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EXISTENCE OF THREE POSITIVE SOLUTIONS FOR AN
m-POINT BOUNDARY-VALUE PROBLEM ON TIME SCALES

ABDULKADIR DOGAN

Abstract. We study an m-point boundary-value problem on time scales. By

using a fixed point theorem, we prove the existence of at least three positive

solutions, under suitable growth conditions imposed on the nonlinear term.
An example is given to illustrate our results.

1. Introduction

The theory of dynamic equation on time scales (or measure chains) was initiated
by Stefan Hilger in his Ph. D. thesis in 1988 [12] (supervised by Bernd Aulbach) as a
means of unifying structure for the study of differential equations in the continuous
case and study of finite difference equations in the discrete case. In recent years,
it has found a considerable amount of interest and attracted the attention of many
researchers; see for example [1, 3, 4, 8, 9, 20, 23, 24, 26]. It is still a new area, and
research in this area is rapidly growing. The study of time scales has led to several
important applications, e.g., in the study of insect population models, heat transfer,
neural networks, phytoremediation of metals, wound healing, and epidemic models
[6, 13, 21, 25].

Throughout the remainder of this article, let T be a closed nonempty subset of
R, and let T have the subspace topology on R. In some of the current literature, T
is called a time scale. For convenience, we make the blanket assumption that 0, T
are points in T.

Sang and Xi [19] considered the following p-Laplacian dynamic equation on time
scales

(φp(u∆(t)))∇ + a(t)f(t, u(t)) = 0, t ∈ [0, T ]T,

φp(u∆(0)) =
m−2∑
i=1

aiφp(u∆(ξi)), u(T ) =
m−2∑
i=1

biu(ξi),

where φp(s) = |s|p−2s, p > 1.
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He [11] studied the existence of at least two positive solutions by way of a new
double fixed-point theorem for the equation

[ϕp(u∆(t))]∇ + a(t)f(u(t)) = 0, t ∈ [0, T ]T,

u(0)−B0(u∆(η)) = 0 u∆(T ) = 0, or

u∆(0) = 0, u(T ) +B1(u∆(η)) = 0,

where ϕp(s) = |s|p−2s, p > 1, η ∈ (0, ρ(t))T.
Anderson et al [4] showed the existence of at least one solution for the corre-

sponding boundary-value problem

[g(u∆(t))]∇ + c(t)f(u(t)) = 0, t ∈ (a, b),

u(a)−B0(u∆(υ)) = 0, u∆(b) = 0,

where g(z) = |z|p−2z, p > 1, and υ ∈ (a, b) ⊂ T.
In recent years, much attention has been paid to the existence of positive solu-

tions of boundary value problems (BVPs) on time scales for p(t) ≡ 1 and ϕ(u) =
|u|p−2u, p > 1; see [2, 4, 11, 14, 15, 22, 23] and the references therein. The key
condition used in the above papers is the oddness of a p-Laplacian operator. Nev-
ertheless, we define a new operator which improves and generalizes a p-Laplacian
operator for some p > 1, and ϕ is not necessary odd. In addition, there are not
many results concerning increasing homeomorphism and positive homomorphism
on time scales; see [16, 17].

Motivated by works mentioned above, in this paper, we study the existence of at
least three positive solutions to the following p-Laplacian multipoint BVP on time
scales

[ϕ(p(t)u∆(t))]∇ + a(t)f(u(t)) = 0, t ∈ [0, T ]TK∩TK
, (1.1)

u(0) =
m−2∑
i=1

aiu(ξi), u∆(T ) = 0, (1.2)

where ϕ : R → R is an increasing homeomorphism and positive homomorphism
and ϕ(0) = 0, p ∈ C([0, T ]T, (0,+∞)) and ξi ∈ [0, T ]T with 0 < ξ1 < ξ2 < · · · <
ξm−2 < T , 0 <

∑m−2
i=1 ai < 1 a : T → [0,+∞) is ld-continuous and not identically

zero on any closed subinterval of [0, T ]T. The usual notation and terminology for
time scales as can be found in [5, 6], will be used here.

A projection ϕ : R → R is called an increasing homeomorphism and homomor-
phism if the following conditions are satisfied:

(i) if x ≤ y, then ϕ(x) ≤ φ(y),∀x, y ∈ R;
(ii) ϕ is a continuous bijection and its inverse mapping is also continuous;

(iii) ϕ(xy) = ϕ(x)ϕ(y),∀x, y ∈ R.
If the above conditions hold, then it implies that ϕ is homogeneous and generates

a p-Laplacian operator. It is well known that the p-Laplacian operator is odd.
Nevertheless, the operator which we defined above is not necessarily odd.

Throughout this article we assume that the following conditions are satisfied:
(H1) f : R+ → R+ is continuous and 0 <

∑m−2
i=1 ai < 1;

(H2) p ∈ C([0, T ]T, [0,∞))and nondecreasing on [0, T ]T;
(H3) a : T→ [0,∞) is ld-continuous and not identical zero on any closed subin-

terval of [0, T ]T.
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The rest of article is arranged as follows. In Section 2, we state some definitions,
notation, lemmas and prove several preliminary results. The main theorem on the
existence of at least three positive solutions and its proof are presented in Section
3. In last section 4, we give an example to demonstrate our results.

2. Preliminaries

In this section, we provide some background materials from theory of cones in
Banach spaces. The following definitions can be found in the book by Deimling [7]
and in the book by Guo and Lakshmikantham [10].

Definition 2.1. Let E be a real Banach space. A nonempty, closed, convex set
P ⊂ E is a cone if it satisfies the following two conditions:

(i) x ∈ P , λ ≥ 0 imply λx ∈ P ;
(ii) x ∈ P , −x ∈ P imply x = 0.

Every cone P ⊂ E induces an ordering in E given by x ≤ y if and only if y−x ∈ P .

Definition 2.2. We say the map α is a nonnegative continuous convex functional
on a cone P of a real Banach space E if α : P → [0,∞) is continuous and

α(tx+ (1− t)y) ≤ tα(x) + (1− t)α(y)

for all x, y ∈ P and t ∈ [0, 1].

Definition 2.3. Given a nonnegative continuous functional γ on a cone P of E,
for each d > 0 we define the set

P (γ, d) = {x ∈ P : γ(x) < d}.

Let the Banach space E = Cld([0, T ]T,R) with norm ‖u‖ = supt∈[0,T ]T |u(t)| and
define the cone P ⊂ E by

P = {u ∈ E|u(t) is a concave and nonnegative nondecreasing function on [0, T ]TK∩TK
}.

Lemma 2.4. If
∑m−2
i=1 αi 6= 1 then for h ∈ Cld[0, T ]T,

[ϕ(p(t)u∆(t))]∇ + h(t) = 0, t ∈ [0, T ]TK∩TK
, (2.1)

u(0) =
m−2∑
i=1

aiu(ξi), u∆(T ) = 0 (2.2)

has the unique solution

u(t) =
∫ t

0

1
p(s)

ϕ−1
(∫ T

s

h(τ)∇τ
)

∆s

+
∑m−2
i=1 ai

1−
∑m−2
i=1 ai

∫ ξi

0

1
p(s)

ϕ−1
(∫ T

s

h(τ)∇τ
)

∆s.
(2.3)

Proof. Let u be as in (2.3), taking the delta derivative of (2.3), we have

u∆(t) =
1
p(t)

ϕ−1
(∫ T

t

h(τ)∇τ
)
,

moreover, we get

ϕ(p(t)u∆(t)) =
∫ T

t

h(τ)∇τ,
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taking the nabla derivative of this expression yields [ϕ(p(t)u∆(t))]∇ = −h(t). Rou-
tine calculations verify that u satisfies the boundary value conditions in (2.2), so
that u given in (2.3) is a solution of (2.1) and (2.2). It is easy to see that the BVP

[ϕ(p(t)u∆(t))]∇ = 0, u(0) =
m−2∑
i=1

aiu(ξi), u∆(T ) = 0

has only the trivial solution. Thus u in (2.3) is the unique solution of (2.1) and
(2.2). �

Lemma 2.5. If u ∈ P , then

u(t) ≥ t

T
‖u‖, t ∈ [0, T ]T,

where
‖u‖ = sup

t∈[0,T ]T

|u(t)|.

Proof. Since u∆∇(t) ≤ 0, it follows that u∆(t) is nonincreasing. Thus, for 0 < t <
T ,

u(t)− u(0) =
∫ t

0

u∆(s)∆s ≥ tu∆(t),

u(T )− u(t) =
∫ T

t

u∆(s)∆s ≤ (T − t)u∆(t)

from which we have

u(t) ≥ tu(T ) + (T − t)u(0)
T

≥ t

T
u(T ) =

t

T
‖u‖.

The proof is complete. �

Let us define the mapping A from P to E by the formula

(Au)(t) =
∫ t

0

1
p(s)

ϕ−1
(∫ T

s

a(τ)f(u(τ)∇τ
)

∆s

+
∑m−2
i=1 ai

1−
∑m−2
i=1 ai

∫ ξi

0

1
p(s)

ϕ−1
(∫ T

s

a(τ)f(u(τ)∇τ
)

∆s, u ∈ P.
(2.4)

Lemma 2.6. The mapping A : P → P is completely continuous.

Proof. For each u ∈ P , we have (Au)(t) ≥ 0, for all t ∈ [0, T ]T. Taking the delta
derivative of (2.4), we have

(Au)∆(t) =
1
p(t)

ϕ−1
(∫ T

t

a(τ)f(u(τ))∇τ
)
.

Clearly, (Au)∆(t) is a continuous function and (Au)∆(t) ≥ 0, that is (Au)(t) is
decreasing on [0, T ]T.

(i) If t ∈ [0, T ]TK∩TK
is left scattered, we have

(Au)∆∇(t) =
(Au)∆(ρ(t))− (Au)∆(t)

ρ(t)− t
≤ 0.
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(ii) If t ∈ [0, T ]TK∩TK
is a left dense, we have

(Au)∆∇(t) = lim
s→t

(Au)∆(t)− (Au)∆(s)
t− s

≤ 0.

By (i) and (ii), we have (Au)∆∇(t) ≤ 0, t ∈ [0, T ]TK∩TK
; i.e., (Au) is concave on

[0, T ]T. This implies that Au ∈ P and A : P → P . With standard argument one
may show that A : P → P is completely continuous. �

The following fixed point theorem is fundamental for the proofs of our main
results.

Theorem 2.7 ([18]). Let P be a cone in a Banach space E. Let α, β and γ be
three increasing, nonnegative and continuous functionals on P , satisfying for some
c > 0 and M > 0 such that

γ(x) ≤ β(x) ≤ α(x), ‖u‖ ≤Mγ(x)

for all x ∈ P (γ, c). Suppose there exists a completely continuous operator T :
P (γ, c)→ P and 0 < a < b < c such that

(S1) γ(Tx) < c, for all x ∈ ∂P (γ, c);
(S2) β(Tx) > b, for all x ∈ ∂P (β, b);
(S3) P (α, a) 6= ∅, and α(Tx) < a, for all x ∈ ∂P (α, a).

Then T has at least three fixed points x1, x2, x3 ∈ P (γ, c) such that

0 ≤ α(x1) < a < α(x2), β(x2) < b < β(x3), γ(x3) < c.

3. Main results

We define the increasing, nonnegative, continuous functionals:

γ(u) = max
t∈[0,ξ1]T

u(t) = u(ξ1),

β(u) = min
t∈[ξ1,ξm−2]T

u(t) = u(ξ1),

α(u) = max
t∈[0,ξm−2]T

u(t) = u(ξm−2).

Clearly for every u ∈ P
γ(u) ≤ β(u) ≤ α(u).

Moreover, for each u ∈ P , Lemma 2.5 implies γ(u) = u(ξ1) ≥ ξ1
T ‖u‖. That is,

‖u‖ ≤ T
ξ1
γ(u) for all u ∈ P .

For simplicity, we use the following symbols:

λ1 =
1
p(0)

(
ξ1 +

∑m−2
i=1 aiT

1−
∑m−2
i=1 ai

)
ϕ−1

(∫ T

0

a(τ)∇τ
)
,

λ2 =
1

p(T )

(
ξ1 +

∑m−2
i=1 aiT

1−
∑m−2
i=1 ai

)
ϕ−1

(∫ T

ξm−2

a(τ)∇τ
)
,

λ3 =
1
p(0)

(
ξm−2 +

∑m−2
i=1 aiT

1−
∑m−2
i=1 ai

)
ϕ−1

(∫ T

0

a(τ)∇τ
)
.

Theorem 3.1. Suppose that conditions (H1), (H2), (H3) are satisfied. Let 0 < a <
ξ1
T b < b < λ2

λ1
c, and suppose that f satisfies the following conditions:

(i) f(u) < ϕ(c/λ1) for all u ∈ [0, T c/ξ1];
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(ii) f(u) > ϕ(b/λ2) for all u ∈ [b, T b/ξ1];
(iii) f(u) < ϕ(a/λ3) for all u ∈ [0, Ta/ξ1].

Then there exist at least three positive solutions u1, u2, u3 of (1.1) and(1.2) such
that

0 ≤ α(u1) < a < α(u2), β(u2) < b < β(u3), γ(u3) < c.

Proof. Define the completely continuous operator A by (2.4). Let u ∈ ∂P (γ, c),
then (Au)(t) ≥ 0 for t ∈ [0, T ]T. By Lemma 2.6 we know that A : P (γ, c)→ P .

Now, we show that all the conditions of Theorem 2.7 are satisfied. To verify (S1)
of Theorem 2.7 holds, we choose u ∈ ∂P (γ, c). Then γ(u) = maxt∈[0,ξ1]T u(t) =
u(ξ1) = c. If we recall that ‖u‖ ≤ T

ξ1
γ(u) = T

ξ1
c. Therefore

0 ≤ u(t) ≤ T

ξ1
c, for all t ∈ [0, T ]T.

As a consequence of (i),

f(u(s)) < ϕ(c/λ1), for s ∈ [0, T ]T.

Since Au ∈ P , we have

γ(Au) = (Au)(ξ1)

=
∫ ξ1

0

1
p(s)

ϕ−1
(∫ T

s

a(τ)f(u(τ))∇τ
)

∆s

+
∑m−2
i=1 ai

1−
∑m−2
i=1 ai

∫ ξi

0

1
p(s)

ϕ−1
(∫ T

s

a(τ)f(u(τ))∇τ
)

∆s

≤ 1
p(0)

∫ ξ1

0

ϕ−1
(∫ T

0

a(τ)f(u(τ))∇τ
)

∆s

+
1
p(0)

∑m−2
i=1 ai

1−
∑m−2
i=1 ai

∫ ξi

0

ϕ−1
(∫ T

0

a(τ)f(u(τ))∇τ
)

∆s

<
1
p(0)

(
ξ1 +

∑m−2
i=1 aiT

1−
∑m−2
i=1 ai

)
ϕ−1

(∫ T

0

a(τ)∇τ
) c

λ1
= c.

Thus, (S1) of Theorem 2.7 is satisfied.
Secondly, we prove that (S2) of Theorem 2.7 is fulfilled. For this, we choose

u ∈ ∂P (β, b). Then β(u) = mint∈[ξ1,ξm−2]T u(t) = u(ξ1) = b. This means u(t) ≥
b, t ∈ [ξi, T ]T and since u ∈ P , we have b ≤ u(t) ≤ ‖u‖ = u(T ) for t ∈ [ξ1, T ]T. Note
that ‖u‖ ≤ T

ξ1
γ(u) = T

ξ1
β(u) = T

ξ1
b for all u ∈ P . Therefore,

b ≤ u(t) ≤ T

ξ1
b, for all t ∈ [ξ1, T ]T.

From (ii), we have

f(u(s)) > ϕ

(
b

λ2

)
, for s ∈ [ξ1, T ]T,

and so

β(Au) = (Au)(ξ1)

=
∫ ξ1

0

1
p(s)

ϕ−1
(∫ T

s

a(τ)f(u(τ))∇τ
)

∆s
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+
∑m−2
i=1 ai

1−
∑m−2
i=1 ai

∫ ξi

0

1
p(s)

ϕ−1
(∫ T

s

a(τ)f(u(τ))∇τ
)

∆s

>
1

p(T )

∫ ξ1

0

ϕ−1
(∫ T

ξm−2

a(τ)f(u(τ))∇τ
)

∆s

+
1

p(T )

∑m−2
i=1 ai

1−
∑m−2
i=1 ai

∫ ξi

0

ϕ−1
(∫ T

ξm−2

a(τ)f(u(τ))∇τ
)

∆s

>
1

p(T )

(
ξ1 +

∑m−2
i=1 aiT

1−
∑m−2
i=1 ai

)
ϕ−1

(∫ T

ξm−2

a(τ)∇τ
) b

λ2
= b.

Thus, (S2) of Theorem 2.7 is satisfied.
Finally we prove that (S3) of Theorem 2.7 is also satisfied. We note that u(t) =

a/2, t ∈ [0, T ]T is a member of P (α, a) and α(u) = a
2 < a. Therefore P (α, a) 6= ∅.

Now let u ∈ P (α, a). Then α(u) = maxt∈[0,ξm−2]T u(t) = u(ξm−2) = a. This implies
that 0 ≤ u(t) ≤ a for t ∈ [0, ξm−2]T. Recalling that ‖u‖ ≤ T

ξm−2
γ(u) ≤ T

ξm−2
α(u) ≤

T
ξ1
a for all u ∈ P , we have

0 ≤ u(t) ≤ T

ξ1
a, for all t ∈ [0, T ]T.

From assumption (iii), we obtain

f(u(s)) < ϕ
( a
λ3

)
, for s ∈ [0, T ]T,

and so

α(Au) = (Au)(ξm−2)

=
∫ ξm−2

0

1
p(s)

ϕ−1
(∫ T

s

a(τ)f(u(τ))∇τ
)

∆s

+
∑m−2
i=1 ai

1−
∑m−2
i=1 ai

∫ ξi

0

1
p(s)

ϕ−1
(∫ T

s

a(τ)f(u(τ))∇τ
)

∆s

≤ 1
p(0)

∫ ξm−2

0

ϕ−1
(∫ T

0

a(τ)f(u(τ))∇τ
)

∆s

+
1
p(0)

∑m−2
i=1 ai

1−
∑m−2
i=1 ai

∫ T

0

ϕ−1
(∫ T

0

a(τ)f(u(τ))∇τ
)

∆s

<
1
p(0)

(
ξm−2 +

∑m−2
i=1 aiT

1−
∑m−2
i=1 ai

)
ϕ−1

(∫ T

0

a(τ)∇τ
) a
λ3

= a.

Then condition (S3) of Theorem 2.7 is satisfied. So Theorem 2.7 implies that A has
a least three fixed points which are positive solutions u1, u2, u3 belonging to P (γ, c)
of (1.1) and (1.2) such that

0 ≤ α(u1) < a < α(u2), β(u2) < b < β(u3), γ(u3) < c.

The proof is complete. �
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4. Examples

In this section, we give an example to illustrate our results. Let T = {( 2
3 )N0} ∪

{1 − ( 2
3 )N0}, where N0 denotes the set of all nonnegative integers. If we choose

a1 = a2 = 1/4, ξ1 = 1/3, ξ2 = 2/3, T = 1, a(t) ≡ 1, and p(t) ≡ 1. Consider the
following BVP on the time scale T:

[ϕ(u∆(t))]∇ + f(u(t)) = 0, t ∈ [0, 1]T, (4.1)

u(0) =
1
4
u
(1

3

)
+

1
4
u
(2

3

)
, u∆(1) = 0, (4.2)

where

ϕ(u) =

{
u5

1+u2 , u ≤ 0,
u2, u > 0,

and

f(u) =


0.1, 0 ≤ u ≤ 3,
0.1 + 90(u−3)

4
√

3−3
, 3 ≤ u ≤ 4

√
3,

90.1, 4
√

3 ≤ u.

We take a = 1, b = 4
√

3, c = 75. By simple calculations, we have

λ1 =
1
p(0)

(
ξ1 +

∑m−2
i=1 aiT

1−
∑m−2
i=1 ai

)
ϕ−1

(∫ T

0

a(τ)∇τ
)

=
4
3
,

λ2 =
1

p(T )

(
ξ1 +

∑m−2
i=1 aiT

1−
∑m−2
i=1 ai

)
ϕ−1

(∫ T

ξm−2

a(τ)∇τ
)

=
4
√

3
9
,

λ3 =
1
p(0)

(
ξm−2 +

∑m−2
i=1 aiT

1−
∑m−2
i=1 ai

)
ϕ−1

(∫ T

0

a(τ)∇τ
)

=
5
3
.

It is easy to see that

0 < a <
ξ1
T
b < b <

λ2

λ1
c,

and that f satisfies

f(u) < ϕ
( c

λ1

)
=
(75

4
3

)2

≈ 3164.0625, u ∈ [0, 225];

f(u) > ϕ
( b

λ2

)
=
(4
√

3
4
√

3
9

)2

= 81, u ∈ [4
√

3, 12
√

3];

f(u) < ϕ
( a
λ3

)
=
( 1

5
3

)2

=
9
25
, u ∈ [0, 3].

By Theorem 3.1, we see that BVP (4.1) and (4.2) has at least three positive solutions
u1, u2, u3 such that

max
t∈[0, 23 ]T

{ui(t)} ≤ 75, for i = 1, 2, 3;

0 ≤ max
t∈[0,2/3]T

{u1(t)} < 1 < max
t∈[0, 23 ]T

{u2(t)};

min
t∈[ 13 ,

2
3 ]T
{u2(t)} < 4

√
3 < min

t∈[ 13 ,
2
3 ]T
{u3(t)}, max

t∈[0, 13 ]T
{u3(t)} ≤ 75.



EJDE-2013/149 EXISTENCE OF THREE POSITIVE SOLUTIONS 9

Acknowledgments. The author would like to thank the anoymous referees and
the editor for their helpful comments and suggestions. The project is supported by
Abdullah Gul University Foundation of Turkey.

References

[1] R. P. Agarwal, M. Bohner; Basic calculus on time scales and its applications, Results Math.

35 (1999) 3-22.
[2] R. P. Agarwal, D. O’Regan; Nonlinear boundary value problems on time scales, Nonlinear

Anal. 44 (2001) 527-535.

[3] R. P. Agarwal, M. Bohner, D. O’Regan, A. Peterson; Dynamic equations on time scales: a
survey, J. Comput. Appl. Math 141 (2002) 1-26.

[4] D. R. Anderson, R. Avery, J. Henderson; Existence of solutions for a one dimensional p-

Laplacian on time scales, J. Difference Equ. Appl. 10 (2004) 889-896.
[5] M. Bohner, A. Peterson; Dynamic Equations on Time Scales: An Introduction with Appli-

cations, Birkhauser, Boston, Cambridge, MA 2001.
[6] M. Bohner, A. Peterson; Advances in Dynamic Equations on Time Scales, Birkhauser,

Boston, Cambridge, MA 2003.

[7] K. Deimling; Nonlinear Functional Analysis, Springer-Verlag, New York, 1985.
[8] A. Dogan, J. R. Graef, L. Kong; Higher order semipositone multi-point boundary value prob-

lems on time scales, Comput. Math. Appl. 60 (2010) 23-35.

[9] A. Dogan, J. R. Graef, L. Kong; Higher-order singular multi-point boundary- value problems
on time scales, Proc. Edinb. Math. Soc. 54 (2011) 345-361.

[10] D. Guo, V. Lakshmikantham; Nonlinear Problems in Abstract Cones, Academic Press, Inc,

1988.
[11] Z. He; Double positive solutions of three-point boundary value problems for p Laplacian

dynamic equations on time scales, J. Comput. Appl. Math. 182 (2005) 304-315.

[12] S. Hilger; Analysis on measure chains-a unified approach to continuous and discrete calculus,
Results Math. 18 (1990) 18-56.

[13] M. A. Jones, B. Song, D. M. Thomas; Controlling wound healing through debridement, Math.
Comput. Modelling 40 (2004) 1057-1064.

[14] E. R. Kaufmann; Positive solutions of a three-point boundary value problem on a time scales,

Electron. J. Differential Equations, 2003 (82) (2003), 1-11.
[15] W. T. Li, X. L. Liu; Eigenvalue problems for second-order nonlinear dynamic equations on

time scales, J. Math. Anal. Appl. 318 (2006) 578-592.

[16] S. Liang, J. Zhang; The existence of countably many positive solutions for nonlinear singular
m-point boundary value problems on time scales, J. Comput. Appl. Math. 223 (2009) 291-303.

[17] S. Liang, J. Zhang, Z. Wang; The existence of three positive solutions of m-point boundary

value problems for dynamic equations on time scales, Math. Comput. Modelling 49 (2009)
1386-1393.

[18] J. L. Ren, W. G. Ge, B. X. Ren; Existence of positive solutions for quasi-linear boundary

value problems, Acta Math. Appl. Sinica 21 (3) (2005) 353-358 (in Chinese).
[19] Y. Sang, H. Xi; Positive solutions of nonlinear m-point for φ-Laplacian multipoint boundary

value problem for p-Laplacian dynamic equations on time scales, Electron. J. Differential
Equations 2007 (34) (2007) 1-10.

[20] Y. Sang, H. Su; Several existence theorems of nonlinear m-point boundary value problem for

p-Laplacian dynamic equations on time scales, J. Math. Anal. Appl. 340 (2008) 1012-1026.
[21] V. Spedding; Taming nature’s numbers, New Scientist: The Global Science and Technology

Weekly 2404 (2003) 28-31.
[22] H. R. Sun; Existence of positive solutions to second-order time scale systems, Comput. Math.

Appl. 49 (2005) 131-145.
[23] H. R. Sun, W. T. Li; Existence theory for positive solutions to one-dimensional p-Laplacian

boundary value problems on time scales, J. Differential Equations 240 (2007) 217-248.
[24] H. R. Sun; Triple positive solutions for p-Laplacian m-point boundary value problem on time

scales, Comput. Math. Appl. 58 (2009) 1736-1741.

[25] D. M. Thomas, L. Vandemuelebroeke, K. Yamaguchi; A mathematical evolution model for
phytoremediation of metals, Discrete Contin. Dyn. Syst. Ser. B 5 (2005) 411-422.



10 A. DOGAN EJDE-2013/149

[26] Y. Zhang; A multiplicity result for a generalized Sturm-Liouville problem on time scales, J.

Difference Equ. Appl. 16 (2010) 963-974.

Abdulkadir Dogan

Department of Applied Mathematics, Faculty of Computer Sciences, Abdullah Gul Uni-
versity, Kayseri, 38039 Turkey

Tel: +90 352 224 88 00 Fax:+90 352 338 88 28

E-mail address: abdulkadir.dogan@agu.edu.tr


	1. Introduction
	2. Preliminaries
	3. Main results
	4. Examples
	Acknowledgments

	References

