = inf{I(u), ‖u‖ = ρ} > I(0) = 0.

From (H4), for any v ∈ H1(R3) and M > (1/4)
∫

R3 φvv2 dx, there exists C > 0
such that H(s) ≥ Ms4 − Cs2, for all s ∈ R. Hence,

I(tv) ≤ (C +
1
2
)‖v‖2t2 −

(
M − 1

4

∫
R3

φvv2 dx
)
t4 → −∞, as t →∞.

Thus, e = tv satisfies ‖e‖ > ρ and I(e) < 0 = I(0), provided t sufficiently large. �

By a version of the mountain pass theorem (see [11]), there is a Cerami sequence
(un) ⊂ H1(R3) such that

I(un) → c and (1 + ‖un‖)I ′(un) → 0,

where

c = inf
γ∈Γ

max
t∈[0,1]

I(γ(t)), Γ = {γ : [0, 1] → H1(R3) : γ(0) = 0, γ(1) = e}.

The main result of this section is the following.

Proposition 3.4. Suppose that V satisfies (V0), (V1), and h satisfies (H1)–(H5).
Then (3.1) possesses a positive solution u such that ‖u‖2 ≤ 4cα/(α − σ), where α
and σ are given by (V0) and (H4) respectively and c is the minimax level associated
with (3.1).

Proof. By Lemma 3.2, we can assume that (un) is weakly convergent to u, for some
u ∈ H1(R3). Taking v ∈ C∞

0 (R3), from Lemma 3.1(v), φun ⇀ φu in D1,2(R3), as
n →∞, and so ∫

R3
φunuv dx →

∫
R3

φuuv dx, as n →∞.

Moreover, using Hölder’s inequality we obtain

|
∫

R3
φun(un − u)v dx| ≤ ‖φun‖L2∗ (R3)‖un − u‖L12/5(Ω)‖v‖L12/5(Ω) = on(1),

where Ω = supp v. Therefore,∫
R3

φun
unv dx−

∫
R3

φuuv dx =
∫

R3
(φun − φu)uv dx +

∫
R3

φun
(un − u)v dx = on(1),

for all v ∈ C∞
0 (R3), which implies

I ′(u)v = 0, for all v ∈ H1(R3).

Consequently, u is a weak solution for (3.3). To conclude the proof, it only remains
to show that u 6= 0. Assume by contradiction that u ≡ 0. By [7, Lemma 2.1] (see
also [16]), we can claim that only one of the following conditions hold:
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(i) For all q ∈ (2, 2∗),

lim
n→+∞

∫
R3
|un|q dx = 0.

(ii) There are positive numbers R and η, and a sequence (yn) ⊂ R3 such that

lim inf
n→+∞

∫
BR(yn)

u2
n dx > η > 0.

If (i) occurs, then from (F2) and (F3), we have

lim
n→+∞

∫
R3

h(un)un dx = 0.

By Lemma 3.1(ii),

‖un‖2 ≤ ‖un‖2 +
∫

R3
φunu2

n dx =
∫

R3
h(un)un dx + on(1).

As a consequence, the sequence (un) is strongly convergent in H1(R3) to 0. Then
I(un) → 0, contrary to I(un) → c > 0. Hence, (ii) is valid. From (V1) we can
assume that yn ∈ ZN . Define

ũn(x) = un(x + yn).

From (V1) again, (ũn) is bounded in H1(R3) and we can clearly assume that (ũn)
is weakly convergent to ũ for some ũ ∈ H1(R3). From (ii), ũ 6= 0. Observing that
Lemma 3.1(iv) implies that

I ′(ũn)ũn = I ′(un)un and I(ũn) = I(un),

hence that (ũn) is a Cerami sequence of I, and finally

I ′(ũ) = 0 with ũ 6= 0,

where we have again used Lemma 3.1(v). It follows that ũ is a nontrivial solution
to (3.3). Using bootstrap arguments and the maximum principle, we can conclude
that the solution ũ is positive.

Finally, to verify that ũ satisfies inequality ‖u‖2 ≤ 4cα/(α−σ), we observe that
from (H5),

4I(ũn)− I ′(ũn)ũn ≥
(
1− σ

α

)
‖ũn‖2, ∀n.

Passing to the limit we obtain

4c = lim inf
n→∞

(4I(ũn)− I ′(ũn)ũn) ≥
(
1− σ

α

)
‖u‖2,

and the proof is complete. �

4. Preliminary results

To establish the existence of a solution to (1.2), we define a sequence of functions
{gn} by setting

gn(s) =


0, if s ≤ 0
g(s), if 0 ≤ s ≤ Mn
g(Mn)

Mq−1
n

sq−1, if s ≥ Mn.
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From (F6), we have

|gn(s)| ≤ g(Mn)
Mq−1

n

|s|q−1 for all s. (4.1)

We conclude from (F3) that fλ,n(s) = fo(s) + λgn(s) satisfies

|fλ,n(s)| ≤ (1 + λg(Mn)Mn)|s|q−1, (4.2)

which implies that the problem

−∆u + V (x)u + φu = fλ,n(u), in R3,

−∆φ = u2, in R3,
(4.3)

is variational for every λ > 0 and n ∈ N. The functional associated with (4.3) is
denoted by Jλ,n : H1(R3)×D1,2(R3) → R and given by

Jλ,n(u, φ)

=
1
2

∫
R3

(|∇u|2 + V (x)u2) dx− 1
4

∫
R3
|∇φ|2 dx +

1
2

∫
R3

φu2 dx−
∫

R3
Fλ,n(u) dx.

We observe that Jλ,n is strongly indefinite. To overcome this difficulty, we introduce
the functional Iλ,n : H1(R3) → R defined by

Iλ,n(u) =
1
2

∫
R3

(|∇u|2 + V (x)u2) dx +
1
4

∫
R3

φuu2 dx−
∫

R3
Fλ,n(u) dx,

with φu being the function defined in Section 3. By (4.2), the functional Iλ,n ∈
C1(H1(R3), R) and its Gateaux derivative is

I ′λ,n(u)v =
∫

R3
(∇u∇v + V (x)uv) dx +

∫
R3

φuuv dx−
∫

R3
fλ,n(u)v dx,

for every u, v ∈ H1(R3). Hence, corresponding to each critical point of Iλ,n there
exists a weak solutions of

−∆u + V (x)u + φuu = fλ,n(u), in R3,

u ∈ H1(R3).
(4.4)

For Fo given by (F4), we introduce an auxiliary Euler-Lagrange functional Io :
H1(R3) → R given by

Io(u) =
1
2
‖u‖2 +

1
4

∫
R3

φuu2 dx−
∫

R3
Fo(u) dx.

From (F1)–(F4) and Lemma 3.1(i,iii), it is standard to check that Io possesses the
geometric hypotheses of the mountain pass theorem (see Lemma 3.3). Then, there
exist e ∈ H1(R3) and co ∈ R such that

co = inf
γ∈Γ

max
t∈[0,1]

Io(γ(t)) > 0,

where
Γ = {γ ∈ C([0, 1],H1(R3)) : γ(0) = 0, γ(1) = e} 6= ∅. (4.5)

Since fλ,n satisfies conditions (H1)–(H5) of Proposition 3.4, for every λ > 0 and
n ∈ N, and V satisfies (V0)–(V1), the problem (4.4) has a positive solution such
that uλ,n ∈ H1(R3) and

‖uλ,n‖2 ≤ cλ,nα/(α− σ)
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where cλ,n = infγ∈Γ maxt∈[0,1] Iλ,n(γ(t)) and Γ is defined by (4.5) and is indepen-
dent of λ and n. In fact, since g(s) ≥ 0 for all s, we have Fλ,n(s) ≥ Fo(s). Hence

Iλ,n(v) ≤ Io(v), for all v ∈ H1(R3). (4.6)

In particular, Iλ,n(e) ≤ Io(e) < 0. Thus, Γ is independent of λ and n. Moreover,
from (4.6), we have

cλ,n ≤ co. (4.7)

5. Proof of Theorem 1.1

Our proof consists in finding n, λ and a positive solution u of (4.3) such that
u(x) ≤ Mn, for all x ∈ R3. It is immediate that u and φ = φu solve problem (1.2).

For k = k(q, 4coα/(α−σ)) given by Proposition 2.1, we fix n such that M2
n > k.

Let λo > 0 be such that λog(Mn)Mn ≤ 1. From (4.2), we have

|fλ,n(s)| ≤ 2|s|q−1, ∀s.
By Proposition 3.4, there exists a solution u = uλ,n of (4.3) such that ‖u‖2 ≤
4cλ,nα/(α− σ). Combining this inequality with (4.7), yields

‖u‖2 ≤ 4cλ,nα/(α− σ) ≤ 4coα/(α− σ).

Invoking Lemma 3.1(ii), we conclude that φu ≥ 0 and consequently V (x) + φu is
a non-negative function. Using Proposition 2.1, with b(x) = V (x) + φu, we obtain
that ‖u‖∞ ≤ K, for some K = K(q, co) > 0, and the proof is complete.
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