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EXISTENCE AND MULTIPLICITY OF POSITIVE PERIODIC
SOLUTIONS FOR FIRST-ORDER SINGULAR SYSTEMS WITH

IMPULSE EFFECTS

BIAN-XIA YANG

Abstract. In this article, we consider the existence and multiplicity of pos-
itive periodic solutions for a first-order singular system with impulse effects.

The proof of our main result is based on Krasnoselskii’s fixed point theorem

in a cone.

1. Introduction

Impulsive differential equations have wide applicability in physics, population
dynamics, ecology, biological systems, biotechnology, industrial robotic, pharma-
cokinetics, optimal control, etc. The reason for this applicability arises from the
fact that impulsive differential problems are an appropriate model for describing
process which at certain moments change their state rapidly and which cannot be
described using the classical differential equation. Therefore, the study of impulsive
differential equation has gained prominence and it is a rapidly growing field, see
[1, 2, 4, 5, 6] and the references therein.

In 2008, Chu and Nieto [4] studied first-order impulsive periodic boundary-value
problem (BVP)

u′(t) + a(t)u(t) = f(t, u(t)) + e(t), t ∈ J′,
u(t+k ) = u(t−k ) + Ik(u(tk)), k = 1, . . . , p, u(0) = u(1),

(1.1)

where 0 = t0 < t1 < · · · < tp < tp+1 = 1, J′ = [0, 1]\{t1, . . . , tp}, a, e ∈ C(R,R)
are 1-periodic functions, Ik ∈ C(R,R), k = 1, . . . , p. The nonlinearity function
f(t, u) ∈ C(J′ × R) is 1-periodic in t, and f(t, u) is left continuous at t = tk, the
right limit f(t+k , u) exists. Using the Leray-Schauder nonlinear alternative and a
truncation technique, under some conditions, they obtained the existence of at least
one non-trivial 1-periodic solution of (1.1).

In 2011, Wang [9] studied the first-order nonautonomous singular n-dimensional
system

u′i(t) + ai(t)ui(t) = λbi(t)fi(u1(t), . . . , un(t)), i = 1, . . . n. (1.2)
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By using the fixed point theorem in cones, the author established the following
result, under the assumptions:

(A1) ai, bi ∈ C(R,R+) are ω-periodic functions such that
∫ ω
0
ai(t)dt > 0 and∫ ω

0
bi(t)dt > 0, for i = 1, . . . , n;

(A2) fi ∈ C(Rn+\{0},R+\{0}), i = 1, . . . , n, and lim|u|→0 fj(u) = ∞ for some
j = 1, . . . , n.

Theorem 1.1. Let (A1), (A2) hold. Then

(i) there exists a λ0 > 0, such that (1.2) has a positive ω-periodic solution for
0 < λ < λ0;

(ii) if lim|u|→∞
fi(u)
|u| = 0, i = 1, . . . , n, then, for all λ > 0, (1.2) has a positive

ω-periodic solution;
(iii) if lim|u|→∞

fi(u)
|u| =∞, i = 1, . . . , n, then, for sufficiently small λ > 0, (1.2)

has two positive ω-periodic solutions.

Here R+ = [0,∞), Rn+ = Πn
i=1R+, u = (u1, u2, . . . , un) ∈ Rn+, |u| =

∑n
i=1 |ui|.

Inspired by [4, 9], in this paper, we are concerned with the existence and mul-
tiplicity of the positive 1-periodic solution of the following first-order singular n-
dimensional system with impulse effect

u′i(t) + ai(t)ui(t) = λbi(t)fi(t, u1(t), . . . , un(t)) + λei(t), t ∈ J′,

ui(t+k ) = ui(t−k ) + λIki (u1(tk), . . . , un(tk)), k = 1, . . . , p,

ui(0) = ui(1), i = 1, . . . , n,

(1.3)

where λ > 0 is a parameter, J′ is defined as above. By a positive 1-periodic solution,
we mean a positive 1-periodic function in C1(R,Rn) solving corresponding systems
(1.3) and each component is positive for all t.

We will use the following assumptions:

(H1) ai, ei ∈ C(R,R), bi ∈ C(R,R+\{0}) are 1-periodic functions and∫ 1

0
ai(t)dt > 0 for i = 1, . . . , n;

(H2) fi ∈ C(J′ × (Rn+\{0}),R+\{0}) is 1-periodic in t. Moreover, fi(t, u) is left
continuous at t = tk and the right limit fi(t+k , u) exists, i = 1, . . . , n;

(H3) Iki ∈ C(Rn+,R+), k = 1, . . . , p, i = 1, . . . , n.

Using Krasnoseskii’s fixed point theorem in cone, we obtain the following result.

Theorem 1.2. Let (H1)–(H3) hold. Assume that lim|u|→0 fi(t,u) = ∞, i =
1, . . . , n uniformly with respect to t ∈ [0, 1]. Then

(i) there exists a λ1 > 0, such that (1.3) has a positive 1-periodic solution for
0 < λ < λ1;

(ii) if lim|u|→∞
fi(t,u)
|u| = 0 and lim|u|→∞ fi(t,u) =∞ uniformly with respect to

t ∈ [0, 1], limmathbfu→∞
Ik

i (u)
|u| = 0 for i = 1, . . . , n, k = 1, . . . , p, then, there

exists λ2 > 0, such that (1.3) has a positive 1-periodic solution for λ > λ2;
(iii) if lim|u|→∞

fi(t,u)
|u| = ∞, i = 1, . . . , n uniformly with respect to t ∈ [0, 1],

then, for sufficiently small λ > 0, (1.3) has two positive 1-periodic solutions.

We remark that ei may take negative values in this paper; nevertheless, we still
obtain the existence and multiplicity of positive 1-periodic solution of (1.3).
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Remark 1.3. If Ik = 0 for k = 1, . . . , p, fi(t,u) = fi(u), ei = 0 for i = 1, . . . , n,
then system (1.3) reduces to (1.2). In this case, we need only lim|u|→0 fj(u) = ∞
for some j = 1, . . . , n; so (i), (iii) of Theorem 1.2 reduce to the (i), (iii) of Theorem
1.1, respectively. Hence, Theorem 1.2 extends Theorem 1.1.

If n = 1, λ = 1, bi(t) = 1, then system (1.3) reduces to (1.1). So, Theorem 1.2
partially improves the result of [4].

The rest of this paper is organized as follows. In Section 2, some notation and
preliminaries are given. In Section 3, we give the proof of main result. At last, an
example is presented to illustrate the main result.

2. Preliminaries

Denote

PC[0, 1] =
{
u : u is continuous on J′, left continuous at t = tk,

and the right limit u(t+k ) exists for k = 1, . . . , p.

Let E = Πn
i=1PC[0, 1] which is a Banach space under the norm

‖u‖ =
n∑
i=1

sup
t∈[0,1]

|ui(t)|.

Denote the cone

K =
{
u = (u1, . . . , un) ∈ E : ui(t) ≥ 0, t ∈ [0, 1], i = 1, . . . , n, and

min
t∈[0,1]

|u(t)| ≥ σ‖u‖
}
,

where
σ = min

i=1,...,n
{σi}, σi =

mi

Mi
, i = 1, . . . , n. (2.1)

The constants mi,Mi will be defined by (2.3) below.
Let Tλ : K\{0} → E be a map with components (T 1

λ , . . . , T
n
λ ):

T iλu(t) = λ

∫ 1

0

Gi(t, s)
[
bi(s)fi(s,u(s)) + ei(s)

]
ds+ λ

p∑
k=1

Gi(t, tk)Iki (u(tk)), (2.2)

where

Gi(t, s) =

{
e−Ai(t)+Ai(s)

1−e−Ai(1)
, 0 ≤ s ≤ t ≤ 1,

e−Ai(1)−Ai(t)+Ai(s)

1−e−Ai(1)
, 0 ≤ t < s ≤ 1,

with Ai(t) =
∫ t
0
ai(s)ds, (see [4] for details). It is easy to see that (H1) implies that

Gi(t, s) > 0.
Clearly, u ∈ E\{0} is a solution of (1.3) if and only if it is a fixed point of Tλ.

Also note that each component ui(t) of any nonnegative periodic solution u(t) is
strictly positive for all t because of the positiveness of Gi(t, s) and assumptions
(H1)–(H3).

For convenience, throughout this paper, we denote

Mi = sup
t,s∈[0,1]

Gi(t, s), mi = inf
t,s∈[0,1]

Gi(t, s) (2.3)

and

|u| =
n∑
i=1

|ui|, where u = (u1, u2, . . . , un) ∈ Rn.
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For r > 0, define Ωr = {u ∈ K : ‖u‖ < r}. Then ∂Ωr = {u ∈ K : ‖u‖ = r}. We
now look at several properties of the operator Tλ.

Lemma 2.1. Assume that (H1)–(H3) hold.
(i) If lim|u|→0 fi(t,u) =∞ uniformly with respect to t ∈ [0, 1] for i = 1, . . . , n,

then there is a δ > 0, such that for r ∈ (0, δ), Tλ : Ω̄r\{0} → K is
completely continuous.

(ii) If lim|u|→∞ fi(t,u) =∞ uniformly with respect to t ∈ [0, 1] for i = 1, . . . , n,
then there is a ∆ > 0, such that for R > ∆, Tλ : K\ΩR → K is completely
continuous.

(iii) If Tλ : K\{0} → K, then for u ∈ K with ‖u‖ = r, we have

‖Tλu‖ ≥
λm̂r

2

n∑
i=1

mi

∫ 1

0

bi(s)ds, (2.4)

‖Tλu‖ ≤ λ
n∑
i=1

Mi

(
M̂r

∫ 1

0

bi(s)ds+
∫ 1

0

|ei(s)|ds+ pM̃r

)
, (2.5)

where m̂r = min{fi(t,u) : t ∈ [0, 1],u ∈ Rn+ with σr ≤ |u| ≤ r, i =
1, . . . , n},

M̂r = max{fi(t,u) : t ∈ [0, 1],u ∈ Rn+ with σr ≤ |u| ≤ r, i = 1, . . . , n},

M̃r = max{Iki (u) : u ∈ Rn+ with σr ≤ |u| ≤ r, k = 1, . . . , p, i = 1, . . . , n}.

Proof. (i) We split bi(t)fi(t,u)+ei(t) into two terms 1
2bi(t)fi(t,u) and 1

2bi(t)fi(t,u)
+ ei(t). Then the first term is always positive and used to carry out the estimates
of the operator. We will make the second term 1

2bi(t)fi(t,u) + ei(t) positive by
choosing appropriate domains of fi.

Noting that bi(t) is continuous and positive on [0, 1], and lim|u|→0 fi(t,u) =∞,
for i = 1, . . . , n, there exists δ > 0, such that

fi(t,u) ≥ 2
maxt∈[0,1]{|ei(t)|}+ 1

mint∈[0,1] bi(t)
, t ∈ [0, 1], u ∈ Rn, 0 < |u| ≤ δ.

Now for r ∈ (0, δ) and u ∈ Ω̄r\{0}, t ∈ [0, 1], we have

bi(t)fi(t,u(t)) + ei(t) ≥
1
2
bi(t)fi(t,u(t)) + ei(t)

≥ bi(t)
maxt∈[0,1]{|ei(t)|}+ 1

mint∈[0,1]{bi(t)}
+ ei(t) > 0,

and

min
t∈[0,1]

(T iλu)(t) ≥ λ
∫ 1

0

mi

[
bi(s)fi(s,u(s)) + ei(s)

]
ds+ λmi

p∑
k=1

Iki (u(tk))

= λσi

∫ 1

0

Mi

[
bi(s)fi(s,u(s)) + ei(s)

]
ds+ λσi

p∑
k=1

MiI
k
i (u(tk))

≥ σi sup
t∈[0,1]

|T iλu|.

Thus, Tλ(Ω̄r\{0}) ⊂ K. According to Arzela-Ascoli theorem and the hypothesis
(H1)-(H3), we know that Tλ : Ω̄r\{0} → K is completely continuous.
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(ii) If lim|u|→∞ fi(t,u) =∞, there is an R̂ > 0, such that

fi(t,u) ≥ 2
maxt∈[0,1]{|ei(t)|}+ 1

mint∈[0,1]{bi(t)}
, t ∈ [0, 1], u ∈ Rn, |u| ≥ R̂.

Let ∆ = R̂
σ . Then forR > ∆,u ∈ K\ΩR, we have that mint∈[0,1] |u(t)| ≥ σ‖u‖ ≥ R̂,

and therefore

bi(t)fi(t,u) + ei(t) ≥
1
2
bi(t)fi(t,u) + ei(t) > 0, t ∈ [0, 1].

Similar to (i), we have that Tλ : K\ΩR → K is completely continuous.
(iii) If u ∈ K with ‖u‖ = r, then for t ∈ [0, 1], σr ≤ |u(t)| ≤ r, so m̂r ≤

fi(t,u(t)) ≤ M̂r, t ∈ [0, 1], and Iki (u) ≤ M̃r, k = 1, . . . , p, i = 1, . . . , n. By the
definition of Tλu, we have

‖Tλu‖ =
n∑
i=1

sup
t∈[0,1]

T iλu(t)

≥ 1
2
λ

n∑
i=1

mi

∫ 1

0

bi(s)fi(s,u(s))ds

≥ λm̂r

2

n∑
i=1

mi

∫ 1

0

bi(s)ds,

and

‖Tλu‖ =
n∑
i=1

sup
t∈[0,1]

T iλu(t)

≤ λ
n∑
i=1

Mi

(∫ 1

0

bi(s)fi(s,u(s))ds+
∫ 1

0

|ei(s)|ds+
p∑
k=1

Iki (u(tk))
)

≤ λ
n∑
i=1

Mi

(
M̂r

∫ 1

0

bi(s)ds+
∫ 1

0

|ei(s)|ds+ pM̃r

)
.

�

The following well-known fixed point theorem is crucial in our arguments.

Lemma 2.2 ([7, 8]). Let E be a Banach space and K a cone in E. Assume that
Ω1,Ω2 are bounded open subsets of E with 0 ∈ Ω1, Ω̄1 ⊂ Ω2, and let

T : K ∩ (Ω̄2\Ω1)→ K

be completely continuous operator such that either

(i) ‖Tu‖ ≥ ‖u‖, u ∈ K ∩ ∂Ω1 and ‖Tu‖ ≤ ‖u‖, u ∈ K ∩ ∂Ω2; or
(ii) ‖Tu‖ ≤ ‖u‖, u ∈ K ∩ ∂Ω1 and ‖Tu‖ ≥ ‖u‖, u ∈ K ∩ ∂Ω2.

Then T has a fixed point in K ∩ (Ω̄2\Ω1).

3. Proof of main results

Proof of Theorem 1.2. (i) By Lemma 2.1 (i), there is a δ > 0, such that if 0 <
r < δ, then Tλ : Ω̄r\{0} → K is completely continuous. Now, for a fixed number
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r1 ∈ (0, δ), if we choose

λ1 =
r1∑n

i=1Mi

(
M̂r1

∫ 1

0
bi(s)ds+

∫ 1

0
|ei(s)|ds+ pM̃r1

) ,
for λ ∈ (0, λ1), (2.5) implies

‖Tλu‖ < ‖u‖, u ∈ ∂Ωr1 . (3.1)

On the other hand, for λ ∈ (0, λ1), in view of the assumption lim|u|→0 fi(t,u) =∞,
there is a positive number r2 < r1, such that

fi(t,u) ≥ η|u|, t ∈ [0, 1], u ∈ Rn with 0 < |u| ≤ r2,

where η > 0 is chosen so that

λησ

2
min

i=1,...,n
{mi

∫ 1

0

bi(s)ds} > 1.

Thus, for u ∈ ∂Ωr2 , we have

fi(t,u(t)) ≥ η|u(t)|, t ∈ [0, 1].

and

‖Tλu‖ ≥ sup
t∈[0,1]

T iλu(t)

= sup
t∈[0,1]

λ
(∫ 1

0

Gi(t, s)
[
bi(s)fi(s,u(s)) + ei(s)

]
ds+

p∑
k=1

Gi(t, tk)Iki (u(tk))
)

≥ 1
2
λ sup
t∈[0,1]

∫ 1

0

Gi(t, s)bi(s)fi(s,u(s))ds

≥ 1
2
λmi

∫ 1

0

bi(s)fi(s,u(s))ds

≥ 1
2
ηλmi

∫ 1

0

bi(s)|u(s)|ds

≥ 1
2
ηλmiσ

∫ 1

0

bi(s)ds‖u‖ > ‖u‖.

(3.2)
So from Lemma 2.2, (3.1), (3.2), we obtain that Tλ has a fixed point u ∈ Ω̄r1\Ωr2 .
The fixed point u is the desired positive 1-periodic solution of (1.3).

(ii) According to Lemma 2.1 (ii), there is a ∆ > 0, such that for R > ∆,
Tλ : K\ΩR → K is completely continuous. Now for a fixed number R1 > ∆, if we
choose

λ2 =
2R1

m̂R1

∑n
i=1mi

∫ 1

0
bi(s)ds

,

for λ > λ2, (2.4) means that

‖Tλu‖ ≥
λm̂R1

2

n∑
i=1

mi

∫ 1

0

bi(s)ds > R1 = ‖u‖, u ∈ ∂ΩR1 . (3.3)
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On the other hand. Since lim|u|→∞
fi(t,u)
|u| = 0, lim|u|→∞

Ik
i (u)
|u| = 0, for a fixed

λ > λ2, we can choose

R2 > max
{

2R1, 2λ
n∑
i=1

Mi

∫ 1

0

|ei(s)|ds
}
,

so that

fi(t,u) ≤ ε|u| and Iki (u) ≤ ε|u| for t ∈ [0, 1], u ∈ Rn with |u| ≥ σR2,

where the constant ε > 0 satisfies

λε

n∑
i=1

Mi

(∫ 1

0

bi(s)ds+ p
)
<

1
2
.

From the definition of Tλ, for u ∈ ∂ΩR2 , we have

‖Tλu‖

=
n∑
i=1

sup
t∈[0,1]

T iλu(t)

≤ λ
n∑
i=1

Mi

(∫ 1

0

bi(s)fi(s,u(s))ds+
∫ 1

0

|ei(s)|ds+
p∑
k=1

Iki (u(tk))
)

≤ λ
n∑
i=1

Mi

(
r2ε

∫ 1

0

bi(s)ds+
∫ 1

0

|ei(s)|ds+ pr2ε
)
< R2 = ‖u‖.

(3.4)

By Lemma 2.2, (3.3), (3.4), we have that Tλ has a fixed point u ∈ Ω̄R2\ΩR1 . The
fixed point u is the desired positive 1-periodic solution of (1.3).

(iii) Since lim|u|→0 fi(t,u) =∞, (i) implies (1.3) has a positive periodic solutions
u1 ∈ Ω̄r1\Ωr2 for λ ∈ (0, λ1).

On the other hand, since lim|u|→∞
fi(t,u)
|u| = ∞, by Lemma 2.1 (ii), there is

∆ > 0, such that if R > ∆, Tλ : K\ΩR → K is completely continuous. For a fixed
number R3 > max{∆, r1}, if we choose

λ0 =
R3∑n

i=1Mi

(
M̂R3

∫ 1

0
bi(s)ds+

∫ 1

0
|ei(s)|ds+ pM̃R3

) ,
for λ < λ0, (2.5) implies

‖Tλu‖ < ‖u‖, u ∈ ∂ΩR3 . (3.5)

Since lim|u|→∞
fi(t,u)
|u| = ∞ uniformly with respect to t ∈ [0, 1], there is a positive

number r̃ such that

fi(t,u) ≥ η|u|, t ∈ [0, 1], u ∈ Rn with |u| ≥ r̃,

where η > 0 is chosen so that

λησ

2
min

i=1,...,n
{mi

∫ 1

0

bi(s)ds} > 1.

Let R4 = max{2R3,
1
σ r̃} > ∆. If u ∈ ∂ΩR4 , then mint∈[0,1] |u(t)| ≥ σ‖u‖ = σR4 ≥

r̃, which suggests that

fi(t,u(t)) ≥ η|u(t)|, t ∈ [0, 1].
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Similar to (3.2), we get

‖Tλu‖ ≥ λΓη‖u‖ > ‖u‖, u ∈ ∂ΩR4 .

It follows from Lemma 2.2 that Tλ has a fixed point u2 ∈ Ω̄R4\ΩR3 , which is a
positive 1-periodic solution of (1.3) for λ < λ0.

Noting that
r2 < ‖u1‖ < r1 < R3 < ‖u2‖ < R4,

we can conclude that u1 and u2 are the desired distinct positive periodic solutions
of (1.3) for λ < min{λ0, λ1}. �

Example. We consider the first-order singular 2-dimensional system with impulse
effect

u′1(t) + (sin(2πt) +
1
2

)u1(t) = λ(sin(2πt) + 2)f1(t, u1, u2) + λ sin(2πt),

t ∈ (0, 1)\{1
2
},

u′2(t) + (cos(2πt) +
1
3

)u2(t) = λ(cos(2πt) + 3)f2(t, u1, u2) + λ cos(2πt),

t ∈ (0, 1)\{1
2
},

u1(
1
2

+

) = u1(
1
2

−
) + λ(u1(

1
2

) + u2(
1
2

))3/4,

u2(
1
2

+

) = u2(
1
2

−
) + λ(u1(

1
2

) + u2(
1
2

))1/2,

u1(0) = u1(1), u2(0) = u2(1).

(3.6)

Let

f1(t, u1, u2) = 2 + sin(2πt) +
1

u2
1 + u3

2

+ (u1 + u2)1/2,

f2(t, u1, u2) = 3 + sin(2πt) +
1

u1 + u2
2

+ (u1 + u2)1/3.

Comparing with (1.3), we have n = 2, p = 1, t1 = 1/2. Clearly assumptions (H1)–
(H3) are satisfied, we can easily check that lim|u|→0 fi(t,u) =∞, lim|u|→∞ fi(t,u) =
∞ and lim|u|→∞

fi(t,u)
u = 0, i = 1, 2 uniformly with respect to t ∈ [0, 1]. So by (i)

(ii) of Theorem 1.2, we have: there exists a λ1 > 0, such that (3.6) has a positive
1-periodic solution for 0 < λ < λ1 and there exists λ2, such that (3.6) has a positive
1-periodic solution for λ > λ2.

Similarly, if we let

f1(t, u1, u2) = 2 + sin(2πt) +
1

u2
1 + u3

2

+ (u1 + u2)2,

f2(t, u1, u2) = 3 + sin(2πt) +
1

u1 + u2
2

+ (u1 + u2)3.

According to (iii) of Theorem 1.2, for sufficiently small λ > 0, (3.6) has two positive
1-periodic solutions.

Acknowledgements. The author is very grateful to the anonymous referees for
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