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CENTERS ON CENTER MANIFOLDS IN A QUADRATIC
SYSTEM OBTAINED FROM A SCALAR THIRD-ORDER

DIFFERENTIAL EQUATION

WARLEY FERREIRA DA CUNHA, FABIO SCALCO DIAS, LUIS FERNANDO MELLO

Abstract. We give affirmative answers to two questions concerning the exis-
tence of centers on local center manifolds at equilibria of a quadratic system
in the three dimensional space. These questions were posed by Dias and Mello
[1] when studying a scalar third-order differential equation.

1. Introduction

Dias and Mello [1] studied the stability and bifurcations in the dynamics of the
third-order differential equation

x′′′ + f(x) x′′ + g(x)x′ + h(x) = 0, (1.1)

where f, g, h : R → R are

f(x) = a1x + a0, g(x) = b1x + b0, h(x) = c2x
2 + c1x + c0, (1.2)

with a1, a0, b1, b0, c2, c1, c0 ∈ R, c2 6= 0. From the natural definition of the variables
y = x′ and z = x′′, differential equation (1.1) can be written as the system of
nonlinear differential equations

x′ = P (x, y, z) = y,

y′ = Q(x, y, z) = z,

z′ = R(x, y, z) = −
(
(a1x + a0)z + (b1x + b0)y + c2x

2 + c1x + c0

)
,

(1.3)

where (x, y, z) ∈ R3 are the state variables and (a0, a1, b0, b1, c0, c1, c2) ∈ R7, c2 6= 0,
are real parameters. The choice of real affine functions f and g and a quadratic
function h implies that the vector field that defines (1.3),

X (x, y, z) = (P (x, y, z), Q(x, y, z), R(x, y, z)) , (1.4)

is a quadratic vector field. So, system (1.3) is a quadratic system of differential
equations in R3.

2000 Mathematics Subject Classification. 34C40, 34C15, 34C60, 34C25.
Key words and phrases. Center; center manifold; invariant algebraic surface; quadratic system.
c©2011 Texas State University - San Marcos.
Submitted September 29, 2011. Published October 19, 2011.

1



2 W. F. DA CUNHA, F. S. DIAS, L. F. MELLO EJDE-2011/136

Despite its simplicity, (1.3) has a rich local dynamical behavior presenting several
degenerate bifurcations. See [1] for more details. Define the following two curves
in the space of parameters of system (1.3) (see [1, figures 1 and 2])

L2 = {a0 = 1/b0, a1 = 0, b0 > 0, b1 = 2b0, c0 = 0, c1 = c2 = 1},
L3 = {a0 = 0, a1 > 0, b0 = 1/a1, b1 = 0, c0 = 0, c1 = c2 = 1}.

It was shown in [1] that for parameters in L2 the Jacobian matrix of X at the
equilibrium point E0 = (0, 0, 0) presents one negative real eigenvalue and a pair of
purely imaginary eigenvalues,

λ1 = − 1
b0

, λ2,3 = ±i
√

b0,

and the first four Lyapunov coefficients vanish. Analogously, for parameters in L3

the Jacobian matrix of X at the equilibrium point E1 = (−1, 0, 0) presents one
positive real eigenvalue and a pair of purely imaginary eigenvalues,

θ1 = a1, θ2,3 = ±i/
√

a1,

and the first four Lyapunov coefficients vanish too.
In the study of local and global bifurcations of system (1.3) in [1], the following

two questions were posed.

Question 1.1. Consider system (1.3) with parameters in L2. Is the equilibrium
point E0 a center for the flow of system (1.3) restricted to the center manifold?

Question 1.2. Consider system (1.3) with parameters in L3. Is the equilibrium
point E1 a center for the flow of system (1.3) restricted to the center manifold?

The study of stability of equilibrium points is an interesting subject of research;
for recent developments see [4, 5]. However, the stability of degenerate equilibrium
points is very difficult. The present article may contribute to the understanding
of degenerate equilibrium points of system (1.3), by giving affirmative answers the
two questions above.

2. Answers to Questions 1.1 and 1.2

For parameters in L2 (L3, respectively) system (1.3) has a nonhyperbolic equi-
librium point at E0 (E1, respec.). By the Center Manifold Theorem, see [2], there
is a two dimensional invariant manifold W c

0 (W c
1 , respec.) in a neighborhood of E0

(E1, respec.) that is tangent to the center eigenspace Ec
0 at E0 (Ec

1 at E1, respec.)
and contains all the local recurrent behavior of the system. The center manifold
W c

0 (W c
1 , respec.) is attracting (repelling, respec.) since λ1 < 0 (θ1 > 0, respec.).

Our answers to Questions 1.1 and 1.2 are based on the existence of invariant
algebraic surfaces for system (1.3): a polynomial F (x, y, z) defines an invariant
algebraic surfaceA = F−1(0) for system (1.3) if and only if there exists a polynomial
K(x, y, z), called the cofactor of F , such that XF = KF . See [3] and the references
therein.

Theorem 2.1. For parameters in L2 system (1.3) has an invariant algebraic sur-
face Ab0 = F−1

b0
(0), b0 > 0, where

Fb0(x, y, z) = b0x + z + b0x
2. (2.1)

Furthermore, W c
0 ⊂ Ab0 and the flow of system (1.3) restrict to Ab0 has a center

at E0.
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Proof. For parameters in L2 we have

Xb0 =
(
y, z,−

(
x + b0y +

1
b0

z + x2 + 2b0xy
))

. (2.2)

It is simple to see that Xb0Fb0 = KFb0 for Fb0 in (2.1) and the cofactor K(x, y, z) =
−1/b0. Therefore, Ab0 = F−1

b0
(0) is an invariant algebraic surface of the system

defined by (2.2) for each b0 > 0. It is immediate that E0 ∈ Ab0 . The center
eigenspace Ec

0 at E0 is spanned by the vectors

V 1
b0 =

(
− 1/b0, 0, 1

)
, V 2

b0 =
(
0,−1/

√
b0, 0

)
.

The gradient of Fb0 at E0 is given by ∇Fb0(E0) = (b0, 0, 1). Hence ∇Fb0(E0) is
orthogonal to V 1

b0
and V 2

b0
. This implies that W c

0 ⊂ Ab0 .

1
E

0
E

Figure 1. Phase portrait of system (2.3). The equilibrium E0 is
a center while the equilibrium E1 is a saddle. Note a homoclinic
loop at E1 bounding the center region

Solving Fb0 = 0 for the variable z in terms of x and substituting into the first and
second equations of the system defined by (2.2) we have the differential equations

x′ = y, y′ = −b0x− b0x
2, (2.3)

which is a Hamiltonian system with Hamiltonian function

H(x, y) =
b0

2
x2 +

1
2
y2 +

b0

3
x3.

The phase portrait of this system is illustrated in Figure 1 which can be viewed as
the projection in the plane xy of the phase portrait of the system defined by (2.2)
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on the invariant algebraic surface Ab0 for each b0 > 0. The phase portrait of the
system defined by (2.2) on Ab0 is depicted in Figure 2. The proof is complete. �

The affirmative answer to Question 1.1 follows from Theorem 2.1.

Figure 2. Phase portrait of the system defined by (2.2) on Ab0

in a neighborhood of the equilibrium E0

To give an affirmative answer to Question 1.2 we make the change of variables
(x̄, ȳ, z̄) = (x, y, z)− (−1, 0, 0); that is, we translate the equilibrium E1 = (−1, 0, 0)
to Ē1 = (0, 0, 0).

Theorem 2.2. For parameters in L3 system (1.3) with the above change of vari-
ables has an invariant algebraic surface Aa1 = F−1

a1
(0), a1 > 0, where

Fa1(x, y, z) = x + a1z. (2.4)

Furthermore, W c
1 ⊂ Aa1 and the flow of system (1.3), with the above change of

variables, restrict to Aa1 has a center at Ē1.

Proof. For parameters in L3, with the change of variables (x̄, ȳ, z̄) = (x, y, z) −
(−1, 0, 0) and dropping the bars we have

Xa1 =
(
y, z,−

(
− x +

1
a1

y − a1z + x2 + a1xz
))

. (2.5)

It is simple to see that Xa1Fa1 = KFa1 for Fa1 in (2.4) and the cofactor K(x, y, z) =
a1 − a1x. Therefore, Aa1 = F−1

a1
(0) is an invariant algebraic surface of the system

defined by (2.5) for each a1 > 0. It is immediate that Ē1 ∈ Aa1 . The center
eigenspace Ec

1 at Ē1 is spanned by the vectors

V 1
a1

= (−a1, 0, 1), V 2
a1

= (0,−
√

a1, 0).

The gradient of Fa1 at Ē1 is given by ∇Fa1(Ē1) = (1, 0, a1). Hence ∇Fa1(Ē1) is
orthogonal to V 1

a1
and V 2

a1
. This implies that W c

1 ⊂ Aa1 .
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Solving Fa1 = 0 for the variable z in terms of x and substituting into the first and
second equations of the system defined by (2.5) we have the differential equations

x′ = y, y′ = − 1
a1

x, (2.6)

which is a Hamiltonian linear system with Hamiltonian function

H(x, y) =
1

2a1
x2 +

1
2
y2.

The phase portrait of the system defined by (2.5) on Aa1 is depicted in Figure 3.
The proof is complete. �

Figure 3. Phase portrait of the system defined by (2.5) on Aa1

in a neighborhood of the equilibrium Ē1

The affirmative answer to Question 1.2 follows from Theorem 2.2.

Concluding remarks. This paper provides a stability analysis that accounts for
the characterization, in the space of parameters, of the structural as well as Lya-
punov stability of the equilibria of system (1.3). Concerning the vanishing of the
Lyapunov coefficients in a quadratic system two questions about the stability of
the equilibria E0 and E1 are answered. See Questions 1.1 and 1.2 and Theorems
2.1 and 2.2.

Our proofs of Theorems 2.1 and 2.2 show that the local center manifolds of
equilibria E0 and E1 are algebraic ruled surfaces. In particular, the local center
manifolds of equilibrium E1 are planes coincident with the center eigenspaces Ec

1

for each parameter a1 > 0. These are unexpected results.
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