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EXISTENCE OF SOLUTIONS FOR A NEUMANN PROBLEM
INVOLVING THE p(x)-LAPLACIAN

GIUSEPPINA BARLETTA, ANTONIA CHINNÌ

Abstract. We study the existence and multiplicity of weak solutions for a
parametric Neumann problem driven by the p(x)-Laplacian. Under a suitable

condition on the behavior of the potential at 0+, we obtain an interval such

that when a parameter λ is in this interval, our problem admits at least one
nontrivial weak solution. We show the multiplicity of solutions for potentials

satisfying also the Ambrosetti-Rabinowitz condition. Moreover, if the right-

hand side f satisfies the Ambrosetti-Rabinowitz condition, then we obtain the
existence of two nontrivial weak solutions.

1. Introduction

In this article we are interested in the multiplicity of weak solutions of the Neu-
mann problem

−∆p(x)u+ a(x)|u|p(x)−2u = λf(x, u) in Ω
∂u

∂ν
= 0 on ∂Ω

(1.1)

where Ω ⊂ RN is an open bounded domain with smooth boundary ∂Ω, p ∈ C(Ω̄),
∆p(x)u := div(|∇u|p(x)−2∇u) denotes the p(x)-Laplace operator, a belongs to
L∞(Ω) and a− := ess infΩ a(x) > 0, λ is a positive parameter and ν is the outward
unit normal to ∂Ω. In this context we assume that p ∈ C(Ω̄) satisfies the condition

1 < p− := inf
x∈Ω

p(x) ≤ p(x) ≤ p+ := sup
x∈Ω

p(x) < +∞, (1.2)

and that f : Ω× R→ R is a Carathéodory function satisfying
(F1) there exist a1, a2 ∈ [0,+∞[ and q ∈ C(Ω̄) with 1 < q(x) < p∗(x) for each

x ∈ Ω̄, such that

|f(x, t)| ≤ a1 + a2|t|q(x)−1

for each (x, t) ∈ Ω× R, where

p∗(x) :=

{
Np(x)
N−p(x) if p(x) < N

∞ if p(x) ≥ N.
(1.3)
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In recent years there has been an increasing interest in the study of variational
problems and elliptic equations with variable exponent. We refer to [16, 18, 21] and
references therein for general properties of the spaces Lp(x)(Ω) and Wm,p(x)(Ω).
Many authors investigated the existence and multiplicity of solutions for problems
involving the p(x)-Laplacian, with Neumann boundary conditions. We refer to
[3, 14] for the existence of infinitely many solutions and to [8, 9, 10, 12, 17, 19, 20]
for results concerning the existence of a finite number of them. Since in this paper
we are interested in the latter case, we want to say something more about the
results obtained in the last years. We observe that the solutions (three in most
cases) are obtained as critical points of a suitable functional I and the main tool
for achieving the existence of such points is a critical point result due to Ricceri
[23] or some variants of it.

One of the first paper devoted to this topic is [19], where f(x, t) = |t|q(x)−2t− t,
with 2 < q(x) < p− and p(x) > N . Later, Xiayang Shi and Xuanhao Ding in [25]
extend the results of [19] to Carathéodory functions f satisfying a growth condition
of type (F1), but with 1 < q(x) ≤ q+ < p− and once again p− > N .

A two parameter problem was studied first in [17] and then in [9], where f
and g are continuous and satisfy our condition (F1) but with a more restrictive
assumption for the variable exponents q and p. However, we emphasize that in
both papers the authors need some additional hypotheses on the potentials F and
G. For instance, in [17] we have a growth r for F and G, with 1 < r− < r+ < p−.
Furthermore, to obtain their results they strengthen the hypotheses on F , for which
they need sign assumptions. Also in [8], the authors have two parameters rather
than one, but they deal with p− > N ≥ 2 (we do not have such restriction). In
[12] the nonlinear term is f + λg with f and g continuous functions verifying our
growth condition (F1) with respect to the second variable, but with the restrictions
p+ < p∗(x) and p+ < q−.

Finally, Liu [15] takes λ = 1. Under a regularity assumption on f(x, ·) and
standard growth conditions on fu(x, u), he shows the existence of three nontrivial
solutions: one positive, one negative and the third is nodal. In this paper we
obtain multiplicity results for (1.1) weakening the assumptions present in most of
the papers cited above. In fact we deal with a Carathéodory function and we
avoid the restriction p− > N for the exponent p. Furthermore, we have no relation
between q and p except for the standard q(x) < p∗(x). We point out that the elliptic
case has been investigated in [4]. The paper is arranged as follows: in Section 2
we list some auxiliary results that we need to prove our main theorems that are
exposed in Section 3. Finally, in Section 4 we give some examples of functions
verifying assumptions requested in our main results.

2. Preliminaries

Here and in the sequel, we assume that p ∈ C(Ω̄) satisfies condition (1.2). The
variable exponent Lebesgue space Lp(x)(Ω) is defined as

Lp(x)(Ω) = {u : Ω→ R : u is measurable and ρp(u) :=
∫

Ω

|u(x)|p(x)dx < +∞} .

On Lp(x)(Ω) we consider the norm

‖u‖Lp(x)(Ω) = inf
{
λ > 0 :

∫
Ω

∣∣u(x)
λ

∣∣p(x)
dx ≤ 1

}
.
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The generalized Lebesgue-Sobolev space W 1,p(x)(Ω) is defined as

W 1,p(x)(Ω) :=
{
u ∈ Lp(x)(Ω) : |∇u| ∈ Lp(x)(Ω)

}
with the norm

‖u‖W 1,p(x)(Ω) := ‖u‖Lp(x)(Ω) + ‖|∇u|‖Lp(x)(Ω)· (2.1)

With such norms, Lp(x)(Ω) and W 1,p(x)(Ω) are separable, reflexive and uniformly
convex Banach spaces.

The following result generalizes the well-known Sobolev embedding theorem.

Theorem 2.1 ([13, Proposition 2.5]). Assume that p ∈ C(Ω̄) with p(x) > 1 for
each x ∈ Ω̄. If r ∈ C(Ω̄) and 1 < r(x) < p∗(x) for all x ∈ Ω, then there exists a
continuous and compact embedding W 1,p(x)(Ω) ↪→ Lr(x)(Ω) where p∗ is the critical
exponent related to p defined in (1.3).

In the sequel, we will denote by kr the best constant for which one has

‖u‖Lr(x)(Ω) ≤ kr‖u‖ (2.2)

for all u ∈W 1,p(x)(Ω).
If we assume that
(H1) a ∈ L∞(Ω), with a− := ess infΩ a(x) > 0,

then on W 1,p(x)(Ω) it is possible to consider the norm

‖u‖a = inf
{
σ > 0 :

∫
Ω

(∣∣∇u(x)
σ

∣∣p(x) + a(x)
∣∣u(x)
σ

∣∣p(x)
)
dx ≤ 1

}
,

which is equivalent to that introduced in (2.1) (see [8]). In particular, if for α > 0
and h ∈ C(Ω̄) with 1 < h−, we put

[α]h := max{αh
−
, αh

+
}

[α]h := min{αh
−
, αh

+
},

then it is easy to verify that

[α]1/h = max{α1/h− , α1/h+
}, [α] 1

h
= min{α1/h− , α1/h+

} .

Now, starting from the definition of ‖ · ‖a and ‖ · ‖Lp(x)(Ω) and using standard
arguments, the following estimate is obtained

[a−]1/p
1 + [a−]1/p

‖u‖W 1,p(x)(Ω) ≤ ‖u‖a ≤ (1 + ‖a‖∞)1/p− ‖u‖W 1,p(x)(Ω) (2.3)

for each u ∈W 1,p(x)(Ω).

Remark 2.2. If Ω is an open convex subset of RN and the variable exponents
r and p verify conditions r+ < p−

∗ and p− 6= N , then it is possible to provide
an upper estimate for the constant kr in (2.2). We recall that in [7] (see Remark
3.4), an upper bound for the constant of the embedding W 1,h(Ω) ↪→ Lq(Ω) with
q ∈ [1, h∗[ has been obtained when Ω is an open convex set of RN and h 6= N .
Precisely, denoted by k̃h,q such constant, one has

‖u‖Lq(Ω) ≤ k̃h,q‖u‖a,W 1,h(Ω) (2.4)
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for each u ∈W 1,h(Ω) where

‖u‖a,W 1,h(Ω) =
(∫

Ω

|∇u(x)|h dx+
∫

Ω

a(x)|u(x)|h dx
)1/h

and k̃h,q depends on the diameter of Ω, on the measure of Ω and on a−. Now,
if p− 6= N and r+ < p−

∗, starting from (2.4) with q = r+ and h = p−, for each
u ∈W 1,p(x)(Ω), it results

‖u‖Lr+ (Ω) ≤ k̃p−,r+‖u‖a,W 1,p− (Ω) . (2.5)

Taking into account that (see for instance [18, Theorem 2.8]) Lp(x)(Ω) ↪→ Lp
−

(Ω)
and Lr

+
(Ω) ↪→ Lr(x)(Ω) with continuous embeddings and that the constants of

such embeddings do not exceed 1 + |Ω|, one has

‖u‖p
−

a,W 1,p− (Ω)
≤ ‖∇u‖p

−

Lp− (Ω)
+ ‖a‖∞‖u‖p

−

Lp− (Ω)

≤ (1 + |Ω|)p
−
‖∇u‖p

−

Lp(x)(Ω)
+ ‖a‖∞(1 + |Ω|)p

−
‖u‖p

−

Lp(x)(Ω)

≤ (1 + |Ω|)p
−

(1 + ‖a‖∞)‖u‖p
−

W 1,p(x)(Ω)

and so
‖u‖a,W 1,p− (Ω) ≤ (1 + |Ω|)(1 + ‖a‖∞)1/p−‖u‖W 1,p(x)(Ω) . (2.6)

On the other hand, one has

‖u‖Lr(x)(Ω) ≤ (1 + |Ω|)‖u‖Lr+ (Ω) . (2.7)

Starting from conditions (2.5), (2.6), (2.7) and (2.3), we obtain

‖u‖Lr(x)(Ω) ≤ k̃p−,r+(1 + |Ω|)2(1 + ‖a‖∞)1/p− 1 + [a−]1/p
[a−]1/p

‖u‖a ,

and so

kr ≤ k̃p−,r+(1 + |Ω|)2(1 + ‖a‖∞)1/p− 1 + [a−]1/p
[a−]1/p

. (2.8)

Remark 2.3. Arguing as in the previous remark, if we denote by k1 the best
constant of the embedding W 1,p(x)(Ω) ↪→ L1(Ω), then we obtain

k1 ≤ k̃p−,1(1 + |Ω|)(1 + ‖a‖∞)1/p− 1 + [a−]1/p
[a−]1/p

. (2.9)

We recall that, fixed λ > 0, a point u ∈W 1,p(x)(Ω) is a weak solution to (1.1) if∫
Ω

(
|∇u(x)|p(x)−2∇u(x)∇v(x) + a(x)|u|p(x)−2uv

)
dx = λ

∫
Ω

f(x, u(x))v(x)dx

holds for each v ∈W 1,p(x)(Ω). To obtain one or more solutions to (1.1), fixed λ > 0,
we denote by Iλ the energy functional

Iλ(·) := Φ(·)− λΨ(·),
where Φ,Ψ : W 1,p(x)(Ω)→ R are defined as follows

Φ(u) =
∫

Ω

1
p(x)

(
|∇u|p(x) + a(x)|u|p(x)

)
dx,

Ψ(u) =
∫

Ω

F (x, u(x))dx
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for each u ∈W 1,p(x)(Ω) and

F (x, ξ) :=
∫ ξ

0

f(x, t) dt

for each (x, ξ) ∈ Ω × R. When Iλ is C1 its critical points are weak solutions
to (1.1). Similar arguments to those used in [19] and in [12] imply that Φ is
sequentially weakly lower semi-continuous and is a C1 functional in W 1,p(x)(Ω),
with the derivative given by

〈Φ′(u), v〉 =
∫

Ω

(
|∇u(x)|p(x)−2∇u(x)∇v(x) + a(x)|u|p(x)−2uv

)
dx,

for any u, v ∈W 1,p(x)(Ω). Moreover (see [8, Lemma 3.1]), Φ′ is an homeomorphism.
Finally we recall that in [8, Proposition 2.2] it was shown that Φ is in close relation
with the norm ‖ · ‖a. In fact, we have the following result.

Proposition 2.4. Let u ∈W 1,p(x)(Ω). Then

(j) If ‖u‖a < 1 then 1
p+ ‖u‖p

+

a ≤ Φ(u) ≤ 1
p− ‖u‖

p−

a .

(jj) If ‖u‖a > 1 then 1
p+ ‖u‖p

−

a ≤ Φ(u) ≤ 1
p− ‖u‖

p+

a .

We observe that Ψ can be defined in the space Lq(x)(Ω). In fact, from [18,
Theorems 4.1 and 4.2], we know that the growth condition (F1) imposed on f
guarantees that the Nemytsky operator Nf defined by Nf (u) = f(·, u(·)) maps
Lq(x)(Ω) in Lq

′(x)(Ω) where q′(x) = q(x)
q(x)−1 and that is continuous and bounded.

Before studying the regularity properties of Ψ, we introduce the functional J :
Lq
′(x)(Ω)→ (Lq(x)(Ω))∗ defined as

J(h)(w) :=
∫

Ω

h(x)w(x) dx

for each h ∈ Lq′(x)(Ω), w ∈ Lq(x)(Ω). From [11, Theorem 3.4.6], we know that J is
an isomorphism from Lq

′(x)(Ω) to (Lq(x)(Ω))∗.

Lemma 2.5. Under assumption (F1) Ψ is a continuously Gâteaux differentiable
functional with

Ψ′(u)(v) =
∫

Ω

f(x, u(x))v(x)dx

for each u, v ∈W 1,p(x)(Ω) and Ψ′ is a compact operator.

Proof. In a standard way we obtain

Ψ′(u)(v) =
∫

Ω

f(x, u(x))v(x)dx

from each u, v ∈ W 1,p(x)(Ω). If {un} → u in W 1,p(x)(Ω) then, for Theorem 2.1,
{un} → u in Lq(x)(Ω). Thanks to the properties of the Nemytsky operator, one has
{Nf (un)} → Nf (u) in Lq

′(x)(Ω) and so {J(Nf (un))} → J(Nf (u)) in (Lq(x)(Ω))∗.
This condition leads to {J(Nf (un))} → J(Nf (u)) in (W 1,p(x)(Ω))∗ and, taking into
account that

J(Nf (u))(·) = Ψ′(u)(·)
for each u ∈W 1,p(x)(Ω), we obtain the continuity of Ψ′. If we suppose that {un}⇀
u in W 1,p(x)(Ω), then, thanks to the compactness of the embedding W 1,p(x)(Ω) ↪→
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Lq(x)(Ω), {un} → u in Lq(x)(Ω) (up to a subsequence). This ensures the continuity
of Ψ′ on Lq(x)(Ω) and so its compactness. �

To conclude this section we introduce two abstract results obtained by Bonanno
in [5] and [6] that will allow us to obtain multiple solutions to (1.1). Before to recall
them we give the following definition.

Definition 2.6. Let Φ and Ψ be two continuously Gâteaux differentiable function-
als defined on a real Banach space X and fix r ∈ R. The functional I = Φ − Ψ is
said to verify the Palais-Smale condition cut off upper at r (in short (P.S.)[r]) if
any sequence {un} in X such that

(α) {I(un)} is bounded;
(β) limn→+∞ ‖I ′(un)‖X∗ = 0;
(γ) Φ(un) < r for each n ∈ N;

has a convergent subsequence.

The following abstract result is a particular case of [5, Theorem 5.1].

Theorem 2.7 ([6]). Let X be a real Banach space, Φ,Ψ : X → R be two continu-
ously Gâteaux differentiable functionals such that infx∈X Φ(x) = Φ(0) = Ψ(0) = 0.
Assume that there exist r > 0 and x̄ ∈ X, with 0 < Φ(x̄) < r, such that:

(A1)
supΦ(x)≤r Ψ(x)

r < Ψ(x̄)
Φ(x̄) ,

(A2) for each λ ∈] Φ(x̄)
Ψ(x̄) ,

r
supΦ(x)≤r Ψ(x) [, the functional Iλ := Φ − λΨ satisfies the

(P.S.)[r] condition.

Then, for each λ ∈ Λr :=] Φ(x̄)
Ψ(x̄) ,

r
supΦ(x)≤r Ψ(x) [, there is x0,λ ∈ Φ−1(]0, r[) such that

I ′λ(x0,λ) ≡ ϑX∗ and Iλ(x0,λ) ≤ Iλ(x) for all x ∈ Φ−1(]0, r[).

Remark 2.8. [5, Proposition 2.1] guarantees that if Φ is a sequentially weakly
lower semicontinuous, coercive, continuously Gâteaux differentiable function whose
Gâteaux derivative admits a continuous inverse and Ψ is a Gâteaux differentiable
function whose Gâteaux derivative is compact then the functional Φ − Ψ satisfies
the (P.S.)[r] condition for each r ∈ R.

The last abstract result that we will use in this paper is the following.

Theorem 2.9 ([6, Theorem 3.2]). Let X be a real Banach space, Φ,Ψ : X → R
be two continuously Gâteaux differentiable functionals such that Φ is bounded from
below and Φ(0) = Ψ(0) = 0. Fix r > 0 and assume that, for each

λ ∈]0,
r

supu∈Φ−1(]−∞,r[) Ψ(u)
[,

the functional Iλ := Φ − λΨ satisfies (P.S.) condition and it is unbounded from
below. Then, for each

λ ∈]0,
r

supu∈Φ−1(]−∞,r[) Ψ(u)
[,

the functional Iλ admits two distinct critical points.
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3. Main results

The first result guarantees the existence of one non trivial solution to problem
(1.1).

Theorem 3.1. Let f : Ω×R→ R be a Carathéodory function satisfying (F1) and
(F2)

lim sup
t→0+

∫
Ω
F (x, t) dx
tp−

= +∞.

Put λ∗ = 1

a1k1(p+)1/p−+
a2
q−

[kq ]q(p+)
q+

p−
, where k1 and kq are given by (2.2). Then for

each λ ∈]0, λ∗[, problem (1.1) admits at least one nontrivial weak solution.

Proof. Put X := W 1,p(x)(Ω) equipped by norm ‖ · ‖a. We consider the functional

Iλ(·) := Φ(·)− λΨ(·)

introduced in the previous section and note that Φ and Ψ satisfy the regularity
assumptions required in Theorem 2.7 as well as the condition (A2) for all r, λ > 0
(see Lemma 2.5 and Remark 2.8). Fixed λ ∈]0, λ∗[, we choose r = 1 and verify
condition (A1) of Theorem 2.7. By (F2) there exists

0 < ξλ < min
{

1,
( p−

‖a‖∞|Ω|

)1/p−}
(3.1)

such that
p−
∫

Ω
F (x, ξλ) dx

ξp
−

λ ‖a‖∞|Ω|
>

1
λ
. (3.2)

We denote by uλ the function of X defined by uλ(x) = ξλ for each x ∈ Ω and
observe that

Φ(uλ) ≤ 1
p−
‖a‖∞|Ω|[ξλ]p < 1 (3.3)

and

Ψ(uλ) =
∫

Ω

F (x, ξλ) dx .

We observe that condition (F1) implies

|F (x, t)| ≤ a1|t|+
a2

q(x)
|t|q(x)

for each (x, t) ∈ Ω× R. For each u ∈ Φ−1(]−∞, 1]) it results

Ψ(u) ≤ a1

∫
Ω

|u(x)| dx+
a2

q−

∫
Ω

|u(x)|q(x) dx = a1‖u‖L1(Ω) +
a2

q−
ρq(u) .

[16, Theorem 1.3] and the embeddings W 1,p(x)(Ω) ↪→ L1(Ω) and W 1,p(x)(Ω) ↪→
Lq(x)(Ω) ensure

a1‖u‖L1(Ω) +
a2

q−
ρq(u) ≤ a1‖u‖L1(Ω) +

a2

q−
[‖u‖Lq(x)(Ω)]

q ≤ a1k1‖u‖a +
a2

q−
[kq‖u‖a]q

(3.4)
Taking into account that for each u ∈ Φ−1(] −∞, 1]), thanks to Proposition 2.4,
one has

‖u‖a ≤ (p+)1/p− ,
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conditions (3.2) and (3.4) lead to

sup
Φ(u)≤1

Ψ(u) ≤ a1k1(p+)1/p− +
a2

q−
[kq]q(p+)

q+

p−

=
1
λ∗

<
1
λ

<
p−
∫

Ω
F (x, ξλ) dx

ξp
−

λ ‖a‖∞|Ω|
<

Ψ(uλ)
Φ(uλ)

(3.5)

and so condition (A1) of Theorem 2.7 is verified. Since λ ∈
]Φ(uλ)

Ψ(uλ) ,
1

supΦ(u)≤1 Ψ(u)

[
,

Theorem 2.7 guarantees the existence of a local minimum point ū for the functional
Iλ such that

0 < Φ(ū) < 1

and so ū is a non-trivial weak solution of problem (1.1). �

To establish the existence of two solutions to problem (1.1), we assume that the
nonlinear term f satisfies this Ambrosetti-Rabinowitz-type condition

(F3) there exist µ > p+ and β > 0 such that

0 < µF (x, ξ) ≤ ξf(x, ξ)

for each x ∈ Ω and for |ξ| ≥ β.

Lemma 3.2. Let f : Ω × R → R be a Carathéodory function satisfying (F1) and
(F3). Then, for each λ > 0, Iλ satisfies the (PS)-condition.

Proof. Let {un} be a (PS) sequence for Iλ. Then:

|Iλ(un)| ≤M for some M > 0 and all n ≥ 1 , (3.6)

I ′λ(un)→ 0 in W 1,p(x)(Ω)∗, as n→∞ . (3.7)

Due to (3.7) we can find n ∈ N , such that

−I ′λ(un)(un) = −
∫

Ω

(
|∇un|p(x) + a(x)|un|p(x)

)
dx+ λ

∫
Ω

f(x, un(x))un(x) dx

≤ ‖un‖a for all n ≥ n .
(3.8)

We argue by contradiction and we assume that {un} is unbounded, so we can choose
n such that ‖un‖a > 1 for any n ≥ n. Our assumptions on f guarantee that we
can find a number A(β) > 0 such that for any n ∈ N one has:∫

{x∈Ω:|un(x)|≤β}
(f(x, un(x))un(x)− µF (x, un(x))) dx ≥ −A(β). (3.9)
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Gathering (3.6), (3.8), (3.9) and taking into account (jj) of Proposition 2.4, for n
large enough we obtain

µ ·M + ‖un‖a
≥ µIλ(un)− I ′λ(un)(un)

=
∫

Ω

µ− p(x)
p(x)

(
|∇un|p(x) + a(x)|un|p(x)

)
dx

+ λ

∫
{x∈Ω:|un(x)|≤β}

(f(x, un(x))un(x)− µF (x, un(x))) dx

+ λ

∫
{x∈Ω:|un(x)|≥β}

(f(x, un(x))un(x)− µF (x, un(x))) dx

≥ (µ− p+)Φ(un)− λA(β)

≥ (µ− p+)
p+

‖un‖p
−

a − λA(β) ,

(3.10)

which contradicts the unboundedness of {un}, since p− > 1. So {un} is bounded,
so, taking into account that Ψ′ is compact, we obtain the existence of a convergent
subsequence. �

Theorem 3.3. Let f : Ω×R→ R be a Carathéodory function satisfying (F1) and
(F3). Then, for each λ ∈]0, λ∗[, where λ∗ is the constant introduced in the statement
of Theorem 3.1, problem (1.1) admits at least two distinct weak solutions.

Proof. We choose r = 1, X = W 1,p(x)(Ω) and apply Theorem 2.9 to the functionals
Φ and Ψ introduced before. Clearly, Φ is bounded from below and Φ(0) = Ψ(0) = 0.
From Lemma 3.2 we know that our functional Iλ(·) := Φ(·) − λΨ(·) satisfies the
(P.S.) condition for each λ > 0. By integrating condition (F3), we can find a3 > 0
such that

F (x, ξ) ≥ a3ξ
µ

for each |ξ| ≥ β1 > β. Fixed k > max {β1, 1}, we consider the function ū ≡ k ∈ X
and we observe that, for each t > 1 it results

Iλ(tū) ≤ 1
p−
‖a‖∞|Ω|tp

+
kp

+
− λa3|Ω|tµkµ .

Since µ > p+, this condition implies that Iλ is unbounded from below. Finally,
fixed λ ∈]0, λ∗[ and taking into account (3.5), we have

0 < λ <
1

supu∈Φ−1(]−∞,1[) Ψ(u)

and so, the functional Iλ admits two distinct critical points that are weak solutions
to problem (1.1). �

Remark 3.4. We observe that, if f(x, 0) 6= 0, then Theorem 3.3 ensures the
existence of two non trivial weak solutions for problem (1.1).

Remark 3.5. Taking into account Remark 2.2 and Remark 2.3, if Ω is an open
convex subset of RN and the variable exponents q and p verify conditions q+ < p−

∗

and p− 6= N , then it is possible to obtain a precise estimate of parameter λ∗ in
Theorems 3.1 and 3.3.
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4. Examples

Now we give some applications of the previous results.

Example 4.1. Let a1 and a2 in L∞(Ω), with ess infx∈Ω a1(x) > 0. We consider

f(x, t) = a1(x) + a2(x)|t|q(x)−1

for each (x, t) ∈ Ω × R where q ∈ C(Ω̄) with 1 < q(x) < p∗(x) for each x ∈ Ω̄.
We observe that condition (F1) of Theorem 3.1 is easily verified. Moreover, by
integration we obtain

F (x, t) = a1(x)t+
a2(x)
q(x)

tq(x)

for each x ∈ Ω and t > 0. This implies that

lim
t→0+

ess infx∈Ω F (x, t)
tp−

= +∞

and so condition (F2) of Theorem 3.1 is satisfied.

Finally, we present an application of Theorem 3.3.

Example 4.2. We take the function f defined by

f(x, t) = a+ bq(x)|t|q(x)−2t for (x, t) ∈ Ω× R ,

where a and b are two positive constants and p, q ∈ C(Ω̄) satisfy the inequalities
1 < p+ < q− ≤ q(x) < p∗(x) for any x ∈ Ω̄. Fixed p+ < µ < q− and

β > max
{[ a(µ− 1)
b(q− − µ)

] 1
q−−1 ,

(a
b

) 1
q−−1 , 1

}
.

We prove that f fulfills the assumptions requested in Theorem 3.3. Condition (F1)
of Theorem 3.3 is easily verified. Taking into account that

F (x, t) = at+ b|t|q(x) for (x, t) ∈ Ω× R , (4.1)

and β > (ab )
1

q−−1 , one has

F (x, t) ≥ −a|t|+ b|t|q(x) = |t|(−a+ b|t|q(x)−1) > 0

for each x ∈ Ω and for |t| ≥ β. Moreover, the assumption β > [ a(µ−1)
b(q−−µ) ]

1
q−−1 leads

to the following inequality

b(q(x)− µ)|t|q(x)−1 ≥ b(q− − µ)βq
−−1 ≥ a(µ− 1)

for each x ∈ Ω and t ≥ β. This implies that

µF (x, t) ≤ tf(x, t)

holds for each x ∈ Ω and |t| ≥ β and so condition (F3) is verified.

Remark 4.3. We observe that the function f in Example 4.2 satisfies the condition
f(x, 0) 6= 0. This implies that problem (1.1) admits at least two non trivial distinct
solutions (see Remark 3.4).
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[4] Bonanno, G.; Chinǹı, A.; Existence and multiplicity of weak solutions for elliptic Dirichlet

problems with variable exponent, preprint.
[5] Bonanno, G.; A critical point theorem via the Ekeland variational principle, Nonlinear Anal-

ysis, 75 (2012), 2992–3007.

[6] Bonanno, G.; Relations between the mountain pass theorem and local minima, Adv. Nonlinear
Anal., 1 (2012), 205–220.
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