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ON PACARD’S REGULARITY FOR THE EQUATION —Au=u?

DAVID R. ADAMS

ABSTRACT. It is shown that the singular set for a positive solution of the PDE
—Au = uP has Hausdorff dimension less than or equal to n—2p’, as conjectured
by Pacard [12] in 1993.

1. RESULTS

This note concerns the open question mentioned by Pacard in[12], especially its
regularity criterion for positive weak solutions to —Awu = u? in a domain Q C R™,
p>n/(n—2), n> 3. By this we shall mean: u € L} () and

loc

—/A¢~udx=/up¢>da: (1.1)

for all ¢ € C§°(€2). The main question here is to describe the size of the set
Sing(u) C Q2 where a solution u becomes +o00 and such that v € C*(Q2\ Sing(u)).
Examples where such a set exists includes the simple case u(z) = co|z|~2/P=1,
r = (%,2), z € R"4 % € R% a solution in the ball B(0, R), centered at zero
of radius R, and some constant co. Here Sing(u) = R? N B(0, R) and necessarily
d<n—=2p,p =p/(p—1). Note that when p = n/(n — 2), it is well known that
can have isolated singularities (here d = 0; see [§]). Furthermore, n — 2p’ = 0
when p = n/(n — 2), because then p’ = n/2. The case p = (n + 2)/(n — 2), the
“Yamabe case,” has been also well studied in the literature; see [14]. And several
authors have constructed solutions to with a prescribed singular set Sing(u);
e.g. [13], [6], [I0]. But in all cases, it appears that solutions u to behave like

u(y) ~ dist(y, Sing(u))~2/P~1) (1.2)

as y — Sing(u) in Q.

The Pacard conjecture is that the Hausdorff dimension of Sing(u) is always <
n—2p’, which certainly appears to be the case in all the examples considered. Pacard
proves this, in [I2], under an additional hypothesis, his hypothesis “H”. However,
it soon becomes clear that hypothesis H is much too strong, for it precludes isolated
singularities when p = n/(n—2), and for that matter any singularities when n/(n—
2) <p<(n/(n—2))+e, for some & > 0.

Thus the purpose of this note is to prove:
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Theorem 1.1. Let u be a positive weak solution of (1.1), then there exists an open
set ' C Q such that u € C°() and Cy,y (2\ Q') = 0.

The presentation of this note follows closely that of [12], so it is recommended
that the reader have a copy of [12] at hand while reading the present note.

Here Cy p(+) is the capacity set function associated with the Sobolev space
W*P(Q), o = positive integer. Also, one recalls from [2] that any set of Cy -
capacity zero has Hausdorff dimension < n — 2p’. Furthermore, it is not surprising
that Sing(u) = Q\' is of Cs ,,-capacity zero, given that this condition characterizes
removable sets for equation (L.I)); see [4].

For p’ < n/2, we can use the standard definition of C5 ;s using Riesz potentials
on R” especially when 02 = boundary of €2 is smooth. For any compact K C R™

Cop (K) = inf{|| |7, f > 0,If > 1 on K}.
Here
Bf@) = [ Je-yP W)y

Notice this definition easily implies

1 ,
Cop({z: Lof 2A}) < - [ (1.3)

The proof of our Theorem constitutes the main body of this note, 1-6. In 7, 8
and 9, we include further speculations.

1. If u = u(x) is a positive weak solution to (|1.1)), then u belongs to the Morrey
space LP2P ().
Proof. (This result is due to Pacard [11], and it has also been observed by Brezis.)

The Morrey space in question — here we extend functions outside {2 by zero — is
those f € LP (R™) such that

loc
A—n p 1/p_
(s v @) dy) = [l < oo,
z€R™, r>0 B(z,r)

for 1 <p < oo, 0 < A <n. Again, recall that we will only be dealing with the case
p’ < n/2. The case p’ = n/2 can be handled using the usual modifications; see [2].
So now set ¢(z) =7 (£=22)7, n € C§°(B(0,1)) for o > 2p'. Then

1/ /
[ < S([urw) o (1.4)
r
by Holder’s inequality. The result follows. O

2. A modified Pacard Lemma [12]:

Lemma 1.2. Let u be a positive weak solution of (1.1), then there are constants
¢p such that for v € Q and r small

pl
][ uf < cp{ (][ up_l) +][ u(y)p(/ ly—z>"u(z)P ! dz) dy}
B(z,r) B(x,2r) B(z,2r) B(y,2r)

(1.5)
forp>2, and

p
][ uP < cp{ (][ u) +][ u(y)p(/ ly — 2|2 "u(z)P~! dz) dy}
B(x,r) B(z,2r) B(z,2r) B(y,2r)

(1.6)
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forl<p<2.

Here, the integrals with a bar denote integral averages.

Proof. (Outline from [12].) Inequalities (1.5) and (1.6) follow from the following

inequality for positive weak solutions to (1.1)); see [12] or [9:

,,,n
u(y) S][ u+ 7][ ly — 2|2 "u(2)P dz. (1.7)
B(y,r) TL(TL - 2) B(y,r)
To get our result, simply multiply (1.7) through by uP~! and integrate over a ball
centered at x of radius r. (]

This Lemma is important for at least two reasons:
(a) If the quantity

/ ly — 2> "u(2)P~ dz (1.8)
B(y,R)

can be made uniformly small for R small and all y in some neighborhood of x € €,
then or can be used to engage the theory of reverse Holder inequalities;
see [7] or [5]. In each case, one can then deduce that v € L9 in that neighborhood
of x, where ¢ > p. This, it turns out, is the crucial step in proving C*°-regularity
in that neighborhood. We return to this below in section 6.

(b) It is less than intuitive that the potential IouP~! (or some part of it) should
play a significant role here in describing the pointwise behavior of u near Sing(u)
in Q. One expects u = IyuP to be of some service here but not IouP~!. Notice
that the section 1 result plus the embeddings of Morrey spaces under the Riesz
potential operator I imply that IhuP~! € BMO, the John-Nirenberg space of
functions of bounded mean oscillations; see [2] or [I]. This fact alone suggests that
exp(c- IauP~1) might be of interest here. We speculate further on this in section 8.

Notice that u(z) = clouP(x) in  for some constant ¢, hence

Igupil = CIQ(IQUp)pil.
This is precisely the classical non-linear potential from [2]; i.e., for (o, p):
IOZ(IQM)?’/_l7 when o = 2, and p’ is replaced by p, and the measure dy = uP dz.
3. ILuP~1(z) < co implies
lim r2p’7”/ u(y)? dy = 0. (1.9)
r—0 B(z,r)
Proof. This follows from a fundamental estimate from Nonlinear Potential Theory;

see [2] or [3]. The estimate is for the so-called “nonlinear potentials” associated
with the capacities Cy ,:

L(Lu?yP~ (@) > - W' ™ (x), (1.10)
where the W-potential here is the associated Wolff potential
dr

W)= [ b B

for 0 < a < n,1<p<n/a, and ;4 = non-negative Borel measure on R™. In (1.10]),
dp = uPdy. Our result follows since both r2' =" and S Blz,r) uP are monotone
functions of r. It should perhaps be added here that the reverse inequality to

(1.10) may fail for p > 2(n —1)/(n — 2); see [3]. O
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4. &,(z) = the jump discontinuity of luP~! at z when LuP~!(x) < oco.

Proof. Here we compute

Tim LuP ™ (y) = &u(2) + Lu? ™ (z)

Yy—z

where

Eu(n) = E(n —2) /Ow—yl r2_"(/]3(y , up_l) g (1.11)

Notice that &,(x) = 0, when w is continuous at . In fact, Fubini’s theorem gives

L~ (y) = (n — 2) /Ooo 1"2_"(/3(y ) w) % (1.12)

And writing (1.12) as ( 0‘$in X ~+f|(;o_y‘ )(n—2), we easily see that the last integral

tends to louP~1(x) as y — x since B(y,r) C B(z,2r) and IouP~1(x) < oo allows us
to use dominated convergence. Hence the result follows. Note that we also have

€u(z) = lim ly — 2> "u(2)P"t dz (1.13)
Y78 Sy —z|<|z—yl
since
lim r2_"/ u(y)Ptdy =0
r—0 B(z,r)
follows from Iyu?~!(z) < oo. O

Thus the jump discontinuity &, (z) is generally > 0 for « € Sing(u). But notice
that ¢, (x) = 0 for any ¢ € C§°(R").
5. Co (Sing(u)) = 0.

Proof. Here we set

Sing x(u) = {x € Q: & (x) > A}. (1.14)
And for Sing(u) needed in our Theorem, we take X in to be 1/(4¢cp), ¢p
the constant in the Pacard Lemma (section 2). Now if x € Sing(u), then for any
y € N(z) N Sing(u), N(z) = some neighborhood of z,

A< ulr) < ch(juP™h — o) (y) + A/2,

hence

. 200 /
Copr (N(2) N [L(JuP™! = ¢]) > 1/2]) < (X)p P~ =17 -

So taking ¢ to be an L* smooth approximation to uP~! yields Cs,/ (N(z) N
Sing(u)) = 0 and the final result follows due to the countable subadditivity of
Co s see [2]. O

6. Deducing u € C*°(Q \ Sing(u)). (Here we follow the path forged by Pacard
[12].)
Proof. The reason for our choice of A = 1/(4cp,) above now becomes clear: for
x € Q — Sing, (u), (1.8) then does not exceed 1/(2¢,) for some R > 0 and all y in
a neighborhood of z. This together with the modified Pacard Lemma yields that
u € LY in that neighborhood of z, for some ¢ > p by the reverse Holder inequality
theory mentioned earlier. We are now in position to use Lemmas 4 and 5 from [12].

Using (1.9, we have:
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there exists constant 6 € (0,1) such that

1 / L1 1 /
1 W< s uP. 1.15
(OR)"=2"" |p(zor) 2 R"2F" | g R (1.15)
Iterating (L.15]) yields: for such z as above
g g
(0kR1)"=2" Jp(s.0tRy) R ) Ry)

for all k € Z*. Now one can choose a pu < 2p’ such that g%’ 1 > 1/2 and derive
that in fact in this neighborhood of = that u € LP'* (note that the notation here
differs from that in [I2], a fact we prefer). And now, as in [I2], we can easily get
u € C'* in this neighborhood since p < 2p’. O

7. We mention a simple regularity criterion that can be used, for example, to get
u € C* in all of Q: if u € LMP~1/22(Q) for some A < n, then, in fact, u € C>®(Q).
This might be stated as a corollary to the main theorem, for one immediately sees
that this condition implies that &,(x) = 0 for all # € Q; i.e., IouP~! is continuous
on  and our theory implies then that v € C*°(€). Notice that this condition
also implies that there are no bounded point discontinuities for v in Q (a fact well
known), but this then confirms that indeed Sing(u) is made up of points where
u(y) — +oo as y — Sing(u). And that agrees, of course, with (T.2).

8. A conjecture seems to now be in order: there is a function 3(z) > 0 such that
for all z € [LuP~! = +o0]

u(y) ~ exp (B(z) lu""(y)) (1.17)

as y — = € Sing(u). Since LuP™! = I(IouP)P~! and the equivalence of this
nonlinear potential with the Wolff potential, at least for p < %(Z—:;)7 we expect
B(z) to be something like
2 1
p—1 D@y

where D(z) = himrﬁor%"” fB(I’T) uP, z € [louP~! = +0o0], by comparing this with
the examples where holds.

9. A further conjecture is that one can prove our Theorem for —A replaced by
the differential operator L = — 3, ;(aijus,)s; + cu studied in [4].

(1.18)
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