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DIRECT AND INVERSE BIFURCATION PROBLEMS FOR
NON-AUTONOMOUS LOGISTIC EQUATIONS

TETSUTARO SHIBATA

Abstract. We consider the semilinear eigenvalue problem

−u′′(t) + k(t)u(t)p = λu(t), u(t) > 0, t ∈ I := (−1/2, 1/2),

u(−1/2) = u(1/2) = 0,

where p > 1 is a constant, and λ > 0 is a parameter. We propose a new
inverse bifurcation problem. Assume that k(t) is an unknown function. Then

can we determine k(t) from the asymptotic behavior of the bifurcation curve?
The purpose of this paper is to answer this question affirmatively. The key

ingredient is the precise asymptotic formula for the Lq-bifurcation curve λ =

λ(q, α) as α→∞ (1 ≤ q <∞), where α := ‖k1/(p−1)uλ‖q .

1. Introduction

We consider the semilinear non-autonomous logistic equation of population dy-
namics

−u′′(t) + k(t)u(t)p = λu(t), t ∈ I := (−1/2, 1/2), (1.1)

u(t) > 0 t ∈ I, (1.2)

u(−1/2) = u(1/2) = 0, (1.3)

where p > 1 is a given constant, and λ > 0 is a parameter. We assume that
k(t) ∈ C2(Ī) satisfies the following conditions.

k(t) > 0, k(t) = k(−t), t ∈ Ī , (1.4)

k′(t) ≥ 0, 0 ≤ t ≤ 1/2. (1.5)

The local and global structure of the bifurcation diagrams of (1.1)–(1.3) have been
investigated by many authors in L∞-framework. We refer to [1, 6, 7, 10, 11, 12].
In particular, the following basic properties are well known from [1, 9].

(a) For each λ > π2, there exists a unique solution uλ ∈ C2(Ī) such that (λ, uλ)
satisfies (1.1)–(1.3).

(b) The set {(λ, uλ) : λ > π2} gives all the solutions of (1.1)–(1.3) and is a
continuous unbounded curve in R+ × C(Ī) emanating from (π2, 0).

(c) π2 < µ < λ holds if and only if uµ < uλ in I.
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We also emphasize that (1.1)–(1.3) is the model equation of population density
for some species when p = 2. Here, λ and k are regarded as the reciprocal number of
its diffusion rate and the effect of crowd for the species, respectively. Furthermore,
the L1-norm of the solution represents the total number of the species. From
this biological background, it is significant to study the global structure of the
bifurcation diagram in Lq-framework (1 ≤ q < ∞); we refer to [2, 3, 4, 5, 9, 14,
15, 16, 17]. In this article, we parameterize the solution set as follows. For a given
α > 0, we denote by (λ(q, α), uα) ∈ {λ > π2} × C2(Ī) the solution pair of (1.1)–
(1.3) with ‖k1/(p−1)uα‖q = α, which uniquely exists by (c) above. We call the
graph λ = λ(q, α) (α > 0) the Lq-bifurcation diagram of (1.1)–(1.3). From [1, 9]
we see that

(d) λ(q, α) is increasing for α > 0 and λ(q, α)→∞ as α→∞.
From this asymptotic property, we propose a new inverse bifurcation problem
(NIBP) for (1.1)–(1.3), under the following condition on k(t): hypothesis

(H1) Assume that k(t) satisfies (1.4) and (1.5). Furthermore, K ′(t)/K(t) and
K ′′(t)/K(t) are non-increasing for 0 ≤ t ≤ 1/2, where K(t) := k(t)−1/(p−1).

Typical examples of k(t) satisfying (H1) are as follows.

k(t) = (1− t2)1−p,

k(t) = kb(t) = cos1−p(bt) (0 ≤ b < π, with b constant).

Now, the new inverse bifurcation problem is stated as follows.
(NIBP) Assume that the unknown function k(t) satisfies (H1). Let λ0(q, α) be

the Lq-bifurcation diagram of (1.1)–(1.3) with k(t) ≡ 1. Suppose that as
α→∞,

λ(q, α)− λ0(q, α) = o(1). (1.6)

Then can we determine k(t)?
Inverse problems such as the one above seem to be new for nonlinear problems

and it corresponds to the linear inverse eigenvalue problems, which determine un-
known potential from the information about eigenvalues. Therefore, it seems worth
considering.

The main purpose here is to answer the inverse bifurcation problem (NIBP)
affirmatively. To do this, we first consider the direct problem of (1.1)–(1.3), namely,
we establish the precise asymptotic formula for λ(q, α) as α → ∞. Comparing to
the autonomous case, however, there are no works which obtain precise asymptotic
formula in non-autonomous case. We refer to [14, 15, 17]. By the terms which
come from k, k′, k′′ and u′, the tools for autonomous case are not useful any more
in non-autonomous problems.

To overcome this difficulty, we adopt a new parameter ‖k1/(p−1)uα‖q = α to
parameterize the bifurcation curve λ(q, α). Indeed, in [14, 15], λ(q, α) was param-
eterized by ‖uα‖2 = α (q = 2) and the calculation there became too complicated,
and the optimal estimate for the third term of λ(q, α) as α → ∞ has not been
obtained there. By the new idea above, the tools for autonomous problems can be
available to our non-autonomous case.

Before stating the results for (NIBP), we first state the result for the direct
problem.

Theorem 1.1. Let p > 1 and q ≥ 1 be fixed constants.
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(i) Assume that k is a given function which satisfies (H1). Then, as α→∞,

λ(q, α) ≥ αp−1 + C1α
(p−1)/2 + a0 +m0 − rp,q + o(1), (1.7)

λ(q, α) ≤ αp−1 + C1α
(p−1)/2 + a0 +M0 + o(1), (1.8)

where

C1 =
p− 1
q

C(q), (1.9)

C(q) := 2
∫ 1

0

1− sq√
S(s)

ds, (1.10)

S(s) = 1− s2 − 2
p+ 1

(1− sp+1), (1.11)

a0 =
p− 1

2q
C(q)2, (1.12)

M0 = max
0≤t≤1/2

∣∣K ′′(t)
K(t)

∣∣ =
∣∣K ′′(1/2)
K(1/2)

∣∣, (1.13)

m0 = min
0≤t≤1/2

∣∣K ′′(t)
K(t)

∣∣ =
∣∣K ′′(0)
K(0)

∣∣, (1.14)

rp,q =
p− 1
q

C2, (1.15)

C2 := 4M1wp,q, (1.16)

M1 = max
0≤t≤1/2

∣∣K ′(t)
K(t)

∣∣ =
∣∣K ′(1/2)
K(1/2)

∣∣. (1.17)

wp,q :=
∫ 1

0

(1− sq)
∫ 1

s

√
S(η)dη

S(s)3/2
ds. (1.18)

(ii) Let k(t) = kb(t) = cos1−p bt with 0 ≤ b < π. Then, as α→∞,

λ(q, α) = αp−1 + C1α
(p−1)/2 + a0 + b2 − 4(p− 1)

q
wp,qb tan

b

2
+ o(1). (1.19)

As a corollary of Theorem 1.1, we obtain the following result.

Corollary 1.2. Assume that k is a given function satisfying (H1). Then, as α→
∞,

λ(q, α) = αp−1 + C1α
(p−1)/2 +O(1). (1.20)

From (1.7) and (1.8), we see that the information about k(t) is contained in the
third term of λ(q, α). We also remark that the estimate of the third order in (1.20)
is optimal by (1.7) and (1.8).

To solve (NIBP), we introduce the condition
(H2) k(t) satisfies (H1) and k(0) = 1. Furthermore,

(i) k(t) ≡ 1 on I, or
(ii) If k(t) 6≡ 1, then k(t) satisfies

1
R1
≤
∣∣K ′′(0)
K(0)

∣∣, ∣∣K ′(1/2)
K(1/2)

∣∣ ≤ R2, (1.21)

where R1, R2 > 0 are given constants.
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The typical examples of k(t) satisfying (H2) are as follows:

k(t) = (1− t2)1−p,

k(t) = kb(t) = cos1−p bt (0 ≤ b < π, with b a constant).

Theorem 1.3. Assume that the unknown function k satisfies (H2). Suppose that
(1.6) holds for a constant q ≥ qp,R ≥ 1, where qp,R is a constant that depends only
on p and R1, R2. Then k(t) ≡ 1.

Roughly speaking, if k(t) is nearly flat at t = ±1/2, then qp,R = 1. Now, let
k(t) = kb(t) = cos1−p bt (0 ≤ b < π). Then we have the following simple result.

Theorem 1.4. Let q ≥ 1 be fixed. Further, let k(t) = kb(t) = cos1−p(bt) with
the unknown constant 0 ≤ b 6= bp,q, where 0 < bp,q ≤ π is a constant determined
explicitly by p and q. Assume (1.6) holds with fixed q. Then b = 0, namely,
kb(t) ≡ 1.

Remark 1.5. (i) Assume that k(t) ≡ 1 in Theorem 1.1 (i). Then (1.7) and (1.8)
imply that, as α→∞,

λ0(q, α) = αp−1 + C1α
(p−1)/2 + a0 + o(1). (1.22)

We note that a more precise asymptotic formula for λ0(q, α) as α → ∞ has been
obtained in [16].

(ii) By (1.6), (1.22) and Theorem 1.1 (ii), we obtain

b2 − 4wp,qb tan
b

2
= 2b

( b
2
− 2(p− 1)

q
wp,q tan

b

2

)
= 0. (1.23)

Therefore, if q/(2(p − 1)) ≤ wp,q, then bp,q = π. For example, let (p, q) = (3, 2).
Then since S(s) = 1

2 (1 − s2)2, by direct calculation, w3,2 = 2(1/2 + log 2)/3 ≥
q/(2(p− 1)) = 1/2. Therefore, b3,2 = π.

If wp,q < q/(2(p−1)), then there exists a unique constant 0 < bp,q < π such that
bp,q/2 = 2(p−1)

q wp,q tan bp,q
2 . So if b 6= bp,q, then (1.6) fails. Therefore, b = 0 if (1.6)

is valid.
(iii) If k(t) = cos1−p bt, then by direct calculation, we obtain M0 = m0 = b2,

M1 = b tan(b/2). Then by the same argument as that to obtain Theorem 1.1 (i),
we obtain Theorem 1.1 (ii).

The remainder of this article is organized as follows. In Section 2, we prove
Theorems 1.1 (i) and 1.3 by accepting the key Proposition 2.2 without proof. In
Section 3, we prove Proposition 2.2 by using the tools which are developed in [17].
For completeness, we give the proofs of the basic properties of the solutions in
Section 4 (Appendix).

2. Proof of Theorems 1.1 and 1.3

In what follows, C denotes various positive constants independent of λ� 1. We
put vλ(t) := vλ(q,α)(t) = K(t)−1uα(t). Then by (1.1), we have

−v′′λ(t)− 2
K ′(t)
K(t)

v′λ(t) + vλ(t)p =
(
λ+

K ′′(t)
K(t)

)
vλ(t), t ∈ I, (2.1)

vλ(t) > 0, t ∈ I, (2.2)

vλ(±1/2) = 0. (2.3)
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We begin with the fundamental properties of vλ. Let Vλ,M0(t) be the unique solution
of (1.1)–(1.3) with k(t) ≡ 1, and λ replaced by λ−M0. Then we see that Vm0(t) ≡
(λ−m0)1/(p−1) and Vλ,M0(t) are super-solution and sub-solution of (2.1)–(2.3) with

Vλ,M0(t) < (λ−m0)1/(p−1), t ∈ I.
Then by [13],

Vλ,M0(t) ≤ vλ(t) < (λ−m0)1/(p−1). (2.4)
In particular, from [16] for λ� 1, we obtain

(λ−M0)1/(p−1) − o(1) ≤ ‖Vλ,M0‖∞ ≤ ‖vλ‖∞ < (λ−m0)1/(p−1). (2.5)

By [14], we see that uα(t) is symmetric with respect to t = 0. By this and (1.4),

vλ(t) = vλ(−t) for t ∈ I. (2.6)

It is easy to see that
‖vλ‖∞ = vλ(0). (2.7)

Further, for 0 ≤ t ≤ 1/2,
v′λ(t) ≤ 0. (2.8)

For completeness, the proof of (2.7) and (2.8) will be given in the Appendix. By
[14, Theorem 1.2] and (2.5), as λ→∞,∣∣ vλ(t)

‖vλ‖∞
− 1
∣∣ = O(λ−1) (2.9)

uniformly on any compact interval in I. Multiply (2.1) by v′λ(t), we have[
v′′λ(t) + 2

K ′(t)
K(t)

v′λ(t)− vλ(t)p +
(
λ+

K ′′(t)
K(t)

)
vλ(t)

]
v′λ(t) = 0.

By (2.7), for 0 ≤ t ≤ 1/2,

1
2
v′λ(t)2 +

∫ t

0

2K ′(s)
K(s)

v′λ(s)2ds− 1
p+ 1

vλ(t)p+1 +
1
2
λvλ(t)2

+
∫ t

0

K ′′(s)
K(s)

vλ(s)v′λ(s)ds = constant

=
1
2
λ‖vλ‖2∞ −

1
p+ 1

‖vλ‖p+1
∞ (put t = 0).

(2.10)

This implies
v′λ(t)2 = Aλ(vλ(t)) +Bλ(t) +Dλ(t). (2.11)

Here,

Aλ(θ) := λ(‖vλ‖2∞ − θ2)− 2
p+ 1

(‖vλ‖p+1
∞ − θp+1), (2.12)

Bλ(t) := −4
∫ t

0

K ′(s)
K(s)

v′λ(s)2ds ≥ 0, (2.13)

Dλ(t) := −2
∫ t

0

K ′′(s)
K(s)

vλ(s)v′λ(s)ds ≤ 0 (2.14)

for 0 ≤ 1 ≤ 1/2. Then inequalities (2.13) and (2.14) follow from (H1).
Let µ := λ−m0. By (1.4), (2.8), (2.10) and (2.14), for 0 ≤ t ≤ 1/2,

− v′λ(t) =
√
Aλ(vλ(t)) +Bλ(t) +Dλ(t) ≤

√
A0,λ(vλ(t)) +Bλ(t), (2.15)
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where

A0,λ(θ) := µ(‖vλ‖2∞ − θ2)− 2
p+ 1

(‖vλ‖p+1
∞ − θp+1). (2.16)

We know that A0,λ(θ) > 0 for 0 ≤ θ < ‖vλ‖∞. Therefore, A0,λ(vλ(t)) + Bλ(t) > 0
for 0 < t ≤ 1/2. By (2.15),

‖vλ‖q∞ − ‖vλ‖qq

= 2
∫ 1/2

0

(‖vλ‖q∞ − vλ(t)q)
−v′λ(t)√

Aλ(vλ(t)) +Bλ(t) +Dλ(t)
dt

≥ 2
∫ 1/2

0

(‖vλ‖q∞ − vλ(t)q)
−v′λ(t)√

A0,λ(vλ(t)) +Bλ(t)
dt

= 2
∫ 1/2

0

(‖vλ‖q∞ − vλ(t)q)
−v′λ(t)√
A0,λ(vλ(t))

dt

+ 2
∫ 1/2

0

(‖vλ‖q∞ − vλ(t)q)
( −v′λ(t)√

A0,λ(vλ(t)) +B(t)
+

v′λ(t)√
A0,λ(vλ(t))

)
dt

:= I + II.

(2.17)

We put

Rλ(s) := 1− s2 − 2
p+ 1

‖vλ‖p−1
∞
µ

(1− sp+1), (2.18)

Uλ := 2
∫ 1

0

(1− sq)(S(s)−Rλ(s))√
Rλ(s)

√
S(s)(

√
Rλ(s) +

√
S(s))

ds. (2.19)

Lemma 2.1. For λ� 1,

I =
‖vλ‖q∞√

µ
(C(q) + Uλ) , (2.20)

|Uλ| ≤ Cλ−1 log λ. (2.21)

The proof of the above lemma is the variant of [16, Lemmas 3.1 and 3.2]. For
completeness, it will be given in Appendix.

Proposition 2.2. For λ� 1, the integral II defined by (2.17) satisfies

II = −C2‖vλ‖q+1−p
∞ (1 + o(1)). (2.22)

The proof of this proposition will be given in Section 3. Meanwhile, we use for
proving Theorem 1.1.

Proof of Theorem 1.1. We first prove (1.8). By (1.22) and (2.4), for λ � 1, we
obtain

λ−M0 = ‖Vλ,M0‖p−1
q + C1‖Vλ,M0‖(p−1)/2

q + a0 + o(1)

≤ ‖vλ‖p−1
q + C1‖vλ‖(p−1)/2

q + a0 + o(1).

Therefore, we obtain (1.8).
Next we show (1.7). By (2.5) and (2.21), we see that for λ� 1,

|Uλ| ≤ Cλ−1 log λ = o(‖vλ‖(1−p)/2∞ ). (2.23)
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By (2.17), (2.23), Lemma 2.1 and Proposition 2.2, we obtain

‖vλ‖q∞ − ‖vλ‖qq ≥
‖vλ‖q∞√

µ
(C(q)− C2‖vλ‖(1−p)/2∞ (1 + o(1))). (2.24)

That is,

‖vλ‖q∞
(

1− 1
√
µ

(C(q)− C2‖vλ‖(1−p)/2∞ (1 + o(1)))
)
≥ αq. (2.25)

By this inequality, (1.8), (2.5) and the Taylor expansion, we obtain

µ = λ−m0 ≥ ‖vλ‖p−1
∞

≥ αp−1
(

1− 1
√
µ

(C(q)− C2‖vλ‖(1−p)/2∞ (1 + o(1)))
)−(p−1)/q

= αp−1
{

1 +
1
√
µ

p− 1
q

C(q)(1 + o(1))
}

= αp−1 +
p− 1
q

C(q)α(p−1)/2 + o(α(p−1)/2).

By this equality and (1.8), for α� 1, we have

µ = αp−1 + C1α
(p−1)/2 + o(α(p−1)/2). (2.26)

By (2.5), (2.25) and the Taylor expansion, for λ� 1, we have

λ−m0 ≥ ‖vλ‖p−1
∞

≥ αp−1
{

1− 1
√
µ

(C(q)− C2‖vλ‖(1−p)/2∞ (1 + o(1)))
}−(p−1)/q

≥ αp−1
{

1 +
p− 1
q

1
α(p−1)/2(1 + C1α(1−p)/2 + o(α(1−p)/2))1/2

× (C(q)− C2α
(1−p)/2 + o(α(1−p)/2))

+
(p− 1)(p+ q − 1)

2q2
1

αp−1(1 + C1α(1−p)/2 + o(α(1−p)/2))

× (C(q)− C2(1 + o(1))α(1−p)/2 + o(α(1−p)/2))2(1 + o(1))
}

= αp−1 +
p− 1
q

α(p−1)/2(1− 1
2
C1α

(1−p)/2 + o(α(1−p)/2))

× (C(q)− C2α
(1−p)/2 + o(α(1−p)/2))

+
(p− 1)(p+ q − 1)

2q2
(C(q)2 − C1C(q)2α(1−p)/2

− 2C(q)C2α
(1−p)/2 + o(α(1−p)/2))

= αp−1 +
p− 1
q

C(q)α(p−1)/2 − p− 1
2q

C1C(q) +
(p− 1)(p+ q − 1)

2q2
C(q)2

− p− 1
q

C2 + o(1)

= αp−1 + C1α
(p−1)/2 + a0 −

p− 1
q

C2 + o(1).

Thus we obtain (1.7). The proof of Theorem 1.1 is complete. �
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Proof of Theorem 1.3. By (1.6) and (1.7), we have

m0 ≤ rp,q. (2.27)

We assume that (H2) (ii) is valid, and obtain a contradiction. Since rp,q = 4(p −
1)wp,qM1/q, for 0 < ε� 1, by (1.21) and (2.27), we have

1
R1R2

≤ m0

M1
≤ 4(p− 1)

q
wp,q

=
4(p− 1)

q

∫ 1−ε

0

(1− sq)
∫ 1

s

√
S(η)dη

S(s)3/2
ds

+
4(p− 1)

q

∫ 1

1−ε

(1− sq)
∫ 1

s

√
S(η)dη

S(s)3/2
ds

:= L1 + L2.

(2.28)

We have to consider only the case where q � 1. If q � 1, then we have

L1 ≤
C

q
� 1. (2.29)

Furthermore, for 1− ε ≤ η ≤ 1 and 0 < δ � 1, by Taylor expansion,

Sλ(η) ≤ (p− 1)(1− η)2, (2.30)

Sλ(η) ≥ (p− 1− δ)(1− η)2. (2.31)

By (2.30) and (2.31), for q � 1,

L2 ≤
C

q

∫ 1

1−ε

(1− sq)
∫ 1

s
(1− η)dη

(1− s)3
ds ≤ C

q

∫ 1

1−ε

1− sq

1− s
ds ≤ Cq−1 log q � 1. (2.32)

This inequality and (2.29) contradict (2.28). Therefore, (H2) (i) holds. Thus the
proof is complete. �

3. Proof of Proposition 2.2

Let an arbitrary 0 < ε� 1 be fixed. The integral II defined by (2.17) satisfies

II = 2
∫ 1/2

0

(‖vλ‖q∞ − vλ(t)q)
Bλ(t)v′λ(t)√

A0,λ(vλ(t)) +Bλ(t)

× 1√
A0,λ(vλ(t))

(√
A0,λ(vλ(t)) +Bλ(t) +

√
A0,λ(vλ(t))

)dt
= 2
(∫ 1/2−ε

0

+
∫ 1/2

1/2−ε

)
:= II1 + II2.

(3.1)

Lemma 3.1. For 0 ≤ t ≤ 1/2,

Bλ(t) ≤ C‖vλ‖(p+1)/2
∞ (‖vλ‖∞ − vλ(t)). (3.2)

Proof. There exists 0 ≤ tλ ≤ 1/2 such that max0≤t≤1/2 |v′λ(t)| = |v′λ(tλ)|. We first
show that

v′λ(tλ)2

‖vλ‖p+1
∞
≤ C. (3.3)
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To prove this, we assume that there exists a subsequence of {λ}, which is denoted
by {λ} again, such that, as λ→∞,

v′λ(tλ)2

‖vλ‖p+1
∞
→∞ (3.4)

and derive a contradiction. Since∣∣ ∫ t

0

K ′′(s)
K(s)

vλ(s)v′λ(s)ds
∣∣ ≤ C∣∣ ∫ t

0

vλ(s)v′λ(s)ds
∣∣

= C(‖vλ‖2∞ − vλ(t)2) ≤ C‖vλ‖2∞,
(3.5)

by putting t = tλ in (2.10), we obtain from (3.4) and (3.5) that

1
2

(1− o(1))v′λ(tλ)2 = −2
∫ tλ

0

K ′(s)
K(s)

v′λ(s)2ds

≤ C|v′λ(tλ)|
∫ tλ

0

−v′λ(s)ds

≤ C|v′λ(tλ)|‖vλ‖∞.
This inequality implies |v′λ(tλ)| ≤ C‖vλ‖∞, which contradicts (3.4). Therefore, we
obtain (3.3). Then by (2.8), (2.13) and (3.3), for 0 ≤ t ≤ 1,

Bλ(t) ≤ C
∫ t

0

v′λ(s)2ds

≤ C|v′λ(tλ)|
∫ 1/2

0

(−v′λ(s))ds

≤ C‖vλ‖(p+1)/2
∞ (‖vλ‖∞ − vλ(t)).

Thus the proof is complete. �

Lemma 3.2. For 0 ≤ t ≤ 1/2,

Bλ(t) ≤ C‖vλ‖p/2∞ (‖vλ‖∞ − vλ(t))3/2. (3.6)

Proof. Recall that B(t) is increasing for 0 ≤ t ≤ 1/2 by (H1) and (2.13). By (2.5),
(2.13), (2.15) and Lemma 3.1,

Bλ(t) = −4
∫ t

0

K ′(s)
K(s)

√
A0,λ(vλ(s)) +Bλ(s)(−v′λ(s))ds

≤ 4M1

∫ t

0

(√
A0,λ(vλ(s)) +

√
Bλ(s)

)
(−v′λ(s))ds

≤ 4M1

∫ ‖vλ‖∞
vλ(t)

√
A0,λ(θ)dθ + 4M1 max

0≤s≤t

√
Bλ(s)

∫ t

0

(−v′λ(s))ds

≤ C√µ‖vλ‖2∞
∫ 1

vλ(t)/‖vλ‖∞

√
Rλ(s)ds+ C

√
Bλ(t)(‖vλ‖∞ − vλ(t)).

= C
√
µ‖vλ‖2∞

∫ 1

vλ(t)/‖vλ‖∞

√
1− s2ds+ C

√
Bλ(t)(‖vλ‖∞ − vλ(t))

≤ C√µ‖vλ‖2∞
(

1− vλ(t)
‖vλ‖∞

)3/2

+ C‖vλ‖(p+1)/4
∞ (‖vλ‖∞ − vλ(t))3/2

≤ C‖vλ‖p/2∞ (‖vλ‖∞ − vλ(t))3/2.
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Thus the proof is complete. �

Lemma 3.3. For λ� 1,
II1 = o(‖vλ‖q+1−p

∞ ). (3.7)

Proof. By (2.9), (2.31), (3.1), Lemma 3.2 and putting s = vλ(t)/‖vλ‖∞, for λ� 1,
we have

|II1| ≤ C
∫ 1/2−ε

0

(‖vλ‖q∞ − vλ(t)q)Bλ(t)(−v′λ(t))
2(A0,λ(vλ(t))3/2

dt

≤ C
∫ 1

vλ(1/2−ε)/‖vλ‖∞

‖vλ‖q+1
∞ · (1− sq)‖vλ‖(p+3)/2

∞ (1− s)3/2

µ3/2‖vλ‖3∞Sλ(s)3/2
ds

≤ C‖vλ‖q+1−p
∞

∫ 1

vλ(1/2−ε)/‖vλ‖∞
(1− s)−1/2ds

= C‖vλ‖q+1−p
∞

(
1− vλ(1/2− ε)

‖vλ‖∞

)1/2

= o(‖vλ‖q+1−p
∞ ).

Thus the proof is complete. �

Now we estimate II2.

Lemma 3.4. For λ� 1,

− II2 ≤ C2(1 + o(1))‖vλ‖q+1−p
∞ . (3.8)

Proof. Let 1/2− ε ≤ t ≤ 1/2. Then by (1.17), (2.15), Lemmas 3.1 and 3.2,

Bλ(t) = −4
∫ t

0

K ′(s)
K(s)

v′λ(s)2ds ≤ 4M1

∫ t

0

v′λ(s)2ds

≤ 4M1

∫ t

0

(
√
A0,λ(vλ(s) +

√
Bλ(s))(−v′λ(s))ds

≤ 4M1
√
µ‖vλ‖2∞

∫ 1

vλ(t)/‖vλ‖∞

√
Rλ(s)ds

+ C‖vλ‖(p+1)/4
∞

∫ t

0

(‖vλ‖∞ − vλ(s))1/2(−v′λ(s))ds

≤ 4M1(1 + o(1))
√
µ‖vλ‖2∞

×
∫ 1

vλ(t)/‖vλ‖∞

√
Sλ(s)ds+ C‖vλ‖(p+1)/4

∞ (‖vλ‖∞ − vλ(t))3/2.

By this inequality, (2.9) and (3.1), we have

−II2 ≤ 4M1(1 + o(1))
√
µ‖vλ‖2∞

×
∫ 1/2

1/2−ε
(‖vλ‖q∞ − vλ(t)q)

∫ 1

vλ(t)/‖vλ‖∞

√
Sλ(η)dη

A0,λ(vλ(t))3/2
(−v′λ(t))dt

+ C‖vλ‖(p+1)/4
∞

∫ 1/2

1/2−ε

(‖vλ‖q∞ − vλ(t)q)(‖vλ‖∞ − vλ(t))3/2

A0,λ(vλ(t))3/2
(−v′λ(t))dt

= 4M1(1 + o(1))‖vλ‖q+1−p
∞

∫ vλ(1/2−ε)/‖vλ‖∞

0

(1− sq)
∫ 1

s

√
Sλ(η)dη

Sλ(s)3/2
ds
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+ C‖vλ‖q+1−p+(1−p)/4
∞

∫ vλ(1/2−ε)/‖vλ‖∞

0

(1− sq)(1− s)3/2

Sλ(s)3/2
ds

= C2(1 + o(1))‖vλ‖q+1−p
∞ .

Thus the proof is complete. �

Lemma 3.5. Let an arbitrary 0 < δ � 1 be fixed. Then for λ� 1,

− II2 ≥ C2(1− Cε)‖vλ‖q+1−p
∞ . (3.9)

Proof. By (2.15), we have

−v′λ(t) =
√
Aλ(vλ(t)) +Bλ(t) +Dλ(t) ≥

√
Aλ(vλ(t))−

√
Bλ(t)−

√
|Dλ(t)|.

(3.10)
Let 1/2− ε < t < 1/2. Since ε is small enough, by (1.17) and (3.10), we have

Bλ(t) ≥ −4
∫ t

1/2−ε

K ′(s)
K(s)

v′λ(s)2ds ≥ 4(M1 − δ)
∫ t

1/2−ε
v′λ(s)2ds

≥ 4(M1 − 2δ)
∫ t

1/2−ε

√
Aλ(vλ(s))(−v′λ(s))ds

− C
∫ t

1/2−ε

√
Bλ(s)(−v′λ(s))ds− C

∫ t

1/2−ε

√
|Dλ(s)|(−v′λ(s))ds.

(3.11)

By (2.14), we obtain∫ t

1/2−ε

√
|Dλ(s)|(−v′λ(s))ds ≤ C

∫ t

1/2−ε

(
‖vλ‖2∞ − vλ(t)2

)1/2
(−v′λ(s))ds

≤ C
∫ vλ(1/2−ε)

vλ(t)

(‖vλ‖2∞ − θ2)1/2dθ

≤ C‖vλ‖2∞
∫ 1

vλ(t)/‖vλ‖∞
(1− s2)1/2ds

≤ C‖vλ‖1/2∞ (‖vλ‖∞ − vλ(t))3/2.

(3.12)

Then by (3.11), (3.12), Lemma 3.2 and the same argument as the one to obtain
(2.21) and Lemma 3.4, we obtain (3.9). Thus the proof is complete. �

Since 0 < δ � 1 is arbitrary, by Lemmas 3.4 and 3.5, we have competed the
proof of Proposition 2.2.

4. Appendix

Proof of (2.7). We assume that ‖vλ‖∞ > vλ(0) and derive a contradiction. First,
suppose that v′′λ(0) ≥ 0. Let 0 < tλ < 1/2 satisfy vλ(tλ) = ‖vλ‖∞. Then by (2.1)
and (2.5),

0 ≥ −v′′λ(0) = vλ(0)
(
λ+

K ′′(0)
K(0)

− vλ(0)p−1
)

= vλ(0)(λ−m0 − vλ(0)p−1) > 0.

This is a contradiction. Next, suppose that v′′λ(0) < 0. Then there exists 0 <
sλ < tλ < 1/2 such that v′λ(sλ) = 0 and v′′λ(sλ) ≥ 0. By this and the fact that
vλ(sλ) < vλ(tλ) = ‖vλ‖∞, and (2.1), we have

0 ≥ −v′′λ(sλ) = −vλ(sλ)p−1 +
(
λ+

K ′′(sλ)
K(sλ)

)
vλ(sλ),
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0 ≤ −v′′λ(tλ) = −vλ(tλ)p−1 +
(
λ+

K ′′(tλ)
K(tλ)

)
vλ(tλ).

This implies(
λ+

K ′′(sλ)
K(sλ)

)
≤ vλ(sλ)p−1 < vλ(tλ)p−1 ≤

(
λ+

K ′′(tλ)
K(tλ)

)
. (4.1)

This contradicts to (H1). Thus we obtain (2.7). �

Proof of (2.8). By (2.7), we see that there exists a constant 0 < t0 ≤ 1/2 such that

t0 := sup{s : 0 ≤ s ≤ 1 and v′λ(t) ≤ 0 for any 0 ≤ t ≤ s}. (4.2)

If t0 = 1/2, then the proof is complete. Assume that t0 < 1/2. Then v′λ(t0) = 0.
Assume that there exists a constant 0 < t0 < s0 < 1/2 such that vλ(t0) < vλ(s0).
Then there exists t0 ≤ t1 < s1 < 1/2 such that vλ(t1) < vλ(s1) and v′λ(t1) =
0, v′′λ(t1) ≥ 0 and v′λ(s1) = 0, v′′λ(s1) ≤ 0 Then by the same argument as the proof
of (2.7) above, we obtain a contradiction. Therefore, vλ(t) is non-increasing for
t0 ≤ t ≤ 1/2. Thus the proof of (2.8) is complete. �

Proof of Proposition 2.2. We apply the same argument as that in [16, Lemma 3.2]
to our situation. For λ > π2 and 0 ≤ s ≤ 1, we put

Mλ(θ) := µ(‖vλ‖2∞ − θ2)− 2
p+ 1

(‖vλ‖p+1
∞ − θp+1),

Qλ(s) := µ‖vλ‖2∞(1− s2)− 2
p+ 1

‖vλ‖p+1
∞ (1− sp+1).

By putting θ = uλ(t) and s = θ/‖uλ‖∞, we obtain

I = 2
∫ 1

0

(‖vλ‖q∞ − v
q
λ(t))

−v′λ(t)√
A0,λ(vλ(t))

dt

= 2
∫ ‖vλ‖∞

0

(‖vλ‖q∞ − θq)
1√
Mλ(θ)

dθ

= 2
‖vλ‖q∞√

µ

∫ 1

0

1− sq√
Qλ(s)/(µ‖vλ‖2∞)

ds

= 2
‖vλ‖q∞√

µ

∫ 1

0

1− sq√
Rλ(s)

ds

=
‖vλ‖q∞√

µ

(
2
∫ 1

0

1− sq√
Sλ(s)

ds+ Uλ

)
=
‖vλ‖q∞√

µ

(
C(q) + Uλ

)
.

By (2.5), for λ� 1, we have

ξλ := λ− ‖vλ‖p−1
∞ = O(1). (4.3)

Let 0 < ε� 1 be fixed. Then by Taylor expansion, there exists a constant 0 < δ � 1
such that for λ� 1 and 1− ε ≤ s ≤ 1

Rλ(s) ≥ ξλ
λ

(1− s) + (p− 1− δ)(1− s)2. (4.4)
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By (2.19),

Uλ = U1,λ + U2,λ

:= 2
∫ 1−ε

0

(1− sq)(Sλ(s)−Rλ(s))√
Rλ(s)

√
Sλ(s)(

√
Rλ(s) +

√
Sλ(s))

ds

+ 2
∫ 1

1−ε

(1− sq)(Sλ(s)−Rλ(s))√
Rλ(s)

√
Sλ(s)(

√
Rλ(s) +

√
Sλ(s))

ds.

(4.5)

By (2.18), (2.31) and (4.4), we have

|U2,λ| ≤ 2
∫ 1

1−ε

(1− sq)(1− sp+1)(1− ‖vλ|p−1
∞ /λ)

Rλ(s)
√
Sλ(s)

ds

≤ C ξλ
λ

∫ 1

1−ε

1
(ξλ/λ) + (p− 1− δ)(1− s)

ds

= C
ξλ
λ

∫ ε

0

1
(ξλ/λ) + Cη

dη

≤ C ξλ
λ

∣∣ log
(ξλ
λ

)∣∣
≤ Cλ−1 log λ.

(4.6)

Finally, it is clear that Sλ(s) ≥ C,Rλ(s) ≥ C for 0 ≤ s ≤ 1 − ε and λ � 1. By
(4.3) and (4.5),

|U1,λ| ≤ C
∫ 1−ε

0

(1− sq)(1− sp+1)(1− ‖vλ|p−1
∞ /λ)ds ≤ C ξλ

λ
≤ Cλ−1.

By (4.5) and (4.6), we obtain Proposition 2.2. Thus the proof is complete. �
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