MULTIPLE POSITIVE SOLUTIONS FOR A THIRD-ORDER THREE-POINT BVP WITH SIGN-CHANGING GREEN'S FUNCTION

JIAN-PING SUN, JUAN ZHAO

Abstract. This article concerns the third-order three-point boundary-value problem

\[u'''(t) = f(t, u(t)), \quad t \in [0, 1], \]
\[u'(0) = u(1) = u''(\eta) = 0. \]

Although the corresponding Green’s function is sign-changing, we still obtain the existence of at least \(2m-1\) positive solutions for arbitrary positive integer \(m\) under suitable conditions on \(f\).

1. Introduction

Third-order differential equations arise from a variety of areas of applied mathematics and physics, e.g., in the deflection of a curved beam having a constant or varying cross section, a three-layer beam, electromagnetic waves or gravity driven flows and so on [5].

Recently, the existence of single or multiple positive solutions to some third-order three-point boundary-value problems (BVPs for short) has received much attention from many authors. For example, in 1998, by using the Leggett-Williams fixed point theorem, Anderson [2] proved the existence of at least three positive solutions to the problem

\[-x'''(t) + f(x(t)) = 0, \quad t \in [0, 1], \]
\[x(0) = x'(t_2) = x''(1) = 0, \]

where \(t_2 \in [\frac{1}{2}, 1]\). In 2003, Anderson [1] obtained some existence results of positive solutions for the problem

\[x'''(t) = f(t, x(t)), \quad t_1 \leq t \leq t_3, \]
\[x(t_1) = x'(t_2) = 0, \quad \gamma x(t_3) + \delta x''(t_3) = 0. \]

The main tools used were the Guo-Krasnosel’skii and Leggett-Williams fixed point theorems. In 2005, Sun [13] studied the existence of single and multiple positive solutions for the problem

\[x'''(t) = f(t, x(t)), \quad t_1 \leq t \leq t_3, \]
\[x(t_1) = x'(t_2) = 0, \quad \gamma x(t_3) + \delta x''(t_3) = 0. \]
solutions for the singular BVP
\[u'''(t) - \lambda a(t)F(t, u(t)) = 0, \quad t \in (0, 1), \]
\[u(0) = u'(\eta) = u''(1) = u'''(1) = 0, \]
where \(\eta \in \left[\frac{1}{2}, 1\right] \), \(\lambda \) was a positive parameter and \(a(t) \) was a nonnegative continuous function defined on \((0, 1)\). His main tool was the Guo-Krasnosel’skii fixed point theorem. In 2008, by using the Guo-Krasnosel’skii fixed point theorem, Guo, Sun and Zhao [6] obtained the existence of at least one positive solution for the problem
\[u'''(t) + h(t)f(u(t)) = 0, \quad t \in (0, 1), \]
\[u(0) = u'(0) = 0, \quad u'(1) = \alpha u'(\eta), \]
where \(0 < \eta < 1 \) and \(1 < \alpha < 1/\eta \). For more results concerning the existence of positive solutions to third-order three-point BVPs, one can refer to [3, 4, 9, 10, 12, 14].

It is necessary to point out that all the above-mentioned works are achieved when the corresponding Green’s functions are positive, which is a very important condition. A natural question is that whether we can obtain the existence of positive solutions to some third-order three-point BVPs when the corresponding Green’s functions are sign-changing. It is worth mentioning that Palamides and Smyrlis [8] discussed the existence of at least one positive solution to the singular third-order three-point BVP with an indefinitely signed Green’s function
\[u'''(t) = a(t)f(t, u(t)), \quad t \in (0, 1), \]
\[u(0) = u(1) = u''(\eta) = 0, \quad \eta \in \left(\frac{17}{24}, 1\right). \]

Their technique was a combination of the Guo-Krasnosel’skii fixed point theorem and properties of the corresponding vector field. The following equality
\[\max_{t \in [0, 1]} \int_0^1 G(t, s)a(s)f(s, u(s))ds = \int_0^1 \max_{t \in [0, 1]} G(t, s)a(s)f(s, u(s))ds \tag{1.1} \]
played an important role in the process of their proof. Unfortunately, the equality (1.1) is not right. For a counterexample, one can refer to our paper [11].

Motivated greatly by the above-mentioned works, in this paper we study the following third-order three-point BVP
\[u'''(t) = f(t, u(t)), \quad t \in [0, 1], \]
\[u'(0) = u(1) = u''(\eta) = 0, \tag{1.2} \]
where \(f \in C([0, 1] \times [0, +\infty], [0, +\infty]) \) and \(\eta \in \left(\frac{1}{2}, 1\right) \). Although the corresponding Green’s function is sign-changing, we still obtain the existence of at least \(2m - 1 \) positive solutions for arbitrary positive integer \(m \) under suitable conditions on \(f \).

In the remainder of this section, we state some fundamental concepts and the Leggett-Williams fixed point theorem [7].

Let \(E \) be a real Banach space with cone \(P \). A map \(\sigma : P \to (-\infty, +\infty) \) is said to be a concave functional if
\[\sigma(tx + (1 - t)y) \geq t\sigma(x) + (1 - t)\sigma(y) \]
for all \(x, y \in P \) and \(t \in [0, 1] \). Let \(a \) and \(b \) be two numbers with \(0 < a < b \) and \(\sigma \) be a nonnegative continuous concave functional on \(P \). We define the following convex
After a simple computation, we obtain the following expression of Green’s function

\[P_a = \{ x \in P : \| x \| < a \}, \]

\[P(\sigma, a, b) = \{ x \in P : a \leq \sigma(x), \| x \| \leq b \}. \]

Theorem 1.1 (Leggett-Williams fixed point theorem). Let \(A : \overline{P}_c \rightarrow \overline{P}_c \) be completely continuous and \(\sigma \) be a nonnegative continuous concave functional on \(P \) such that \(\sigma(x) \leq \| x \| \) for all \(x \in \overline{P}_c \). Suppose that there exist \(0 < d < a < b < c \) such that

(i) \(\{ x \in P(\sigma, a, b) : \sigma(x) > a \} \neq \emptyset \) and \(\sigma(Ax) > a \) for \(x \in P(\sigma, a, b) \);

(ii) \(\| Ax \| < d \) for \(\| x \| \leq d \);

(iii) \(\sigma(Ax) > a \) for \(x \in P(\sigma, a, c) \) with \(\| Ax \| > b \).

Then \(A \) has at least three fixed points \(x_1, x_2, x_3 \) in \(\overline{P}_c \) satisfying

\[\| x_1 \| < d, \ a < \sigma(x_2), \ \| x_3 \| > d, \ \sigma(x_3) < a. \]

2. Preliminaries

In this article, we assume that Banach space \(E = C[0,1] \) is equipped with the norm \(\| u \| = \max_{t \in [0,1]} | u(t) | \).

For any \(y \in E \), we consider the BVP

\begin{align*}
 u''(t) &= y(t), \quad t \in [0,1], \\
 u'(0) &= u(1) = u''(\eta) = 0. \tag{2.1}
\end{align*}

After a simple computation, we obtain the following expression of Green’s function \(G(t,s) \) of the BVP (2.1): for \(s \geq \eta \),

\[G(t,s) = \begin{cases}
 -\frac{(1-s)^2}{2}, & 0 \leq t \leq s \leq 1, \\
 \frac{t^2-2st+2s-1}{2}, & 0 \leq s \leq t \leq 1
\end{cases} \]

and for \(s < \eta \),

\[G(t,s) = \begin{cases}
 -\frac{t^2-s^2+2s}{2}, & 0 \leq t \leq s \leq 1, \\
 -st + s, & 0 \leq s \leq t \leq 1
\end{cases} \]

Obviously, \(G(t,s) \geq 0 \) for \(0 \leq s < \eta \), and \(G(t,s) \leq 0 \) for \(\eta \leq s \leq 1 \). Moreover, for \(s \geq \eta \),

\[\max \{ G(t,s) : t \in [0,1] \} = G(1,s) = 0 \]

and for \(s < \eta \),

\[\max \{ G(t,s) : t \in [0,1] \} = G(0,s) = -\frac{s^2}{2} + s. \]

To obtain the existence of positive solutions for (1.2), we need to construct a suitable cone in \(E \). Let \(u \) be a solution of (1.2). Then it is easy to verify that \(u(t) \geq 0 \) for \(t \in [0,1] \) provided that \(u'(1) \leq 0 \). In fact, since \(f \) is nonnegative, we know that \(u''(t) \geq 0 \) for \(t \in [0,1] \), which together with \(u''(\eta) = 0 \) implies that

\[u''(t) \leq 0 \text{ for } t \in [0,\eta] \quad \text{and} \quad u''(t) \geq 0 \text{ for } t \in [\eta,1]. \tag{2.2} \]

In view of (2.2) and \(u'(0) = 0 \), we have

\[u'(t) \leq 0 \text{ for } t \in [0,\eta] \quad \text{and} \quad u'(t) \leq u'(1) \text{ for } t \in [\eta,1]. \tag{2.3} \]
If \(u'(1) \leq 0 \), then it follows from (2.3) that \(u'(t) \leq 0 \) for \(t \in [0,1] \), which together with \(u(1) = 0 \) implies that \(u(t) \geq 0 \) for \(t \in [0,1] \). Therefore, we define a cone in \(E \) as follows:
\[
\hat{P} = \{ y \in E : y(t) \text{ is nonnegative and decreasing on } [0,1] \}.
\]

Lemma 2.1 \([11]\). Let \(y \in \hat{P} \) and \(u(t) = \int_0^1 G(t,s)y(s)ds, \ t \in [0,1] \). Then \(u \in \hat{P} \) and \(u \) is the unique solution of (2.1). Moreover, \(u \) satisfies
\[
\min_{t \in [1-\theta,\theta]} u(t) \geq \theta^*\|u\|,
\]
where \(\theta \in (\frac{1}{2}, \eta) \) and \(\theta^* = (\eta - \theta)/\eta \).

3. Main results

In the remainder of this paper, we assume that \(f : [0,1] \times [0, +\infty) \to [0, +\infty) \) is continuous and satisfies the following two conditions:

- (D1) For each \(x \in [0, +\infty) \), the mapping \(t \mapsto f(t,x) \) is decreasing;
- (D2) For each \(t \in [0,1] \), the mapping \(x \mapsto f(t,x) \) is increasing.

Let
\[
P = \{ u \in \hat{P} : \min_{t \in [1-\theta,\theta]} u(t) \geq \theta^*\|u\| \}.
\]
Then it is easy to check that \(P \) is a cone in \(E \). Now, we define an operator \(A \) on \(P \) by
\[
(Au)(t) = \int_0^1 G(t,s)f(s,u(s))ds, \ t \in [0,1].
\]
Obviously, if \(u \) is a fixed point of \(A \) in \(P \), then \(u \) is a nonnegative solution of (1.2).

For convenience, we denote
\[
H_1 = \int_0^\eta \left(-\frac{s^2}{2} + s\right)ds, \quad H_2 = \min_{t \in [1-\theta,\theta]} \int_{1-\theta}^\theta G(t,s)ds.
\]

Theorem 3.1. Assume that there exist numbers \(d, a \) and \(c \) with \(0 < d < a < a^{\frac{a}{\theta^*}} \leq c \) such that
\[
\begin{align*}
 f(t,u) &< \frac{d}{H_1}, \quad t \in [0,\eta], \ u \in [0,d], \quad (3.1) \\
 f(t,u) &> \frac{a}{H_2}, \quad t \in [1-\theta,\theta], \ u \in [a,\frac{\eta}{\theta}], \quad (3.2) \\
 f(t,u) &< \frac{c}{H_1}, \quad t \in [0,\eta], \ u \in [0,c]. \quad (3.3)
\end{align*}
\]

Then (1.2) has at least three positive solutions \(u, v \) and \(w \) satisfying
\[
\|u\| < d, \quad a < \min_{t \in [1-\theta,\theta]} v(t), \quad d < \|w\|, \quad \min_{t \in [1-\theta,\theta]} w(t) < a.
\]

Proof. For \(u \in P \), we define
\[
\sigma(u) = \min_{t \in [1-\theta,\theta]} u(t).
\]
It is easy to check that \(\sigma \) is a nonnegative continuous concave functional on \(P \) with \(\sigma(u) \leq \|u\| \) for \(u \in P \) and that \(A : P \to P \) is completely continuous.
We first assert that if there exists a positive number \(r \) such that \(f(t, u) < \frac{r}{H_t} \) for \(t \in [0, \eta] \) and \(u \in [0, r] \), then \(A : \overline{P}_r \rightarrow P_r \). Indeed, if \(u \in \overline{P}_r \), then

\[
\|Au\| = \max_{t \in [0,1]} \int_0^1 G(t, s)f(s, u(s))ds \\
\leq \int_0^1 \max_{t \in [0,1]} G(t, s)f(s, u(s))ds \\
= \int_0^\eta \max_{t \in [0,1]} G(t, s)f(s, u(s))ds + \int_\eta^1 \max_{t \in [0,1]} G(t, s)f(s, u(s))ds \\
= \int_0^\eta (1 - \frac{s^2}{2} + s)f(s, u(s))ds \\
< \frac{r}{H_t} \int_0^\eta (1 - \frac{s^2}{2} + s)ds = r;
\]

that is, \(Au \in P_r \).

Hence, we have shown that if (3.1) and (3.3) hold, then \(A \) maps \(\overline{P}_d \) into \(P_d \) and \(\overline{P}_r \) into \(P_r \).

Next, we assert that \(\{ u \in P(\sigma, a, \frac{\sigma}{\sigma_\infty}) : \sigma(u) > a \} \neq \emptyset \) and \(\sigma(Au) > a \) for all \(u \in P(\sigma, a, \frac{\sigma}{\sigma_\infty}) \). In fact, the constant function \(\frac{a + \sigma}{\sigma_\infty} \) belongs to \(\{ u \in P(\sigma, a, \frac{\sigma}{\sigma_\infty}) : \sigma(u) > a \} \).

On the one hand, for \(u \in P(\sigma, a, \frac{\sigma}{\sigma_\infty}) \), we have

\[
a \leq \sigma(u) = \min_{t \in [1 - \theta, \theta]} u(t) \leq u(t) \leq \|u\| \leq \frac{a}{\theta^*},
\]

for all \(t \in [1 - \theta, \theta] \).

Also, for any \(u \in P \) and \(t \in [1 - \theta, \theta] \), we have

\[
\int_0^{1-\theta} G(t, s)f(s, u(s))ds + \int_\theta^\eta G(t, s)f(s, u(s))ds + \int_\eta^1 G(t, s)f(s, u(s))ds \\
\geq \int_0^{1-\theta} (1 - t)sf(s, u(s))ds - \int_\eta^1 \frac{(1 - s)^2}{2}f(s, u(s))ds \\
\geq f(\eta, u(\eta)) \int_0^{1-\theta} (1 - t)ds - \int_\eta^1 \frac{(1 - s)^2}{2}ds \\
\geq f(\eta, u(\eta)) \int_0^{1-\theta} (1 - t)ds - \int_\theta^1 \frac{(1 - s)^2}{2}ds \\
= f(\eta, u(\eta)) \left[\frac{(1 - t)(1 - \theta)^2}{2} - \frac{(1 - \theta)^3}{6} \right] \\
\geq f(\eta, u(\eta)) \left[\frac{(1 - \theta)(1 - \theta)^2}{2} - \frac{(1 - \theta)^3}{6} \right] \\
= f(\eta, u(\eta)) \frac{(1 - \theta)^3}{3} \geq 0,
\]

which together with (3.2) and (3.4) implies

\[
\sigma(Au) = \min_{t \in [1 - \theta, \theta]} \int_0^1 G(t, s)f(s, u(s))ds
\]
for $u \in P(\sigma, a, \frac{a}{\theta})$.

Finally, we verify that if $u \in P(\sigma, a, c)$ and $\|Au\| > a/\theta^*$, then $\sigma(Au) > a$. To see this, we suppose that $u \in P(\sigma, a, c)$ and $\|Au\| > a/\theta^*$. Then it follows from $Au \in P$ that

$$
\sigma(Au) = \min_{t \in [1-\theta, \theta]} (Au)(t) \geq \theta^* \|Au\| > a.
$$

To sum up, all the hypotheses of the Leggett-Williams fixed point theorem are satisfied. Therefore, A has at least three fixed points; that is, (1.2) has at least three positive solutions u, v and w satisfying

$$
\|u\| < d, \quad a < \min_{t \in [1-\theta, \theta]} v(t), \quad d < \|w\|, \quad \min_{t \in [1-\theta, \theta]} w(t) < a.
$$

\[\square\]

Theorem 3.2. Let m be an arbitrary positive integer. Assume that there exist numbers d_i ($1 \leq i \leq m$) and a_j ($1 \leq j \leq m-1$) with $0 < d_1 < a_1 < \frac{a_2}{\theta^*} < d_2 < a_2 < \frac{a_3}{\theta^*} < \cdots < d_{m-1} < a_{m-1} < \frac{a_m}{\theta^*} < d_m$ such that

$$
(3.5) \quad f(t, u) < \frac{d_i}{H_1}, \quad t \in [0, \eta], \quad u \in [0, d_i], \quad 1 \leq i \leq m,
$$

$$
(3.6) \quad f(t, u) > \frac{a_j}{H_2}, \quad t \in [1-\theta, \theta], \quad u \in [a_j, \frac{a_j}{\theta^*}], \quad 1 \leq j \leq m-1.
$$

Then (1.2) has at least $2m - 1$ positive solutions in P_{d_m}.

\[\text{Proof.}\] We use induction on m. First, for $m = 1$, we know from (3.5) that $A : P_{d_1} \to P_{d_1}$. Then it follows from Schauder fixed point theorem that (1.2) has at least one positive solution in P_{d_1}.

Next, we assume that this conclusion holds for $m = k$. To show that this conclusion also holds for $m = k + 1$, we suppose that there exist numbers d_i ($1 \leq i \leq k + 1$) and a_j ($1 \leq j \leq k$) with $0 < d_1 < a_1 < \frac{a_2}{\theta^*} < d_2 < a_2 < \frac{a_3}{\theta^*} < \cdots < d_k < a_k < \frac{a_{k+1}}{\theta^*} < d_{k+1}$ such that

$$
(3.7) \quad f(t, u) < \frac{d_i}{H_1}, \quad t \in [0, \eta], \quad u \in [0, d_i], \quad 1 \leq i \leq k + 1,
$$

$$
(3.8) \quad f(t, u) > \frac{a_j}{H_2}, \quad t \in [1-\theta, \theta], \quad u \in [a_j, \frac{a_j}{\theta^*}], \quad 1 \leq j \leq k.
$$

By assumption, (1.2) has at least $2k - 1$ positive solutions u_i ($i = 1, 2, \ldots, 2k - 1$) in P_{d_k}. At the same time, it follows from Theorem 3.1 (3.7) and (3.8) that (1.2) has at least three positive solutions u, v and w in $P_{d_{k+1}}$ such that

$$
\|u\| < d_k, \quad a_k < \min_{t \in [1-\theta, \theta]} v(t), \quad d_k < \|w\|, \quad \min_{t \in [1-\theta, \theta]} w(t) < a_k.
$$

Obviously, v and w are different from u_i ($i = 1, 2, \ldots, 2k - 1$). Therefore, (1.2) has at least $2k + 1$ positive solutions in $P_{d_{k+1}}$, which shows that this conclusion also holds for $m = k + 1$. \[\square\]
Example 3.3. We consider the BVP

\[u'''(t) = f(t, u(t)), \quad t \in [0, 1], \]

\[u'(0) = u(1) = u''(\frac{2}{3}) = 0, \quad (3.9) \]

where

\[f(t, u) = \begin{cases}
(1-t)(u+1)^2, & (t, u) \in [0, 1] \times [0, 1], \\
(1-t)(122(u-1) + 4), & (t, u) \in [0, 1] \times [1, 2], \\
14(1-t)(u+1)^2, & (t, u) \in [0, 1] \times [2, 20], \\
6174(1-t), & (t, u) \in [0, 1] \times [20, +\infty).
\end{cases} \]

Let \(\theta = 3/5 \). Then \(\theta^* = 1/10 \). A simple calculation shows that \(H_1 = 14/81 \) and \(H_2 = 1/25 \). If we choose \(d = 1, a = 2, c = 1068 \), then all the conditions of Theorem 3.1 are satisfied. Therefore, it follows from Theorem 3.1 that (3.9) has at least three positive solutions.

REFERENCES

DEPARTMENT OF APPLIED MATHEMATICS, LANZHOU UNIVERSITY OF TECHNOLOGY, LANZHOU, GANSU 730050, CHINA
E-mail address, Jian-Ping Sun: jpsun@lut.cn
E-mail address, Juan Zhao: z.1111z@163.com