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EXISTENCE OF SCALE INVARIANT SOLUTIONS TO
HORIZONTAL FLOW WITH A FUJITA TYPE DIFFUSION

COEFFICIENT

GASTÃO A. BRAGA, PAULO C. CARRIÃO, ANTONIO A. G. RUAS

Abstract. In this article, we study a boundary-initial value problem on the
half-line for the diffusion equation with a Fujita type diffusion coefficient that
carries a parameter α. The equation models the flow of water in soil within an
approximation where gravitational effects are not taken into account and, when
α = 1, an explicit self-similar solution ψ(x/

√
t) can be found. We prove that if

α > 1 then the above problem, with uniform boundary conditions, posses self-
similar solutions. This is the first step towards a multiscale (renormalization
group) asymptotic analysis of solutions to more general equations than the
ones studied here.

1. Introduction

The aim of this note is to study the following boundary-initial value problem
(BIVP) for the unknown θ = θ(x, t)

∂θ

∂t
=

∂

∂x

([C (θ − θr)α−1

(θs − θ)2
]∂θ
∂x

)
, 0 < x <∞, t > 0,

θ(0, t) = θ0, ∀t ≥ 0; θ(x, 0) = θi, θr < θ0, θi < θs,

(1.1)

with C > 0. When α = 1, the above problem describes the flow of water in soil
within an approximation where gravitational effects are not taken into account,
which is the case, for instance, of horizontal flow or vertical flow at early times,
see [1]. Here, we consider α as a parameter satisfying α ≥ 1. Sticking to the
hydrology’s nomenclature, θ(x, t) is the soil’s water content at height x, measured
from the soil’s surface downwards, and at time t. θr and θs are the residual and
the saturated values of the soil’s water content, respectively, and we assume that
0 < θr < θs < 1. The quantity between square brackets in (1.1) will be denoted
by D = D(θ) and it is called the hydraulic diffusion coefficient. Observe that
D(θr) = 0 if α > 1 and that D(θ) is convex around θr if α > 2.

The above BIVP is a natural extension of the α = 1 case, which is within Fujita’s
class defined in [1], and it has been studied by several authors [2, 3, 4]. Assuming
that the soil is uniformly wet at the begining (θi is assumed to be constant) and
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that the water content at the soil’s surface is kept constant and equal to θ0 at
later times, the α = 1 case can be explicitly solved under the additional condition
θ(x, t) ≡ ϕ(x/

√
t). Solutions of this form are said to be self-similar or scale in-

variant because θ(x, t) = θ(Lx,L2t) for any L > 0. Existence and uniqueness of
self-similar solutions is an important issue within the context of asymptotic anal-
ysis as t → ∞ of solutions to partial differential equations, see [5]. Nonlinearities
could be added to the right hand side of equation (1.1) and, if so, one would like to
know under which conditions they will be “irrelevant”, “marginal” or “relevant” in
the Renormalization Group (RG) sense, see [6, 7]. The RG method is based upon
a multiscale analysis that provides the right asymptotic behavior of solutions to
differential equations and an essential step towards its rigorous study is to prove
the existence of the RG fixed points (the self-similar solutions), see [8, 9].

In this article, we take α ≥ 1 and we prove that (1.1) has a scale invariant
solution for specific choices of θ0, θi ∈ (0, 1). We will show that

Theorem 1.1. Let α ≥ 1 and θ0, θi ∈ (θr, θs). If θ0 ≤ θi then (1.1) has a unique
classical solution θ(x, t) of the form θ(x, t) = ψ(x/

√
t), where ψ : [0,∞) → (θr, θs)

is a C2([0,∞)) function satisfying ψ(0) = θ0 and ψ(∞) = θi. Furthermore, given
θ0 ∈ (θr, θs), there exists ε > 0 such that (1.1) has a self-similar solution for any
choice of θi ∈ (θ0 − ε, θs).

To prove Theorem 1.1, we restate (1.1) in terms of a boundary value problem as
follows. Define

ϕ =
1

1− σ
− 1,

where ϕ = ϕ(ζ), with ζ equals the similarity variable x/
√
t, and σ = σ(x, t) ≡

(θ(x, t) − θr)/∆θ, with ∆θ ≡ θs − θr. Then, 0 < σ < 1 and 0 < ϕ < ∞ so that
(1.1) is rewritten as the boundary value problem (BVP)

ϕ′′ +
( α− 1
ϕ(ϕ+ 1)

)
(ϕ′)2 +

ζ

2K1

( (ϕ+ 1)α−3

ϕα−1

)
ϕ′ = 0,

ϕ(0) = ϕ0, ϕ(∞) = ϕi,

(1.2)

where K1 ≡ C(∆θ)α−3 and ϕ0 (ϕi) corresponds to θ0 (θi) through the relation
θk − θr

θs − θk
= ϕk, k = 0, i.

It is straightforward to see that Theorem 1.1 is a corollary of following result.

Theorem 1.2. Consider the Boundary Value Problem (1.2) with α ≥ 1, and ϕ0

and ϕi in (0,∞).
(1) If ϕ0 ≤ ϕi then (1.2) has a unique classical C2([0,∞)) solution ϕ : [0,∞) →

[ϕ0, ϕi];
(2) if ϕ0 is fixed then there exists ε > 0 such that (1.2), with ϕi ∈ (ϕ0− ε, ϕ0),

has a classical C2([0,∞)) solution ϕ : [0,∞) → [ϕ0 − ε, ϕ0];
(3) if α = 2 then ε = ϕ0 in the above statements.

Finally, instead of studying (1.2) directly, we replace it by the initial value prob-
lem

ϕ′′ +
( α− 1
ϕ(ϕ+ 1)

)
(ϕ′)2 +

t

2K1

( (ϕ+ 1)α−3

ϕα−1

)
ϕ′ = 0,

ϕ(0) = ϕ0 > 0, ϕ′(0) = ϕ′0 ∈ R,
(1.3)
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where t is the independent variable. Let ϕ(t) : [0, ω) → [0,∞) be the solution to
(1.3) on its maximal interval [0, ω) and let ϕ′0 ≡ x. Observe that both ϕ(t) and
ω are functions of x and, when appropriate, we express this dependence as ϕ(t, x)
and ω(x), respectively. It is straightforward to see that Theorem 1.1 is a corollary
of the following theorem that will be proved in next section.

Theorem 1.3. Let ϕ(t) : [0, ω) → [0,∞) be the unique classical solution to (1.3)
on its maximal interval [0, ω), where ϕ0 > 0 and ϕ′0 = x ∈ R.

(1) Suppose α ≥ 1. There exists a negative number x̄ such that if x ∈ (x̄,∞)
then ω(x) = ∞, i.e., ϕ(t) is a global solution. The limit limt→∞ ϕ(t, x)
exists and defines a continuous function f(x) on (x̄,∞) for which f(0) =
ϕ0. Furthermore, f(x) is a homeomorphism between [0,∞) and [ϕ0,∞).

(2) Suppose 1 < α ≤ 2. There exists a negative number x such that if x ∈
(−∞, x) then ω(x) <∞, i.e., ϕ(t) ceases to be a classical solution at finite
time. In particular, for all x < x, limt→ω− ϕ(t, x) = 0 .

(3) If α = 2 then there exists a negative number λ such that the function f(x)
maps the interval (λ, 0] onto the interval (0, ϕ0].

2. Proof of Theorem 1.3

In this section we consider (1.3) with α and ϕ′0 in R. We will show below that
the derivative ϕ′(t) keeps the sign of ϕ′(0) = ϕ′0 for all positive times, i.e., the
product ϕ′0 · ϕ′(t) is non negative for all t ≥ 0 and it is zero if and only if ϕ′0 = 0.

Lemma 2.1. Let ϕ(t) : [0, ω) → R be the solution to (1.3) with ϕ0 > 0 and
α, ϕ′0 ∈ R, where [0, ω) is the solution’s maximal interval of existence. Then the
product ϕ′0 ·ϕ′(t) is non negative for all t ∈ [0, ω) and it is zero if and only if ϕ′0 = 0.

Proof. For any α, ϕ′0 ∈ R, the IVP (1.3) has a unique local positive solution as long
as ϕ0 > 0, see [10], and it will keep itself positive as long as it exists as a classical
solution. Of course, if ϕ′0 = 0 then, by uniqueness, ϕ(t) = ϕ0 for all t. If ϕ′0 6= 0
then ϕ′(t) 6= 0 for t close to 0 and, of course, ϕ′0 and ϕ′(t) will have the same
sign. Let [0, ω′) ⊂ [0, ω) be the maximal interval on which ϕ′0 and ϕ′(t) will have
the same sign. We will prove below that ω′ = ω. Suppose, by contradiction, that
ω′ < ω. Then, by continuity, ϕ′(ω′) = 0. Divide (1.3) through by ϕ′(t), t < ω′, and
integrate out to get that

ϕ′(t) = ϕ′0

(ϕ(t) + 1
ϕ(t)

)α−1 ( ϕ0

ϕ0 + 1

)α−1

h(t), (2.1)

where

h(t) = exp
(
−

∫ t

0

t(ϕ(t) + 1)α−3

2K(ϕ(t))α−1
dt

)
. (2.2)

We conclude from (2.1) and (2.2) that limt→ω′− ϕ
′(t) exists and is different from 0,

a contradiction. �

2.1. Proof of Part I when ϕ′0 > 0.

Lemma 2.2. Let ϕ(t) : [0, ω) → R be the solution to (1.3) with α ≥ 1 and ϕ′0 > 0,
where [0, ω) is the solution’s maximal interval of existence. Then ϕ′(t) is a positive,
monotonically decreasing, function on [0, ω).
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Proof. It follows from Lemma 2.1 that ϕ′(t) > 0 for all t ∈ [0, ω) if ϕ′0 > 0. That
ϕ′(t) is monotonically decreasing comes from α ≥ 1 and from the ODE, rewritten
as

ϕ′′(t) = −
( α− 1
ϕ(t)(ϕ(t) + 1)

)
(ϕ′(t))2 − t

2K1

( (ϕ(t) + 1)α−3

ϕα−1(t)

)
ϕ′(t). (2.3)

�

Lemma 2.3. Under the hypothesis of Lemma 2.2, the solution to (1.3) is well
defined for all t ≥ 0.

Proof. Since α ≥ 1 and ϕ′0 > 0, it follows from Lemma 2.2 that ϕ′(t) is a positive,
monotonically decreasing, function on [0, ω). In particular, ϕ′(t) ≤ ϕ′0 for all t ∈
[0, ω) which implies that ϕ(t) ≤ ϕ0 + t ϕ′0. But since ϕ0 ≤ ϕ(t) for all t, it follows
that ϕ(t) is bounded above and below for all t ∈ [0, ω) an it follows from the theorem
of existence of solutions to differential equations, see [10], that the solution can be
extended up to ω = ∞. �

For the rest of this article, we replace ϕ′0 by x in (1.3). To make the x dependence
explicit we sometimes write ϕ(t, x), ϕ′(t, x) and h(t, x) instead of ϕ(t), ϕ′(t) and
h(t), respectively. If x ≥ 0 and α ≥ 1 then it follows from lemmas (2.2) and (2.3)
that ϕ(t, x) is a monotonically increasing function of t for all t ≥ 0, implying that
the limit

lim
t→∞

ϕ(t, x) ≡ f(x) (2.4)

is well defined although it could be infinity. f(x) is the boundary value of ϕ(t, x)
at t = ∞. The next two lemmas show that if x ≥ 0 and α ≥ 1 then f(x) is a
continuous homeomorphism between [0,∞) and [ϕ0,∞). It follows from this result
that (1.2) has a unique classical solution if ϕ0 < ϕi.

Lemma 2.4. If x ≥ 0 and α ≥ 1 then f(x), defined by (2.4), is a monotonically
increasing function that satisfies f(x) →∞ as x→∞.

Proof. We first show that f(x) → ∞ as x → ∞. It follows from Lemma 2.2 that,
under the above hypothesis on α and x, ϕ(t, x) is an increasing function of t. In
particular, ϕ(t, x) ≥ ϕ0 for all t ≥ 0 which, together with (2.1) and with α ≥ 1,
leads to

ϕ′(t, x) ≥ x
( ϕ0

ϕ0 + 1

)α−1

e
−[

(1+ϕ0)α−3

Kϕ
α−1
0

] t2
4
.

Integration on both sides of the above inequality gives the result.
To prove that f is increasing in the interval [0,∞), we take x̄ > x ≥ 0 and

define δ(t) ≡ ϕ̄(t) − ϕ(t) where ϕ(t) = ϕ(t, x) and ϕ̄(t) = ϕ(t, x̄) are the solutions
to (1.3) with initial derivatives x and x̄, respectively. In the sequel we will prove
that δ′(t) > 0 for all t ≥ 0. It then follows that our result is proven because
0 < x̄ − x = δ(0) ≤ δ(t) ≤ f(x̄) − f(x), where the last inequality is obtained by
taking the limit of δ(t) as t→∞ and using its monotonicity.

Let [0, t̄) be the maximal interval where δ′(t) > 0. Of course, [0, t̄) is not empty
because δ(t) is continuous and δ′(0) = x̄ − x > 0. We will show that t̄ = ∞.
Suppose by contradiction that t̄ <∞; i.e., δ′(t̄) = 0. It follows from (1.3) that

δ′′(t) = − (α− 1)ϕ̄′ 2

ϕ̄2 + ϕ̄
− t

2K

[ (ϕ̄+ 1)
ϕ̄

]α−1 1
(ϕ̄+ 1)2

ϕ̄′
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+
(α− 1)ϕ′ 2

ϕ2 + ϕ
+

t

2K

[ (ϕ+ 1)
ϕ

]α−1 1
(ϕ+ 1)2

ϕ′.

Now, since δ′(t) > 0 for t ∈ [0, t̄), then δ(t) is increasing and δ(t) = ϕ̄(t)−ϕ(t) ≥ 0
for t ∈ [0, t̄). It then follows from the above identity that

δ′′(t) ≥ − α− 1
ϕ2 + ϕ

(ϕ̄′ 2 − ϕ′ 2)− t

2K
[
(ϕ̄+ 1)
ϕ̄

]α−1 1
(ϕ̄+ 1)2

(ϕ̄′ − ϕ′).

For t ∈ [0, t̄), we divide the last inequality by ϕ̄′(t)−ϕ′(t) = δ′(t) and integrate out
from 0 to t̄ to obtain

0 = δ′(t̄) ≥ (x̄− x) exp(U),

U =
[
−

∫ t̄

0

( α− 1
ϕ2 + ϕ

(ϕ̄′ + ϕ′) +
t

2K
[ (ϕ̄+ 1)

ϕ̄

]α−1 1
(ϕ̄+ 1)2

)
dt

]
,

which is a contradiction because the right hand side of the last inequality is positive.
�

Lemma 2.5. If x ≥ 0 and α ≥ 1 then f(x), defined by (2.4), is a continuous
function.

Proof. The continuity of f(x) comes from the following claim which we will prove
below: If x ≥ 0 and α ≥ 1 then there exist positive constants C and t0 such that

ϕ′(t, x) ≤ Cx/t2 (2.5)

for all t > t0. It follows from the above upper bound that ϕ(t, x) converges, as
t→∞, to f(x), the convergence being uniform on compact sets because:

|ϕ(t′, x)− ϕ(t, x)| =
∣∣∣ ∫ t′

t

ϕ′(t, x) dt
∣∣∣ ≤ Cx

∫ t′

t

1
t2

dt ≤ Cx

t

for all t′ ≥ t > t0.
To obtain the upper bound (2.5) we first prove that ϕ′(t, x) → 0 as t → ∞. It

follows from (2.1) that
ϕ′(t, x) ≤ xh(t, x)

if α ≥ 1 and x ≥ 0 because the product ((ϕ + 1)/ϕ)α−1((ϕ0 + 1)/ϕ0)α−1 will be
at most 1. Then, it is sufficient to prove that h(t, x) → 0 as t → ∞. But, since
h(t, x) ≤ 1 for all t, x ≥ 0, the above inequality implies that ϕ(t, x) ≤ xt + ϕ0 for
t ∈ [0,∞) which gives rise to the following lower bound for the integrand in (2.2):

t

2K
(ϕ+ 1)α−3

(ϕ)α−1
=

t

2K
(
ϕ+ 1
ϕ

)α−1 1
(ϕ+ 1)2

≥ t

2K
1

(xt+ ϕ0 + 1)2
(2.6)

and implying that h(t, x) → 0 as t→∞.
Now, since ϕ′(t, x) → 0 as t→∞ and since ϕ′(t, x) is monotonically decreasing,

see the proof of Lemma 2.3, it follows that given r > 0 and small, there exist s > 0
and t0 > 0 such that ϕ(t, x) ≤ rt+ s for all t ≥ t0 and, as in (2.6), we get

t

2K
(ϕ+ 1)α−3

(ϕ)α−1
≥ 1

4r2K
1
t

for t > t0. Then, (2.5) is proven once we choose r such that 1/(4r2K) ≥ 2. �
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2.2. Proof of Part I when ϕ′0 < 0. In this section and in Section 2.3 we consider
(1.3) with ϕ′0 < 0. Let ϕ(t) : [0, ω) → R be its solution on the maximal interval
[0, ω). It follows from Lemma 2.1 that ϕ′(t) < 0 for all t ∈ [0, ω) and therefore that
ϕ(t) is a monotonically decreasing function on [0, ω). It also follows from (2.3) that
if α ≥ 1 then ϕ′′(t) < 0, i.e. ϕ(t) is concave, at least for small values of t. For larger
values of t there will be a competition between the two parcels on the right hand
side of (2.3), one keeping itself positive while the other one keeping negative, and
it is a matter to decide who is going to win as t gets larger. The question whether
ϕ(t) changes concavity or not as t increases is related to how negatively large or
small is ϕ′0 and we deal with this problem in sections 2.3 and 2.4. In this section we
show that there exists a negative real number x̄ such that ϕ(t, x) is well defined for
all t and for x > x̄. In particular, ϕ(t, x) changes concavity at some point t0 and,
similarly to Lemma 2.5, we prove that the limit (2.4) is a well defined continuous
function on (x, 0).

Lemma 2.6. Let ϕ(t) : [0, ω) → R be the solution to (1.3) with α ≥ 1 and x
satisfying

− 2√
π

1
α

[ (ϕ0 + 1)α−3

4K(ϕ0)α−3

]1/2

< x ≤ 0, (2.7)

where [0, ω) is the solution’s maximal interval of existence. Then ω = ∞.

Proof. We will show that if Condition (2.7) is satified then the limit limt→ω− ϕ(t) is
positive. This is enough to conclude that ω = ∞ because it follows from this limit
and from (2.1) that the limit limt→ω− ϕ

′(t) exists and is also positive, implying that
the solution can always be extended to the right of ω, for any positive ω.

If α ≥ 1 and x < 0 then it follows from Lemma 2.1 that ϕ′(t) < 0 for all t ∈ [0, ω)
implying, together with (2.1), (2.2) and that ϕ(t) ≤ ϕ0 for all t ∈ [0, ω), that

ϕα−1(t)ϕ′(t) ≥ xϕα−1
0 exp

(
− t2(ϕ0 + 1)α−3

4K(ϕ0)α−1

)
for any t ∈ [0, ω). Define

γ2 ≡ (ϕ0 + 1)α−3

4K(ϕ0)α−1

and integrate the above inequality from 0 to t to obtain

ϕα(t) ≥ ϕα
0 + αxϕα−1

0

∫ t

0

e−γ2t2dt = ϕα
0 +

αxϕα−1
0

γ

∫ γt

0

e−u2
du ≡ (ϕm1(t))α.

It follows from the above inequality that ϕ(t) is positive whenever ϕm1(t) is positive;
i.e., whenever x is such that

−1
αx

[ (ϕ0 + 1)α−3

4K(ϕ0)α−3

]1/2

>

∫ γt

0

e−u2
du,

which is fulfilled if Condition (2.7) is satisfied because
√
π

2
=

∫ ∞

0

e−u2
du >

∫ γt

0

e−u2
du

for all positive t. �

Define

x ≡ − 2√
π

1
α

[ (ϕ0 + 1)α−3

4K(ϕ0)α−3

]1/2

.
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It follows from Lemma 2.6 that if α ≥ 1 then f(x), given by the limit (2.4), is well
defined on the interval (x, 0). In next lemma we prove that f(x) is continuous on
(x, 0) and this result implies that f(x) is onto the interval f(x, 0).

Lemma 2.7. If α ≥ 1 and x ∈ (x̄, 0) then f(x), defined by (2.4), is a continuous
function.

Proof. Let I ≡ [x1, x2] ⊂ (x̄, 0). The proof of this lemma is similar to the proof
of Lemma 2.5 and it is enough to show that |ϕ′(t)| is bounded by an integrable
function of t, uniformly in x ∈ I. To do so, we observe that it follows from the
proof of Lemma 2.6 that there exists m > 0 such that m ≤ f(x) ≤ ϕ0 for any x ∈ I.
Therefore, from (2.1), we obtain

|ϕ′(t)| ≤ |x|
(m+ 1

m

)α−1 ( ϕ0

ϕ0 + 1

)α−1

exp
(
− t2(ϕ0 + 1)α−3

4K(ϕ0)α−1

)
which completes the proof. �

2.3. Proof of Part II. In Lemma 2.8 below we prove that if α ≥ 2 and if ϕ(t, x)
changes concavity at some point t0 then ϕ(t, x) exists for all t. We use this result
to prove, in Lemma 2.9, that classical solutions will not be defined on [0,∞).

Lemma 2.8. Let α ≥ 2 and suppose that there exists t0 > 0 such that ϕ′′(t0) = 0.
Then, t0 is unique and the solution ϕ(t) to (1.3) is well defined for all t ≥ 0.

Proof. Since {t : ϕ′′(t) = 0} is nonempty, t0 ≡ inf{t : ϕ′′(t) = 0} is well defined.
We first prove that if α ≥ 2 then {t : ϕ′′(t) = 0} = {t0}. From (1.3), ϕ′′(t) can be
written as

ϕ′′(t) = g(t)
( −ϕ′(t)
ϕ2(t) + ϕ(t)

)
, (2.8)

where g(t) is given by

g(t) ≡ (α− 1)ϕ′(t) +
t

2K

(ϕ(t) + 1
ϕ(t)

)α−2

. (2.9)

It follows from (2.8) that both ϕ′′(t) and g(t) have the same sign because ϕ(t) and
−ϕ′(t) are both positive for t ∈ [0, ω). From (2.9), we obtain

g′(t) = (α− 1)ϕ′′(t) +
1

2K

(ϕ(t) + 1
ϕ(t)

)α−2

+
(α− 2)

2K

(ϕ(t) + 1
ϕ(t)

)α−3(−ϕ′(t)
ϕ2(t)

)
.

(2.10)
It follows from (2.10) that g′(t0) > 0 if α ≥ 2. We claim that g′(t) > 0 for all

t ≥ t0. If not, there would exist t2 > t0 such that g′(t2) = 0. Of course, g(t2) > 0
because g(t) is increasing up to t2 and because, from (2.8), g(t0) = 0. Then we
conclude, from (2.10), that ϕ′′(t2) < 0. Therefore, again from (2.8), we conclude
that g(t2) < 0, a contradiction. In particular, g(t) is an increasing function for
t > t0.

In the sequel, we will prove that ϕ(t) remains bounded away from zero if it
changes concavity at some point t0. Since ϕ(t) is also bounded above by ϕ0, the
solution will exist for all t ≥ 0, see [10]. Fix ti > t0 and consider t ∈ [ti, ω). Since
ϕ(t) is decreases and g(t) increases as t increases above t0, we get

g(t)
1 + ϕ(t)

≥ g(ti)
1 + ϕ(ti)

≡ Ki > 0,
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which implies from (2.8) that

Ki

(−ϕ′(t)
ϕ(t)

)
≤ ϕ′′(t)

for all t ≥ ti. Integrating both sides of the above inequality from ti to t, we get
that

Ki ln
(ϕ(ti)
ϕ(t)

)
≤ ϕ′(t)− ϕ′(ti) ≤ −ϕ′(ti),

where we have used that ϕ′(t) < 0 for all t ∈ [0, ω) to get the last inequality. After
exponentiating both sides of the above inequality we get

ϕ(t) ≥ ϕ(ti) exp
ϕ′(ti)
Ki

> 0

for all t > ti and we are done. �

Lemma 2.9. Let ϕ(t) : [0, ω) → R be the solution to (1.3) with 1 < α ≤ 2 and

x < −
√

ϕ0

2K(α− 1)
, (2.11)

where [0, ω) is the solution’s maximal interval of existence. Then ω <∞.

Proof. Let L(t) ≡ ϕ0 + t x and observe that L(−ϕ0/x) = 0. It follows from the
arguments given at the beginning of this section that ϕ(t) < L(t) holds, at least
for small positive values of t, because ϕ′′(t) < 0 if t ≥ 0 and small and if α > 1.
We claim that ω < −ϕ0/x. If not, there would exist a positive time t1, with
t1 < −ϕ0/x, such that ϕ(t1) = L(t1). It then follows that ϕ(t) changes concavity
at some time t0 < t1, i.e., ϕ′′(t0) = 0. From (2.3) we read that

ϕ′(t0) = − t0
2K(α− 1)

(ϕ(t0) + 1
ϕ(t0)

)α−2

.

Since x > ϕ′(t0) and t0 < −ϕ0/x, we take α ≤ 2 to obtain, from the above
inequality, that

x >
ϕ0

x

1
2K(α− 1)

,

which is in contradiction with (2.11). �

2.4. Proof of Part III. For α = 2, we show that the set of solutions, parametrized
by ϕ′0 < 0, is organized increasingly as ϕ′0 varies from −∞ to some negative number
λ and we use this result to prove that f(x) maps the interval (λ, 0] onto the interval
(0, ϕ0]. As in the proof of Lemma 2.4, we take 0 > x̄ > x and write δ(t) =
ϕ̄(t)− ϕ(t), where ϕ(t) = ϕ(t, x) and ϕ̄(t) = ϕ(t, x̄) are the solutions to (1.3) with
initial derivatives x and x̄, respectively.

Lemma 2.10. Let α = 2 and suppose that ω(x̄) < ∞. Then ω(x) < ω(x̄) for all
x < x̄.

Proof. Observe that δ(0) = 0 and δ′(0) > 0. Then δ′(t) > 0 for small values of
t. We will show below that δ′(t) > 0 for all values of t ∈ (0, ωm), where ωm =
min{ω(x), ω(x̄)}; i.e., δ(t) is an increasing and strictly positive function on (0, ωm).
It follows from this result that ω(x) < ω(x̄). In fact, if it happened that ω(x) ≥ ω(x̄)
then δ(t) = 0 at some point t < ωm but this is not possible because δ(t) > 0 for
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all t ∈ (0, ωm). So, suppose, by contradiction, that there exists a first point t̃ such
that δ′(t̃) = 0, i.e., ϕ̄′(t̃) = ϕ′(t̃). It then follows from (1.3) with α = 2 that

[ϕ̄(t̃)2 + ϕ̄(t̃)]ϕ̄′′(t̃) = [ϕ(t̃)2 + ϕ(t̃)]ϕ′′(t̃),

and we conclude that ϕ̄′′(t̃) and ϕ′′(t̃) are both positive or negative. But, by
hypothesis, ω̄ <∞ which implies from Lemma 2.8 that ϕ̄′′(t) < 0 for all t ∈ [0, ω̄).
Therefore, ϕ̄′′(t̃) and ϕ̄′′(t̃) are both negative. From the above identity we get

0 <
ϕ̄′′(t̃)
ϕ′′(t̃)

=
ϕ(t̃)2 + ϕ(t̃)
ϕ̄(t̃)2 + ϕ̄(t̃)

< 1,

leading that ϕ̄′′(t̃)− ϕ′′(t̃) = δ′′(t̃) > 0. On the other hand, since δ(t) is increasing
in the interval [0, t̃] and since δ′(t̃) = 0 then δ′′(t̃) ≤ 0, a contradiction with δ′′(t̃) >
0. �

Once ϕ0 is fixed and 1 < α ≤ 2, it follows from Lemma 2.9 that λ ≡ sup{x ∈
(−∞, 0) : ω(x) < ∞} is well defined and it follows from Lemma 2.6 that λ < 0.
Next result states that the set {x ∈ (−∞, 0) : ω(x) <∞} is an interval.

Corollary 2.11. If α = 2, then (−∞, λ] = {x ∈ (−∞, 0) : ω(x) <∞}.

Proof. It is sufficient to show that (−∞, λ] ⊂ {x ∈ (−∞, 0) : ω(x) < ∞}. We
first observe that λ ∈ {x ∈ (−∞, 0) : ω(x) < ∞} because the set {x ∈ (−∞, 0) :
ω(x) = ∞} is open (this is so because of Lemma 2.8 and the smoothly continuous
dependence of solutions on the initial conditions, see [10]). Then ω(λ) <∞ and it
follows from Lemma 2.10 that ω(x) < ω(λ) if x < λ and we are done. �

It follows from the corollary that f(x) is a well defined function on (λ, 0]. In
next lemma we characterize the set f((λ, 0]).

Lemma 2.12. If α = 2 then f((λ, 0]) = (0, ϕ0].

Proof. It follows from Lemma 2.7 that f(x) is continuous on (λ, 0]. Since f(0) = ϕ0

then or f((λ, 0]) = (0, ϕ0] or there exists a > 0 such that f(λ, 0] ⊂ [a, ϕ0]. In
what follows we discard the second option. Since ω(λ) < ∞ then ϕ(t, λ) → 0 as
t → ω(λ). In particular, given a > 0 there exists ta > 0 such that ϕ(ta, λ) < a/2.
By the continuous dependence on initial conditions, ϕ(ta, x) < a/2 if x is close
enough of λ, with x > λ. But since ϕ(t, x) is decreasing as a function of t, then
ϕ(t, x) < a/2 for all t > ta and then f(x) ≤ a/2 < a. It follows from here that
f((λ, 0]) = (0, ϕ0]. �

We remark that Lemma 2.8 is proven only for α ≥ 2 and Lemma 2.9 is proven
only for 1 < α ≤ 2, but numerical simulations indicate that both hold for all α ≥ 1.
If so then Lemma 2.12, equivalently the third part of Theorem 1.3, would hold
for any α ≥ 1. Numerical simulations also suggest that the solutions to (1.3) are
organized increasingly as a function of x and we have proved that this is the case
if x ≥ 0 and α ≥ 1 or if x < λ and α = 2 but it is an open problem to prove it
for x ∈ (λ, 0). If so then the result would imply that f(x) : (λ, 0] → (0, ϕ0] is one-
to-one and, together with lemmas (2.7) and (2.12), a homeomorphism. Therefore,
based upon numerical experiments, we conjecture that Theorem 1.1 holds also when
θi < θ0, for any θ0, θi ∈ (θr, θs).
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