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ASYMPTOTIC BEHAVIOR OF SECOND-ORDER IMPULSIVE
DIFFERENTIAL EQUATIONS

HAIFENG LIU, QIAOLUAN LI

ABSTRACT. In this article, we study the asymptotic behavior of all solutions
of 2-th order nonlinear delay differential equation with impulses. Our main
tools are impulsive differential inequalities and the Riccati transformation. We
illustrate the results by an example.

1. INTRODUCTION

Consider the impulsive differential equation
!
(r@®) @' (1)) +pE) (@' ()" + f(t,x(t —6)) =0, t>to, t # tx, (1.1)
o)) = Je(z(ty)), o'(t) =L (), k=1,2,3..., (1.2)
where « is the quotient of positive odd integers.

The theory of impulsive differential/difference equations is emerging as an im-
portant area of investigation, since it is much richer than the corresponding theory
of differential /difference equations without impulsive effects. Moreover, such equa-
tions may model several real world phenomena [4]. There are many papers devoted
to the oscillation criteria of differential equations with impulses [2, Bl [6] and to the

asymptotic behavior of all solutions of differential equations without impulses [§].
Recently, Tang [7] studied the equation

(r(t)a’ (1)) + p(t)2' (1) + f(t,a(t —8)) =0, t#ty,
z(t)) = Jp(z(ty), k=1,2,3...,
() = L2 (tk)), k=1,2,3....

He obtained sufficient conditions of asymptotic behavior of all solutions of the
equation.

Motivated by [7], using impulsive differential inequality and the Riccati trans-
formation, we study the asymptotic behavior of solutions of , .

Definition 1.1. For ¢ € C([to — 0, to],R), a function x : [tg — J, +00) — R is called
a solution of (1.1)), (1.2)) satisfying the initial value condition

z(t) = ¢(t), tE€ [to— 6o
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if the following conditions are satisfied:

(1) x(t) = ¢(¢) for t € [to — 9, 0],
(ii) x, 2’ are continuously differentiable for t > tg, t # ¢ (k = 1,2,...) and

satisfy .,

(iii) z(t,) = x(tr),2'(ty ) = 2'(tx), k = 1,2,... and satisfy (1.2).

As is customary, a solution of (|1.1), (1.2) is said to be non-oscillatory if it is
eventually positive or eventually negative. Otherwise, it will be called oscillatory.

2. MAIN RESULTS

In this paper, we assume that the following conditions hold:

(H1) f is continuous on [tg, +00) xR, x f (¢, z) > 0 for z # 0, and % > h(t) for
x # 0, where g(yx) > vg(z) for v > 0, 2’¢'(x) > 0, and h, 7’ are continuous
on [tg, +00), h(t) > 0,7(t) > 0.

(H2) p, Jg, I are continuous on R and there exist positive numbers a}, ax, bj, bx

such that af < () < ay, by < Lelo) < p
(H3) lim; o ft Ht <tp<s bk exp( ) Mda)d‘s = +o0.

ar(o)
(H4)
n—1 n—1 m—1 titm w r' )+
* pLs
o [ ([ 200
m=1k=m [=0 tjtm—1 17
n—1 titn w ./
+ H a;-&-k exp ( - / st)du — +00, asmn — oo.
k=0 titn—1 t
(H5) ) S
1 &
tlim H — exp(/ plo) do)h(s)ds = +o0,
Tt to<tp<s Ck to T(U)
where

ay, tp—0 #t,
Ck: a
‘;—k ty, — 0 =t;.

In the following, we also assume that solutions to , exist on [tg, +00).
Lemma 2.1 ([1]). Let the function m € PCY(R,R) satisfy the inequalities
m'(t) < p(t)m(t) +q(t), t# ty,
m(th) < dim(ty) + by, k=1,2,...,
where p,q € PC(R4, R) and dy, > 0,by, are constants, then

t<mito) [] dkexp(/ as)+ > (11 dexp(/ p(s)ds ) )by

to<tp <t to<tp<t 1p<t;<t
/ H dkexp(/ p(o)do )q(s)ds, t > to.
to s<tp<t

(2.1)

Lemma 2.2. Let x be a solution of (L.1), (1.2). Suppose that there exist some
T >ty such that z(t) > 0,t > T. If (H1)-(H3) are satisfied, then z'(t;) > 0 and
' (t) >0 fort € (tg,tgr1], wherety > T, k=1,2,....
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Proof. We first prove that 2/(t;) > 0 for any ¢t > T. If not, there must exist some
Jj such that 2’(t;) <0, t; > T and x'(t;r) = I;(2'(t;)) < aja’(t;) < 0. Let

ty
. 7r'(s)+p(s) )
Jc(tj)exp(/t0 ar(s) ds) = 03<0.
From (|1.1)), it is clear that

Since « is the quotient of positive odd integers, (z/(t))*~1 > 0, we obtain

(m'(t) exp (/tt Mds))l < 0. (2.2)

ar(s)

Hence, the function ' (t) exp( [, ! Mds) is decreasing on (t;,t;41],

ar(s)
z'(tj+1) exp (/tt]dr1 st) <a'(t])exp (/ttj st);
e ([T <
and

' (tj12) exp (/jﬁr2 Mds) <a'(tf,,) exp (/tt”1 Mds)

ar(s) ar(s)
< a;Ha;ﬂ.
By induction, we obtain
Ber(s) £a(s) N T
2/ (tign) ex (/ 7d5> < a’, .5,
(tj+n)exp " ar(s) > kl;[O ]+kﬂ
while for ¢ € (tj4n,tj4nt1], we have
. Ly (s) 4+ p(s
"(t) < H a,ﬂexp(—/ st). (2.3)
t<tp<t to

From the condition z(¢}) < b,x(t,), we have the impulsive differential inequality

< 1 akﬁexp( /Mds), th b k=41, 4+2,...,

t;<tp<t ar(s)
z(t)) < bex(ty), t=ty, t>t.
Applying Lemma 2.1} we have

<xtJr H bk—l-aﬂ/ H b H aexp( /%da)ds

tj<tp<t t s<tp<t  t;<ti<s
+
H bk x(t]) + a ﬁ/ H —exp( / ()(]))()da>ds}.
ty<tp<t b ti<ti<s bi aro

Since xz(ty) > 0 for t;, > T, one can find that the above inequality contradicts (H3)
as t — oo, therefore, z'(t;) > 0(t > T).
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By condition (H2), we have z/(t]) > aja/(ty) for any t, > T. Because the

t 1 (s)+p(s)
ar(p) ds

2 (t) eXp(/ Mds) >0

o ar(s)

function 2'(t) exp( [, ) is decreasing on (tj4i—1,tj4], we obtain

for any t € (tj4i—1,t;+i], which implies ’(¢) > 0 for ¢ > T. The proof is complete.
(I

Theorem 2.3. If (H1)-(H3), (H5) are satisfied, then every solution x of (1.1)),
(1.2) satisfies liminf, o |z(t)] = 0.

Proof. Let x be a solution of ([1.1)-(1.2)), and by contradiction assume that
liminf |z(¢)| > 0.
t—oo

Without loss of generality, we may assume that x(¢) > 0 on (o, +00). By Lemma
2'(t) > 0 for all t > ty. We use a Riccati transformation of the form

V() = ;((ngftg))‘; (2.4)

Differentiating V (t), we obtain

(r@)(@'(1))*)'g(x(t = 9)) — r(t)(=' ()9 (x(t = 9))z"(t - 9)

Vi) = Pt —9))
_ OG0 f(talt=0) =0 (e =) Lo
g(ali = 5)) D@ ([0)°
3 V(t)_
< ) ~ bl

From (2.4) and (H1), it is clear that
t+ / t+ «
V(tz) _ r( k)(f( i)
g(x(ty —9))
7“%2%?2;)))% =apV(te) = ckV(ty), te—06#ty,
k

< /
= rte) (@ (te)%ag ~ a B o
W < BV (k) = aV(te), tp—9d=t;,

where ¢’s are defined in (H5). Applying Lemma we have

) < H ckexp( /fg;ds)

to<trp <t
V(to) — H —exp (/ @da>h(s)ds].
to to<tp<s r(o)
By (H5), the above inequality is impossible. The proof is complete. ([

Lemma 2.4. Let x be a solution of (L.1), (1.2). Suppose that there exist some
T >ty such that x(t) >0, t >T. If (H1), (H2), (H4) are satisfied, then z'(ty) > 0
and &' (t) > 0 for t € (tg,tgr1], where ty > T, k=1,2,....
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ot

for any ty > T,

Proof. Firstly, for (t) > 0, t > T, we will prove that z'(tx) > 0,
t; > T and x (t+) =

T > tg. If not, there exist some j such that z'(t;) < 0,
I;(2'(t;)) < aja’(t;) < 0. From (L3), it is clear that

Since « is the quotient of positive odd integers, (z'(t))*~! > 0, we obtain

(x’(t) exp (/tt st))/ <0.

0

Hence, the function z’(t) exp ( 7(a)r'g(é)ds) is decreasing on (t;,t;41],
Y (s) +p(s) Y1 (s) + p(s)
2 (tipq) ex (/ d)<xt ex (/ ds),
(bj41) exp t ar(s) (87) exp t ar(s) )
ie.,

o' (tj11) < aja'(t;) exp ( B /ttjﬂ Mds>

; ar(s)

and

tjve
&' (tjy2) < ajy a5’ (t;) exp ( — / Mds).
t

; ar(s)

By induction, we obtain

T (tjsn) < kl_‘[)a +x2' (t5) exp ( /thn st).

b r(s)p(s) g

Because the function 2'(t) exp(f,, ()

) is decreasing on (t;,t;41], we have
+p(s)

"(t) < alal(t _ [T e, t e (tj,tjs1] 2.5

x()—ajx(J)eXp( /tj ar(s) 5)7 € (tj,tj+1] (2.5)

Integrating ([2.5) from m to ¢, we have

x(t) < z(m) + a;-‘:b’(tj) /t exp ( — /tu Mds)dw i <m <tjqr.

m ar(s)

Let t = tj41, m — t;‘. We have

olty) < alt)) + o' (t) | exp (- / P b

ar(s)
< bja(ty) + aja’(t)) /t:jH exp ( - /: st) du,

and

. tivz “or'(s) +p(s
Htyen) < altfo) + ety [ e (= [ T,
tit1 ti+1

ar(s)
" 1/(s) +(s)
L be(ts Ay _ TAS) T PS)
< bjpibjz(ty) +ajbjaa’(t)) /t]- exp ( /t]» ar(s) ds)du

tj+2 (T
+ a;Ha;x’(t]—)/ exp ( — / Mds’)du.

tit1 t; ar(s)
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By induction, we have

T(tj4n) < x/(tj)[ btk /tjm exp ( - /u Mdé’)du

m=1k=m [=0 titm—1 t; OZT(S)

n—1 titn u T/(S) + n—1
. p(s)
+ H aj+k/ exp ( —/ 7047“(5) ds)du} + | I bjrrx(t;).
k=0 titn—1 tj k=0

Since x(ty) > 0(ty > T'), we find that the above inequality contradicts condition
(H4), therefore x'(t;) > 0 for t > T. Further, for t € (t;,t;41], we obtain

t .1 tiv1 .0
2(¢) exp (/ Mds) > 2/(t511) exp (/ Mds) >0,
w ar(s) t ar(s)
which implies z/(¢t) > 0 for t > T. This completes the proof. O
Using Lemma we have the following Theorem.

Theorem 2.5. If (H1), (H2), (H4), (H5) are satisfied, then every solution x of
(1.1]), (1.2)) satisfies liminf; o |2(t)] = 0.

Example. Consider

(t(x’(t))3), — (') + tlzx(t - %) —0, t#4k t> %
o(kt) = p _]T_ 1x’(k), r(kT)=x2(k), k=1,2,....

Comparing with (1.1f), , we see that r(t) = ¢, p(t) = -1, « = 3, § = 1/3,
thy1 —tx > 1/3 and a = aj, = k/(k+ 1), by = b;; = 1. Obviously (H1), (H2) are

satisfied,
lim ' H CLZQX (, SMdG>dS
t—o0 b P 3r(o)
b ty<tp<s tj
t
ds
> 1) i [ = e
tj
and

tEIgO /tt H %exp (/t: fgj§d0>h(s)d8

0 to<trp<s
t
1 1
= lim II (=) exp(~1Ins + Into) ds
to to<tp<s K

1 t
> — lim ds = 4o00.
t—oo to
So (H3) and (H5) are satisfied. By Theorem it is clear that every solution of
this equation satisfies liminf; . |z(t)| = 0.
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