Electron. J. Diff. Equ., Vol. 2012 (2012), No. 209, pp. 1-13.

Range of semilinear operators for systems at resonance

Pablo Amster, Mariel Paula Kuna

Abstract:
For a vector function $u:\mathbb{R} \to \mathbb{R}^N $ we consider the system
$$\displaylines{
 u''(t)+ \nabla G(u(t))= p(t)\cr
 u(t)=u(t+T),
 }$$
where $G: \mathbb{R}^N \to \mathbb{R}$ is a $C^1$ function. We are interested in finding all possible T-periodic forcing terms p(t) for which there is at least one solution. In other words, we examine the range of the semilinear operator $S:H^2_{per}\to L^2([0,T],\mathbb{R}^N)$ given by $Su= u''+ \nabla G(u)$, where
$$
 H^2_{per}= \{ u\in H^2([0,T], \mathbb{R}^N);  
  u(0) - u(T) = u'(0)-u'(T)=0 \}.
 $$
Writing $p(t)= \overline{p} + \widetilde{p}(t)$, where $\overline{p}:=\frac 1T\int_0^Tp(t)\, dt$, we present several results concerning the topological structure of the set
$$
 \mathcal{I}(\widetilde{p})=\{ \overline{p} \in \mathbb{R}^N;
 \overline{p} + \widetilde{p}\in \operatorname{Im}(S)\}.
 $$

Submitted October 7, 2011. Published November 27, 2012.
Math Subject Classifications: 34B15, 34L30.
Key Words: Resonant systems; semilinear operators; critical point theory.

Show me the PDF file (269 KB), TEX file, and other files for this article.

Pablo Amster
Departamento de Matemática
Facultad de Ciencias Exactas y Naturales
Universidad de Buenos Aires
Ciudad Universitaria, Pabellón I
(1428) Buenos Aires, Argentina
email: pamster@dm.uba.ar
Mariel Paula Kuna
Departamento de Matemática
Facultad de Ciencias Exactas y Naturales
Universidad de Buenos Aires
Ciudad Universitaria, Pabellón I
(1428) Buenos Aires, Argentina
email: mpkuna@dm.uba.ar

Return to the EJDE web page