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p-HARMONIOUS FUNCTIONS WITH DRIFT ON GRAPHS VIA
GAMES

ALEXANDER P. SVIRIDOV

Abstract. In a connected finite graph E with set of vertices X, choose a
nonempty subset, not equal to the whole set, Y ⊂ X, and call it the boundary
Y = ∂X. Given a real-valued function F : Y → R, our objective is to find a
function u, such that u = F on Y , and for all x ∈ X \ Y ,

u(x) = α max
y∈S(x)

u(y) + β min
y∈S(x)

u(y) + γ
“ P

y∈S(x) u(y)

#(S(x))

”
.

Here α, β, γ are non-negative constants such that α+β +γ = 1, the set S(x) is
the collection of vertices connected to x by an edge, and #(S(x)) denotes its
cardinality. We prove the existence and uniqueness of a solution of the above
Dirichlet problem and study the qualitative properties of the solution.

1. Introduction

The goal of this paper is to study functions that satisfy

u(x) = α max
y∈S(x)

u(y) + β min
y∈S(x)

u(y) + γ
(∑

y∈S(x) u(y)

#(S(x))

)
. (1.1)

We denote a graph by E and the collection of vertices by X. We choose Y to be
a proper nonempty subset of X and call it the boundary. In equation (1.1) the set
S(x) is the collection of vertices connected to the given vertex x by a single edge,
and α, β and γ are predetermined non-negative constants such that α + β + γ = 1.
The cardinality of S(x) is denoted by #S(x) . A function satisfying (1.1) is called
p-harmonious with drift, by analogy with continuous case studied in [5]. Functions
of this type arise as approximations of p-harmonic functions. In particular, an
approximating sequence could be generated by running zero-sum stochastic games
on a graph of decreasing step-size. The value of the game function satisfies a
nonlinear equation, which is directly linked to the existence and uniqueness of the
solution of the p-Laplacian as demonstrated in [9, 8, 4]. We present the connections
between equation (1.1) and game theory in Theorem 5.1.

We formally pose the Dirichlet problem: For a given F : Y → R find a function
u defined on X, such that u = F on Y and u satisfies (1.1). We address questions
of existence and uniqueness of the solution of this Dirichlet problem in Theorems
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3.1 and 4.1. We state the strong comparison principle in Theorem 6.1. We also
study the question of unique continuation for p-harmonious functions with drift.
In particular we present an example of p-harmonious function which does not have
the unique continuation property. The current manuscript is based on the results
obtained in [10].

The equation (1.1) can be restated in a more traditional notation with the help
of the following definitions, which we borrowed from [1].

Definition 1.1. The Laplace operator on the graph is given by

∆u(x) = −
∫

S(x)

u− u(x).

Definition 1.2. The infinity Laplacian on the graph is given by

∆∞u(x) =
1
2
(max

S(x)
u + min

S(x)
u)− u(x).

Definition 1.3. For X = (x, y, z) ∈ R3 we define the analog of the maximal
directional derivative

〈X〉∞ = max{x, y, z}.

With the above definitions we can restate (1.1) as

(α− β)〈∇u〉∞ + 2β∆∞u + γ∆u = 0. (1.2)

2. Game setup and definitions

Most of our results are proved using the following game. We consider a connected
graph E with vertex set X. The set X is finite unless stated otherwise. We equip X
with the σ-algebra F of all subsets of X. For an arbitrary vertex x we define S(x)
the collection of vertices, which are connected to the vertex x by a single edge. In
case X is infinite, we require that X is at least locally finite; i.e. the cardinality of
S(x) is finite. At the beginning of the game a token is placed at some point x0 ∈ X.
Then we toss a three-sided virtual coin. The side of a coin labelled 1 comes out
with probability α and in this case player I chooses where to move the token among
all vertices in S(x). The side of a coin labelled 2 comes out with probability β and
in this case player II chooses where to move the token among all vertices in S(x).
Finally, the side of a coin labelled 3 comes out with probability γ and in this case
we choose the next point randomly (uniformly) among all vertices in S(x). This
setup has been described in [9] and in [7] and is known as “biased tug-of-war with
noise”. The game stops once we hit the boundary set Y . The set Y is simply
predetermined non-empty set of vertices at which game terminates. In the game
literature the set Y is called set of absorbing states. Let F : Y → R be the payoff
function defined on Y . If game ends at some vertex y ∈ Y , then player I receives
from player II the sum of F (y) dollars.

Let us define the value of the game for player I. Firstly, we formalize the notion
of a pure strategy. We define a strategy SI for player I as a collection of maps
{σk

I }k∈N, such that for each k,

σk
I : Xk → X,

σk
I (x0, . . . , xk−1) = xk,
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where
Xk = X× X× · · · × X︸ ︷︷ ︸

k times

.

Hence, σk
I tells player I where to move given (x0, . . . , xk−1) - the history of the game

up to the step k, if he wins the toss. We call a strategy stationary if it depends
only on the current position of the token. Given two strategies for player I and II
the transition probabilities for k ≥ 1 are given by

πk(x0, . . . , xk−1; y) = αδσk
I (x0,...,xk−1)

(y) + βδσk
II(x0,...,xk−1)

(y) + γUS(xk−1)(y),

where we have set

US(xk−1) is a uniform distribution on S(xk−1) and π0(y) = δx0(y).

We equip Xk with product σ-algebra Fk,

Fk = F ⊗ F ⊗ · · · ⊗ F︸ ︷︷ ︸
k times

and then we define a probability measure on (Xk,Fk) in the following way:

µ0 = π0 = δx0 ,

µk(Ak ×A) =
∫

Ak

πk(x0, . . . , xk−1;A)dµk−1,

where Ak−1 × A is a rectangle in (Xk,Fk). The space of infinite sequences with
elements from X is X∞. Let Xk : X∞ → X be the coordinate process defined by

Xk(h) = xk, for h = (x0, x1, x2, x3, . . . ) ∈ X∞.

We equip X∞ with product σ-algebra F∞. For precise definition of F∞ see [2].
The family of {µk}k≥0 satisfies the conditions of Kolmogorov extension theorem

[11], therefore, we can conclude that there exists a unique measure Px0 on (X∞,F∞)
with the following property:

Px0(Bk × X× X××X . . . ) = µk(Bk), for Bk ∈ Fk (2.1)

and

Px0 [Xk ∈ A|X0 = x0, X1 = x1, . . . , Xk−1 = xk−1] = πk(x0, . . . , xk−1;A). (2.2)

We are now ready to define the value of the game for player I. The boundary hitting
time is given by

τ = inf
k
{Xk ∈ Y }.

Consider strategies SI and SII for player I and player II respectively. We define

F x
−(SI , SII) =

{
Ex

SI ,SII
[F (Xτ )] if Px

SI ,SII
(τ < ∞) = 1

−∞ otherwise
(2.3)

F x
+(SI , SII) =

{
Ex

SI ,SII
[F (Xτ )] if Px

SI ,SII
(τ < ∞) = 1

+∞ otherwise
(2.4)

The value of the game for player I is

uI(x) = sup
SI

inf
SII

Fx
−(SI , SII)
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and the value of the game for player II is

uII(x) = inf
SII

sup
SI

Fx
+(SI , SII)

These definitions penalize players severely for not being able to force the game to
end. Whenever player I has a strategy to finish the game almost surely, then we
simplify notation by setting

uI(x) = sup
SI

inf
SII

Ex
SI ,SII

[F (Xτ )].

Similarly, for player II we set

uII(x) = inf
SII

sup
SI

Ex
SI ,SII

[F (Xτ )].

The following lemma states rigorously whether player I has a strategy to finish the
game almost surely:

Lemma 2.1. If X is a finite set, then player I (player II) has strategies to finish
the game almost surely.

Proof. When γ = 0, this result was already proven by Peres, Schramm, Sheffield,
and Wilson in [9, Theorem 2.2]. When γ 6= 0, the statement follows from the fact
that random walk on a finite graph is recurrent. �

We always have uI(x) ≤ uII(x). Whenever uI(x) = uII(x) for all x ∈ X we say
that game has a value.

3. Existence

Here is the first existence result for equation (1.1).

Theorem 3.1 (Dynamic Programming Principle equals Mean Value Property).
The value functions uI and uII satisfy the Dynamic Programming Principle (DPP)
or the Mean Value Property (MVP):

uI(x) = α max
y∈S(x)

uI(y) + β min
y∈S(x)

uI(y) + γ −
∫

S(x)

uI(y)dy, (3.1)

uII(x) = α max
y∈S(x)

uII(y) + β min
y∈S(x)

uII(y) + γ −
∫

S(x)

uII(y)dy. (3.2)

The above result is true in the general setting of discrete stochastic games (see
Maitra and Sudderth, [3, chapter 7]). Here we provide a simpler proof in Markovian
case. It turns out that optimal strategies are Markovian (see [3, chapter 5]).

Proposition 3.2 (The stationary case). In a game with stationary strategies the
value functions uI and uII satisfy the Dynamic Programming Principle (DPP) or
the Mean Value Property (MVP):

uI(x) = α max
y∈S(x)

uI(y) + β min
y∈S(x)

uI(y) + γ −
∫

S(x)

uI(y)dy, (3.3)

uII(x) = α max
y∈S(x)

uII(y) + β min
y∈S(x)

uII(y) + γ −
∫

S(x)

uII(y)dy. (3.4)
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Proof. We will provide a proof only for uI ; the proof for uII follows by symmetry.
Take a set of vertices X, boundary Y and adjoin one vertex y∗ to the boundary.
Denote new boundary by Y ∗ = Y ∪{y∗} and the new set of vertices by X∗ = X\{y∗}
and define

F ∗(y) =

{
F (y) if y ∈ Y

uI(y∗) if y = y∗.
(3.5)

Let uI(x) be the value of the game with X and Y , and u∗I(x) be the value of the
game with X∗ and Y ∗. The goal is to show that

u∗I(x) = uI(x).

Once we prove the above, the main result follows by extending F to the set S(x).

Remark 3.3. The idea of extending F is used in [9, Lemma 3.5]

Hence, we have to show u∗I(x) = uI(x). Since we consider only Markovian
strategies we can think of them as mappings SI : X → X. For the game X∗ and
Y ∗, we define S∗I as a restriction of SI to X∗ Here are the steps in detail:

u∗I(x) = sup
S∗I

inf
S∗II

(
Ex

S∗I ,S∗II
F ∗(Xτ∗)

)
= sup

S∗I

inf
S∗II

(
Ex

S∗I ,S∗II
F ∗(Xτ∗)χ{Xτ∗=y∗} + Ex

S∗I ,S∗II
F ∗(Xτ∗)χ{Xτ∗=y∗}c

)
= sup

S∗I

inf
S∗II

(
Ex

S∗I ,S∗II
uI(y∗)χ{Xτ∗=y∗} + Ex

S∗I ,S∗II
F ∗(Xτ∗)χ{Xτ∗=y∗}c

)
= sup

S∗I

inf
S∗II

(
Ex

S∗I ,S∗II
sup
SI

inf
SII

Ey∗

SI ,SII
F (Xτ )χ{Xτ∗=y∗}

+ Ex
S∗I ,S∗II

F ∗(Xτ∗)χ{Xτ∗=y∗}c

)
= sup

S∗I

inf
S∗II

sup
SI

inf
SII

(
Ex

S∗I ,S∗II

(
Ey∗

SI ,SII
F (Xτ )

)
χ{Xτ∗=y∗}

+ Ex
S∗I ,S∗II

F ∗(Xτ∗)χ{Xτ∗=y∗}c

)
.

(3.6)

If we can show that

sup
S∗I

inf
S∗II

sup
SI

inf
SII

(
Ex

S∗I ,S∗II

(
Ey∗

SI ,SII
F (Xτ )

)
χ{Xτ∗=y∗}

+ Ex
S∗I ,S∗II

F ∗(Xτ∗)χ{Xτ∗=y∗}c

)
= sup

S∗I

inf
S∗II

sup
SI

inf
SII

(
Ex

SI ,SII
F (Xτ )χ{Xτ∗=y∗} + Ex

SI ,SII
F (Xτ )χ{Xτ∗=y∗}c

)
.

(3.7)

We can complete the proof in the following way:

u∗I(x) = sup
S∗I

inf
S∗II

sup
SI

inf
SII

(
Ex

SI ,SII
F (Xτ )χ{Xτ∗=y∗} + Ex

SI ,SII
F (Xτ )χ{Xτ∗=y∗}c

)
= sup

SI

inf
SII

sup
S∗I

inf
S∗II

(
Ex

SI ,SII
F (Xτ )χ{Xτ∗=y∗} + Ex

SI ,SII
F (Xτ )χ{Xτ∗=y∗}c

)
= sup

SI

inf
SII

(
Ex

SI ,SII
F (Xτ )χ{Xτ∗=y∗} + Ex

SI ,SII
F (Xτ )χ{Xτ∗=y∗}c

)
= sup

SI

inf
SII

Ex
SI ,SII

F (Xτ ) = uI(x).
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Let us clarify (3.7). Actually, we have the following two equalities

Ex
S∗I ,S∗II

Ey∗

SI ,SII
F (Xτ )χ{Xτ∗=y∗} = Ex

SI ,SII
F (Xτ )χ{Xτ∗=y∗}, (3.8)

Ex
S∗I ,S∗II

F ∗(Xτ∗)χ{Xτ∗=y∗}c = Ex
SI ,SII

F (Xτ )χ{Xτ∗=y∗}c (3.9)

Equation (3.8) could be thought of as payoff computed for the trajectories that
travel through a point y∗. Roughly speaking we first discount boundary points to
the point y∗ and then discount value at y∗ back to x which is the same as to discount
boundary points to x through trajectories that contain y∗, keeping in mind that S∗i
is just a restriction of Si. Equation (3.9) is a payoff computed for the trajectories
that avoid y∗, and, therefore, there is no difference between S∗i and Si, since S∗i is
just a restriction of Si to X \ {y∗}. �

The following proposition is an extension of the result stated in [6]. It charac-
terizes optimal strategies. By optimal strategies we mean any pair of strategies ŜI

and ŜII such that

Ex
ŜI ,ŜII

F (Xτ ) = sup
SI

inf
SII

Ex
SI ,SII

F (Xτ ) = uI = uII . (3.10)

Proposition 3.4. Consider a game on the graph E with finite set of vertices X.
Then the the strategy ŜI (ŜII) under which player I (player II) moves from vertex
x to vertex z with

u(z) = max
y∈S(x)

u(y), (u(z) = min
y∈S(x)

u(y))

is optimal.

Proof. Let us start the game at vertex x (X0 = x). We claim that under strategies
ŜI and ŜII uI(Xk) is a martingale due to following arguments:

Ex
ŜI ,ŜII

[uI(Xk)|X0, . . . , Xk−1]

= αuI(XI
k) + βuI(XII

k ) + γ −
∫

S(Xk−1)

uI(y)dy

= α max
y∈S(Xk−1)

uI(y) + β min
y∈S(Xk−1)

uI(y) + γ −
∫

S(Xk−1)

uI(y)dy

= uI(Xk−1),

(3.11)

where v(XI
k) indicates the choice of player I and v(XII

k ) indicates the choice of
player II. Then

uI(XII
k ) = min

y∈S(Xk−1)
uI(y), uI(XII

k ) = max
y∈S(Xk−1)

uI(y)

by choice of strategies ŜI and ŜII . In addition, since uI is a bounded function,
we conclude that uI(Xk) is a uniformly integrable martingale. Hence, by Doob’s
Optional Stopping Theorem

Ex
ŜI ,ŜII

F (Xτ ) = Ex
ŜI ,ŜII

uI(Xτ ) = Ex
ŜI ,ŜII

uI(X0) = uI(x), (3.12)

�

Example 3.5. We would like to warn the reader that the Proposition 3.4 does
not claim that tugging towards that maximum of F on the boundary would be an
optimal strategy for player I. Figure 1 shows a counterexample.
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−1

e0

��

OO

e1//oo 3/2//oo

1
��

OO

Figure 1. Counterexample - tugging towards the boundary

The boundary vertices are indicated by the numbers, which reflect the value of
F at each vertex. We consider the game starting at vertex e0 and require player
II always pull towards the vertex labelled -1. For player I we choose Sa

I to be the
strategy of always tugging towards vertex 3/2 and let Sb

I be the strategy of moving
towards vertex 1. We see that

Ee0
Sa

I ,SII
F (Xτ ) = −1 · 2/3 + 3/2 · 1/3 = −1/6, (3.13)

Ee0
Sb

I ,SII
F (Xτ ) = −1 · 1/2 + 1 · 1/2 = 0 . (3.14)

4. Uniqueness

Uniqueness will follow from the comparison principle below proven by using
Doob’s Optional Sampling Theorem.

Theorem 4.1 (via Martingales). Let v be a solution of

v(x) = α max
y∈S(x)

v(y) + β min
y∈S(x)

v(y) + γ −
∫

S(x)

v(y)dy (4.1)

on a graph E with a countable set of vertices X and boundary Y . Assume
• F (y) = uI(y), for all y ∈ Y ,
• infY F > −∞,
• v bounded from below, and
• v(y) ≥ F (y), for all y ∈ Y

Then uI is bounded from below on X and v(x) ≥ uI(x), for x ∈ X.

Proof. Note that we only need “≤” in equation (4.1). The theorem says that uI

is the smallest super-solution with given boundary value F . We proceed as in [9,
Lemma 2.1]. Since the game ends almost surely,

uI ≥ inf
Y

F > −∞

which proves that uI is bounded from below. Now we have to show that

v(x) ≥ sup
SI

inf
SII

F x
−(SI , SII) = uI(x)

If we fix an arbitrary strategy SI , then we have to show that

v(x) ≥ inf
SII

F x
−(SI , SII). (4.2)

Consider a game that start at vertex x (X0 = x). We have two cases
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Case 1: If our fixed SI cannot force the game to end a.s. (i.e. Px
SI ,SII

(τ <

∞) < 1), then by the definition of F−, infSII
F x
−(SI , SII) = −∞ and the inequality

(4.2) holds.
Case 2: Now assume that our fixed SI forces the game to end despite all

the efforts of the second player. Let player II choose a strategy of moving to
miny∈S(x) v(y) - denote such a strategy ŜII . If we prove that v(Xk) is a super-
martigale bounded from below, then we can finish the proof by applying Doob’s
Optional Stopping Theorem:

inf
SII

Ex
SI ,SII

F (Xτ ) ≤ Ex
SI ,ŜII

F (Xτ ) ≤ Ex
SI ,ŜII

v(Xτ )

≤ Ex
SI ,ŜII

v(X0) = v(X0) = v(x),

where we have used Fatou’s lemma. The result follows upon taking supSI
. Hence,

we only need to prove that v(Xk) is a supermartingale under measure Px
SI ,ŜII

:

Ex
SI ,ŜII

[v(Xk)|X0, . . . , Xk−1]

= αv(XI
k) + βv(XII

k ) + γ −
∫

S(Xk−1)

v(y)dy

≤ α max
y∈S(Xk−1)

v(y) + β min
y∈S(Xk−1)

v(y) + γ −
∫

S(Xk−1)

v(y)dy = v(Xk−1),

where v(XI
k) indicates the choice of player I and v(XII

k ) indicates the choice of
player II. Then v(XII

k ) = miny∈S(Xk−1) v(y) by choice of strategy for player II. �

In case miny∈S(Xk−1) v(y) is not achieved (i.e. graph is not locally finite), we
need to modify the above proof by making player II move within ε neighborhood
of miny∈S(Xk−1) v(y). We can prove similar result for uII . The next theorem is the
extension of the result obtained in [5].

Theorem 4.2. If graph E is finite and F is bounded below on Y , then uI = uII ,
so the game has a value.

Proof. Clearly, finite E implies that F is bounded below. We included this redun-
dant statement to suggest future possible extensions to an uncountable graph. We
know that uI ≤ uII always holds, so we only need to show uI ≥ uII . Assume F
is bounded below. Similar to the proof of Lemma 4.1 we can show that uI is a
supermartingale bounded below by letting player I to choose an arbitrary strat-
egy SI and requiring player II always move to miny∈S(x) uI(y) from x - strategy
ŜII . For simplicity of the presentation we consider a case when miny∈S(x) uI(y) is
achievable, for the general case we have to employ ε, like in Theorem 4.1. We start
the game at x, so X0 = x. Recall uII(x) = infSII

supSI
F+(SI , SII)

uII(x) ≤ sup
SI

Ex
SI ,ŜII

[F (Xτ )] (since E is finite)

= sup
SI

Ex
SI ,ŜII

[uI(Xτ )]

≤ sup
SI

Ex
SI ,ŜII

[uI(X0)] = uI(x).

Due to Doob’s Optional Stopping Theorem. �
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5. Connections among games, partial differential equations and DPP

This section summarizes some previous results and presents new prospectives on
known issues.

Theorem 5.1. Assume we are given a function u on the set of vertices X and
consider a strategy ŜI (ŜII) where player I (player II) moves from vertex x to
vertex z with

u(z) = max
y∈S(x)

u(y) (u(z) = min
y∈S(x)

u(y)).

Then the following two statements are equivalent:

• the process u(Xn) is a martingale under the measure induced by strategies
ŜI and ŜII ,

• the function u is a solution of Dirichlet problem (1.1).

In addition, u(Xn) is a martingale under the measure induced by strategies ŜI and
ŜII implies that ŜI and ŜII are the optimal strategies.

Proof. Suppose that u(Xn) is a martingale under measure induced by strategies ŜI

and ŜII . Fix an arbitrary point x ∈ X and consider a game which starts at x = X0,
then

Ex
ŜI ,ŜII

[u(X1)|X0] = αu(XI
1 ) + βu(XII

1 ) + γ −
∫

S(X0)

u(y)dy

= α max
y∈S(X0)

u(y) + β min
y∈S(X0)

+γ −
∫

S(X0)

u(y)dy

= u(X0).

(5.1)

Conversely, assume that u solves Dirichlet problem (1.1), then (5.1) implies that
u(Xn) is a martingale under measure induced by strategies ŜI and ŜII .

Let us show a final implication. The result relies on the fact that our game has
a value and value of game function is the solution of the Dirichlet problem (1.1).
Since u(Xn) is a martingale under measure induced by strategies ŜI and ŜII we
have

Ex
ŜI ,ŜII

F (Xτ ) = Ex
ŜI ,ŜII

u(Xτ ) = Ex
ŜI ,ŜII

u(X0) = u(x). (5.2)

By the uniqueness result (Theorem 4.1)

u(x) = sup
SI

inf
SII

Ex
SI ,SII

F (Xτ ). (5.3)

�

6. Strong comparison principle

Theorem 6.1. Assume that u and v are solutions of equation (1.1) on X \ Y ,
γ 6= 0, u ≤ v on the boudary Y , and exists x ∈ X such that u(x) = v(x), then u = v
through the whole X.
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Proof. By Theorem 4.1 from the fact that u ≤ v on the boundary we know that
u ≤ v on X. By definition of p-harmonious function we have

v(x) = α max
y∈S(x)

v(y) + β min
y∈S(x)

v(y) + γ −
∫

S(x)

v(y)dy, (6.1)

u(x) = α max
y∈S(x)

u(y) + β min
y∈S(x)

u(y) + γ −
∫

S(x)

u(y)dy. (6.2)

Since u ≥ v on X we know that

max
y∈S(x)

v(y) ≤ max
y∈S(x)

u(y),

min
y∈S(x)

v(y) ≤ min
y∈S(x)

u(y),

−
∫

S(x)

v(y)dy ≤ −
∫

S(x)

u(y)U(dy).

But since u(x) = v(x), we actually have equalities

max
y∈S(x)

v(y) = max
y∈S(x)

u(y),

min
y∈S(x)

v(y) = min
y∈S(x)

u(y), −
∫

S(x)

v(y)dy = −
∫

S(x)

u(y)dy.

From equality of average values and the fact that u ≥ v we conclude that u = v on
S(x). Since our graph is connected, we immediately get the result. �

7. Remarks on unique continuation

We can pose the following question. Let E be a finite graph with the vertex
set X and let BR(x) be the ball of radius R contained within this graph. Here we
assign to every edge of the graph length one and let

d(x, y) = inf
x∼y

{|x ∼ y|},

where x ∼ y is the path connecting vertex x to the vertex y and |x ∼ y| is the
number of edges in this path. Assume that u is a p-harmonious function on X and
u = 0 on BR(x). Does this mean that u = 0 on X? It seems like the answer to this
question depends on the values of u on the boundary Y , as well as properties of the
graph E itself. Here we can provide simple examples for particular graph, which
shows that u does not have to be zero through the whole X. See tables 1 and 2.
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