Pablo Amster, Mariel Paula Kuna
Abstract:
For a vector function
we consider the system

where
is a
function.
We are interested in finding all possible T-periodic forcing terms
p(t) for which there is at least one solution.
In other words, we examine the
range of the semilinear operator
given by
,
where
![$$
H^2_{per}= \{ u\in H^2([0,T], \mathbb{R}^N);
u(0) - u(T) = u'(0)-u'(T)=0 \}.
$$](gifs/ag.gif)
Writing
,
where
,
we present several results concerning the topological structure of the set

Submitted October 7, 2011. Published November 27, 2012.
Math Subject Classifications: 34B15, 34L30.
Key Words: Resonant systems; semilinear operators; critical point theory.
Show me the PDF file (269 KB), TEX file for this article.
![]() |
Pablo Amster Departamento de Matemática Facultad de Ciencias Exactas y Naturales Universidad de Buenos Aires Ciudad Universitaria, Pabellón I (1428) Buenos Aires, Argentina email: pamster@dm.uba.ar |
|---|---|
![]() |
Mariel Paula Kuna Departamento de Matemática Facultad de Ciencias Exactas y Naturales Universidad de Buenos Aires Ciudad Universitaria, Pabellón I (1428) Buenos Aires, Argentina email: mpkuna@dm.uba.ar |
Return to the EJDE web page