Jose Luiz Boldrini, Marko Antonio Rojas-Medar, Maria Drina Rojas-Medar
Abstract:
We analyze a system of nonlinear partial differential equations
modeling the stationary flow induced by the upward swimming of certain
microorganisms in a fluid. We consider the realistic case in which
the effective viscosity of the fluid depends on the concentration of
such microorganisms. Under certain conditions, we prove the existence
and uniqueness of solutions for such generalized bioconvective
flow equations
Submitted January 17, 2013. Published April 29, 2013.
Math Subject Classifications: 35Q80, 76Z10, 92B05.
Key Words: Bioconvective flow; stationary solutions.
Show me the PDF file (270 KB), TEX file, and other files for this article.
José Luiz Boldrini Unicamp-Imecc, Rua Sérgio Buarque de Holanda 651: 13083-859 Campinas, SP, Brazil email: josephbold@gmail.com | |
Marko Antonio Rojas-Medar Dpto. de Ciencias Básicas, Facultad de Ciencias Universidad del Bío-Bío, Campus Fernando May Casilla 447, Chillán, Chile email: marko@ubiobio.cl | |
Maria Drina Rojas-Medar Dpto. de Matemáticas, Facultad de Ciencias Básicas Universidad de Antofagasta, Casilla 170 Antofagasta, Chile email: mrojas@uantof.cl |
Return to the EJDE web page