HYERS-ULAM STABILITY FOR SECOND-ORDER LINEAR DIFFERENTIAL EQUATIONS WITH BOUNDARY CONDITIONS

PASC GĂVRUȚĂ, SOON-MO JUNG, YONGJIN LI

Abstract. We prove the Hyers-Ulam stability of linear differential equations of second-order with boundary conditions or with initial conditions. That is, if y is an approximate solution of the differential equation $y'' + \beta(x)y = 0$ with $y(a) = y(b) = 0$, then there exists an exact solution of the differential equation, near y.

1. Introduction and preliminaries

In 1940, Ulam [17] posed the following problem concerning the stability of functional equations:

Give conditions in order for a linear mapping near an approximately linear mapping to exist.

The problem for approximately additive mappings, on Banach spaces, was solved by Hyers [2]. The result by Hyers was generalized by Rassias [13]. Since then, the stability problems of functional equations have been extensively investigated by several mathematicians [3, 12, 13].

Alsina and Ger [1] were the first authors who investigated the Hyers-Ulam stability of a differential equation. In fact, they proved that if a differentiable function $y : I \rightarrow \mathbb{R}$ satisfies $|y'(t) - y(t)| \leq \varepsilon$ for all $t \in I$, then there exists a differentiable function $g : I \rightarrow \mathbb{R}$ satisfying $g'(t) = g(t)$ for any $t \in I$ such that $|y(t) - g(t)| \leq 3\varepsilon$ for every $t \in I$.

The above result by Alsina and Ger was generalized by Miura, Takahasi and Choda [11], by Miura [8], also by Takahasi, Miura and Miyajima [15]. Indeed, they dealt with the Hyers-Ulam stability of the differential equation $y'(t) = \lambda y(t)$, while Alsina and Ger investigated the differential equation $y'(t) = y(t)$.

Miura et al [10] proved the Hyers-Ulam stability of the first-order linear differential equations $y'(t) + g(t)y(t) = 0$, where $g(t)$ is a continuous function, while Jung [4] proved the Hyers-Ulam stability of differential equations of the form $\varphi(t)y'(t) = y(t)$.

Furthermore, the result of Hyers-Ulam stability for first-order linear differential equations has been generalized in [5, 6, 10, 16, 18, 19].
Let us consider the Hyers-Ulam stability of the $y'' + \beta(x)y = 0$, it may be not stable for unbounded intervals. Indeed, for $\beta(x) = 0$, $\varepsilon = 1/4$ and $y(x) = x^2/16$ condition $-\varepsilon < y'' < -\varepsilon$ is fulfilled and the function $y_0(x) = C_1x + C_2$, for which $|y(x) - y_0(x)| = |x^2/16 - C_1x + C_2|$ is bounded, does not exist.

The aim of this paper is to investigate the Hyers-Ulam stability of the second-order linear differential equation

$$y'' + \beta(x)y = 0 \quad (1.1)$$

with boundary conditions

$$y(a) = y(b) = 0 \quad (1.2)$$

or with initial conditions

$$y(a) = y'(a) = 0, \quad (1.3)$$

where $y \in C^2[a, b]$, $\beta(x) \in C[a, b]$, $-\infty < a < b < +\infty$.

First of all, we give the definition of Hyers-Ulam stability with boundary conditions and with initial conditions.

Definition 1.1. We say that (1.1) has the Hyers-Ulam stability with boundary conditions (1.2) if there exists a positive constant K such that $|y'' + \beta(x)y| \leq \varepsilon$, and $y(a) = y(b) = 0$, then there exists some $z \in C^2[a, b]$ satisfying $z'' + \beta(x)z = 0$ and $z(a) = z(b) = 0$, such that $|y(x) - z(x)| < K\varepsilon$.

Definition 1.2. We say that (1.1) has the Hyers-Ulam stability with initial conditions (1.3) if there exists a positive constant K such that $|y'' + \beta(x)y| \leq \varepsilon$, and $y(a) = y'(a) = 0$, then there exists some $z \in C^2[a, b]$ satisfying $z'' + \beta(x)z = 0$ and $z(a) = z'(a) = 0$, such that $|y(x) - z(x)| < K\varepsilon$.

2. Main Results

In the following theorems, we will prove the Hyers-Ulam stability with boundary conditions and with initial conditions.

Let $\beta(x) = 1$, $a = 0$, $b = 1$, then it is easy to see that for any $\varepsilon > 0$, there exists $y(t) = ax^2 - \frac{t^2}{4}$, with $H > 4$, such that $|y'' + \beta(x)y| < \varepsilon$ with $y(0) = y(1) = 0$.

Theorem 2.1. If $\max|\beta(x)| < 8/(b-a)^2$. Then (1.1) has the Hyers-Ulam stability with boundary conditions (1.2).

Proof. For every $\varepsilon > 0$, $y \in C^2[a, b]$, if $|y'' + \beta(x)y| \leq \varepsilon$ and $y(a) = y(b) = 0$. Let $M = \max\{|y(x)| : x \in [a, b]\}$, since $y(a) = y(b) = 0$, there exists $x_0 \in (a, b)$ such that $|y(x_0)| = M$. By Taylor formula, we have

$$y(a) = y(x_0) + y'(x_0)(x_0 - a) + \frac{y''(\xi)}{2}(x_0 - a)^2;$$

$$y(b) = y(x_0) + y'(x_0)(b - x_0) + \frac{y''(\eta)}{2}(b - x_0)^2;$$
Thus
\[|y''(\xi)| = \frac{2M}{(x_0 - a)^2}, \quad |y''(\eta)| = \frac{2M}{(x_0 - b)^2}\]

On the case \(x_0 \in (a, \frac{a + b}{2}]\), we have
\[\frac{2M}{(x_0 - a)^2} \geq \frac{2M}{(b - a)^2/4} = \frac{8M}{(b - a)^2}\]

On the case \(x_0 \in [\frac{a + b}{2}, b)\), we have
\[\frac{2M}{(x_0 - b)^2} \geq \frac{2M}{(b - a)^2/4} = \frac{8M}{(b - a)^2}.
\]

So
\[\max |y''(x)| \geq \frac{8M}{(b - a)^2} = \frac{8}{(b - a)^2} \max |y(x)|.
\]

Therefore,
\[\max |y(x)| \leq \frac{(b - a)^2}{8} \max |y''(x)|.
\]

Thus
\[\max |y(x)| \leq \frac{(b - a)^2}{8} [\max |y''(x) - \beta(x)y| + \max |\beta(x)| \max |y(x)|],
\]
\[\leq \frac{(b - a)^2}{8} \varepsilon + \frac{(b - a)^2}{8} \max |\beta(x)| \max |y(x)|.
\]

Let \(\eta = (b - a)^2 \max |\beta(x)|/8, K = (b - a)^2/(8(1 - \eta))\). Obviously, \(z_0(x) = 0\) is a solution of \(y'' - \beta(x)y = 0\) with the boundary conditions \(y(a) = y(b) = 0\).

\[|y - z_0| \leq K\varepsilon.\]

Hence \((1.1)\) has the Hyers-Ulam stability with boundary conditions \((1.2)\). \(\square\)

Next, we consider the Hyers-Ulam stability of \(y'' + \beta(x)y = 0\) in \([a, b]\) with initial conditions \((1.3)\). For example, let \(\beta(x) = 1, a = 0, b = 1\), then for any \(\varepsilon > 0\), there exists \(y(t) = \frac{\varepsilon}{H}\) with \(H > 3\), such that \(|y'' + \beta(x)y| < \varepsilon\) with \(y(0) = y'(0) = 0\).

Theorem 2.2. If \(\max |\beta(x)| < 2/(b - a)^2\). Then \((1.1)\) has the Hyers-Ulam stability with initial conditions \((1.3)\).

Proof. For every \(\varepsilon > 0\), \(y \in C^2[a, b]\), if \(|y'' + \beta(x)y| \leq \varepsilon\) and \(y(a) = y'(a) = 0\). By Taylor formula, we have
\[y(x) = y(a) + y'(a)(x - a) + \frac{y''(\xi)}{2}(x - a)^2.
\]

Thus
\[|y(x)| = \left|\frac{y''(\xi)}{2}(x - a)^2\right| \leq \max |y''(x)| \frac{(b - a)^2}{2};
\]

so, we obtain
\[\max |y(x)| \leq \frac{(b - a)^2}{2} [\max |y''(x) - \beta(x)y| + \max |\beta(x)| \max |y(x)|] \leq \frac{(b - a)^2}{2} \varepsilon + \frac{(b - a)^2}{2} \max |\beta(x)| \max |y(x)|.\]
Let $\eta = (b-a)^2 \max |\beta(x)|/2$, $K = (b-a)^2/(2(1-\eta))$. It is easy to see that $z_0(x) = 0$ is a solution of $y'' - \beta(x)y = 0$ with the initial conditions $y(a) = y'(a) = 0$.

$$|y - z_0| \leq K \varepsilon.$$

Hence (1.1) has the Hyers-Ulam stability with initial conditions (1.3). \square

Acknowledgements. This work was supported by grant 10871213 from the National Natural Science Foundation of China.

References

Yongjin Li
Department of Mathematics, Sun Yat-Sen University, Guangzhou 510275, China
E-mail address: stslyj@mail.sysu.edu.cn