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SOLVABILITY IN THE SENSE OF SEQUENCES TO SOME
NON-FREDHOLM OPERATORS

VITALY VOLPERT, VITALI VOUGALTER

ABSTRACT. We study the solvability of certain linear nonhomogeneous elliptic
problems and show that under reasonable technical conditions the conver-
gence in L?(R%) of their right sides implies the existence and the convergence
in H2(R%) of the solutions. The equations involve second order differential
operators without Fredholm property and we use the methods of spectral and
scattering theory for Schrédinger type operators analogously to our preceding
work [17].

1. INTRODUCTION
Consider the equation
—Au+V(z)u—au = f, (1.1)

where u € E = H2(RY) and f € F = L*(R%), d € N, a is a constant and V(z) is
a function converging to 0 at infinity. If a > 0, then the essential spectrum of the
operator A : E — F corresponding to the left-hand side of equation contains
the origin. As a consequence, the operator does not satisfy the Fredholm property.
Its image is not closed, for d > 1 the dimensions of its kernel and the codimension
of its image are not finite. In this work we will study some properties of such
operators. Let us note that elliptic problems involving non-Fredholm operators
were studied extensively in recent years (see [16] 17, 18] 19} 20l 211 22] 23] []) along
with their potential applications to the theory of reaction-diffusion equations (see
[7, [8]). In the particular case where a = 0 the operator A satisfies the Fredholm
property in some properly chosen weighted spaces [1}, 2] B} 4, 5]. However, the case
with a # 0 is essentially different and the approach developed in these works cannot
be applied.

One of the important questions about equations with non-Fredholm operators
concerns their solvability. We will study it in the following setting. Let f, be a
sequence of functions in the image of the operator A, such that f, — f in L2(R%)
as n — oo. Denote by u,, a sequence of functions from H?(R%) such that

Au, = frn, mneN.
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Since the operator A does not satisfy the Fredholm property, then the sequence
U, may not be convergent. We will call a sequence u, such that Au, — f a
solution in the sense of sequences of equation Au = f (see [I5]). If this sequence
converges to a function wug in the norm of the space E, then ug is a solution of this
equation. Solution in the sense of sequences is equivalent in this sense to the usual
solution. However, in the case of non-Fredholm operators this convergence may
not hold or it can occur in some weaker sense. In this case, solution in the sense
of sequences may not imply the existence of the usual solution. In this work we
will find sufficient conditions of equivalence of solutions in the sense of sequences
and the usual solutions. In the other words, the conditions on sequences f, under
which the corresponding sequences u,, are strongly convergent.
In the first part of the article we consider the equation

—Au—au= f(z), zeR? deN, (1.2)

where a > 0 is a constant and the right side is square integrable. Note that for
the operator —A — a on L?(R?) the essential spectrum fills the semi-axis [—a, 00)
such that its inverse from L?(R?) to H?(R?) is not bounded. Let us write down
the corresponding sequence of equations with n € N as

— Auy — aup = fo(z), xR deN, (1.3)

with the right sides convergent to the right side of (1.2) in L?(R?) as n — oo. The
inner product of two functions

() g(@) i = [ 1)

with a slight abuse of notations when these functions are not square integrable.
Indeed, if f(x) € L*(R?) and g(x) is bounded, then clearly the integral considered
above makes sense, like for instance in the case of functions involved in the orthog-
onality conditions of Theorems and below. In the space of three dimensions
for some A(x) = (A1(x), A2(x), Az(z)), the inner product (f(z), A(x))r2(rs) is the
vector with the coordinates

/ f(@)Ap(z)dz, k=1,2,3.
RB

We start with formulating the proposition in one dimension. We will consider the
space H?(RY) with the norm

elfrz gy = el 7z gy + Al 72 ga) (1.4)
Theorem 1.1. Let n € N and f,(x) € L*(R), such that f,(z) — f(x) in L*(R)

as n — oo.
(a) When a > 0 let zf,(z) € L'(R), such that xf,(z) — xf(x) in L*(R) as
n — 0o and the orthogonality conditions
eii\/ﬁz
n ) = O
(f (l’) Vo )LQ(]R)
hold for all n € N. Then equations (1.2]) and (L.3)) admit unique solutions u(x) €
H?(R) and u,(z) € H?*(R) respectively, such that u,(z) — u(z) in H*(R) as
n — oo.

(1.5)
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(b) When a = 0 let 22f,(x) € L*(R), such that 2%f,(z) — z2f(x) in L*(R) as
n — oo and the orthogonality relations

(fn($)’ 1)LQ(IR) =0, (fn( ) )L2 (R) = 0 (16)

hold for alln € N . Then problems (1.2) and ( . possess unique solutions u(z) €
H?(R) and u,(x) € H*(R) respectively, where u,(x) — u(zx) in H*(R) as n — oc.

Then we turn our attention to the issue in dimensions two and higher. The
sphere of radius 7 > 0 in R? centered at the origin will be denoted by S¢, of radius
r =1 as S% and its Lebesgue measure by |S%|. The notation B¢ will stand for the
unit ball in the space of d dimensions with the center at the origin and |B¢| for its
Lebesgue measure.

Theorem 1.2. Letd > 2, n € N and f,(z) € L*(R?), such that f,(z) — f(z) in
L?(R%) as n — oo.

(a) When a > 0 let |x|f,(x) € LY(R?), such that |z|f,(x) — |z|f(x) in L'(R?)
as n — oo and the orthogonality conditions

etpr

(f"(x)’ W) L2(Rd) =0,

hold for all n € N. Then equations and admit unique solutions u(zx) €
H?*(R?Y) and u,(z) € H*(RY) respectively, such that u,(z) — u(x) in H*(R?) as
n — 0o.

(b) When a =0 and d = 2 let |z|? f,,(x) € L*(R?), such that |z|? fn(x) — |z|? f(z)
in L'(R?) as n — oo and the orthogonality relations

(fn( ) )L2 (R2) = 0, (fn(x),xm)Lz(Rz) = 0, m = 1,2 (18)

hold for all n € N. Then problems and have unique solutions u(z) €
H?(R?) and u,(z) € H?(R?) respectively, such that u,(x) — u(z) in H*(R?) as
n — 0o.

(c) When a =0 and d = 3,4 let |z|f,(x) € L*(R?), such that |x|f.(x) — |z|f(z)

in L' (R?) as n — oo and the orthogonality condition

(fn(2), )Lz ®ey=0, d=3.4 (1.9)

holds for all n € N. Then problems and admit unique solutions u(x) €
H?*(R?) and u,(z) € H*(RY) respectively, such that u,(z) — u(z) in H*(RY) as
n — 00.

(d) When a =0 andd > 5 let f,(z) € L*(R?), such that f,(x) — f(x) in L*(R?)
as n — oo. Then equations and have unique solutions u(x) € H*(R?)
and un,(x) € H*(R?) respectively, such that u,(x) — u(x) in H2(RY) as n — oo.

peSisae, d>2 (1.7)

Note that when a = 0 and the dimension of the problem is at least five, orthog-
onality conditions in the Theorem above are not required (see e.g. [23, Lemmas 6
and 7]). We will be using the hat symbol to denote the standard Fourier transform

flp) = W y f(x)e™P%dz, pcRY, deN. (1.10)

In the second part of the work we study the equation

—Au+V(z)u—au= f(z), z€R> a>0, (1.11)
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where the right side is square integrable. The correspondent sequence of equations
for n € N will be

— Auy + V(2)uy — auy = fo(z), z€R3 a>0, (1.12)

where the right sides converge to the right side of in L?(R3) as n — oo.
Let us make the following technical assumptions on the scalar potential involved
in equations above. Note that the conditions on V' (z), which is shallow and short-
range will be analogous to those stated in [I7, Assumption 1.1] (see also [18, [19]).
The essential spectrum of such a Schrodinger operator fills the nonnegative semi-
axis (see e.g. [10]).

Assumption 1.3. The potential function V(x) : R — R satisfies the estimate

V()] < e

for some § > 0 and x = (z1, 22, 73) € R? a.e. such that

3.5+0

(
C
|

9 — 1/9 8/9
402 (4m) VI o IV ey <1 and VLS|V poaqes) < 4.

Here and further down C' stands for a finite positive constant and cgs given
on p.98 of [12] is the constant in the Hardy-Littlewood-Sobolev inequality

hi(@) Ay
|/ LN 4, 4y <curs|filsamsy fr € AR,
rs Jrs |7 — Yl

According to [I7, Lemma 2.3], under Assumption[I.3]above on the potential func-
tion, the operator —A + V(x) —a on L?(R3) is self-adjoint and unitarily equivalent
to —A — a via the wave operators (see [11], [I4])

OF = slimy_ o it (=AY gitA
where the limit is understood in the strong L? sense (see e.g. [13] p.34, [6] p.90).
Hence —A +V(z) —a on L?(R?) has only the essential spectrum oess(—A+V(z) —
a) = [—a, o0). By means of the spectral theorem, its functions of the continuous
spectrum satisfying

(A + V(2)]pn(z) = k*pr(z), keR3, (1.13)

in the integral formulation the Lippmann-Schwinger equation for the perturbed
plane waves (see e.g. [13] p.98)

etk 1 i|k||lz—y| v J L4
@k(x)_W_MASM( or)(y)dy (1.14)
and the orthogonality relations

(or(x), 0q(x))2msy = 6(k —q), k,q€ R3 (1.15)

form the complete system in L?(R3). In particular, when the vector k = 0, we
have ¢o(z). Let us denote the generalized Fourier transform with respect to these
functions using the tilde symbol as

Fk) = (f(x), on(2)) r2us),  k €R®.
The integral operator involved in (1.14)) is being denoted as

cilkllz—y]
@)@ == [ VoW e L),

A Jrs |z —y
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Let us consider @Q : L°(R3) — L°°(R3). Under Assumption according to [17,
Lemma 2.1] the operator norm ||Q]|e < 1, in fact it is bounded above by a quantity
independent of k& which is expressed in terms of the appropriate LP(R?) norms of
the potential function V' (z). We have the following statement.

Theorem 1.4. Let Assumptz'on hold, n € N and f,(x) € L*(R3), such that
fn(x) — f(x) in L*(R®) as n — oo. Assume also that |z|f,(x) € L*(R®), such that
|z| fn(2) — |2|f(z) in L*(R®) as n — oo.
(a) When a > 0 let the orthogonality conditions
(fn(x), (pk(.r))LZ(R3) =0, ke S?/E a.e. (1.16)
hold for alln € N. Then equations and (1.12) admit unique solutions u(x) €
H?(R3) and un(x) € H?(R3) respectively, such that u,(z) — u(z) in H*(R3) as

n — 00.
(b) When a = 0 let the orthogonality relation

(fn(x), po())L2(R3) = 0 (1.17)
hold for alln € N. Then equations (1.11) and (1.12)) possess unique solutions u(x) €
H?(R3) and un(x) € H?(R3) respectively, such that u,(z) — u(z) in H?(R3) as
n — oo.

Note that and are the orthogonality conditions to the functions of
the continuous spectrum of our Schrodinger operator, as distinct from the Limiting
Absorption Principle in which one needs to orthogonalize to the standard Fourier
harmonics (see e.g. [9, Lemma 2.3 and Proposition 2.4]).

2. PROOF OF THE GENERALIZATION OF THE SOLVABILITY IN THE SENSE OF
SEQUENCES

Application of the standard Fourier transform (1.10]) to both sides of equations
(T.2) and (L.3) for p € RY, d € N yields

~ flp) fn(p)
U(p)=p2_a, un(p)=p2_a, a>0, neN
When a = 0 we write their difference as
~ o ) = Fp) Fulp) — F(p)
uy,(p) — u(p) = nTX{pERd:hﬂgl} + nTX{pERd:|p|>l}' (2.1)

Here and further down x 4 will stand for the characteristic function of a set A C R4,
The complement of a set will be designated as A°. Denote the second term in the

right side of (2.1)) as £29(p).

When a > 0 and the dimension d = 1 we introduce the following set as the union
of intervals on the real line

Is=1I; UI§ ==[-Va—4,—Va+§UVa—65+a+6), 0<6<a,

which enables us to express in this case

_ fulp) = F(p) () + fn(p) = f(p) s () + fn(p) = f(p)

un(p) - U(p) p2 —a 5 pg —a 5 pg —a

Denote the last term in the right side of (2.2) as &1 *(p).
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For a > 0 and dimensions d > 2 we introduce the following set as the layer in
R
A, ={peR! | Va-o<|p|<Va+o}, 0<o<Va
and express

n(p) — tp) = 2D TW o DT (2.3

Denote the second term in the right side of ([2.3)) as £2%(p).
Proof of Theorem[I.1. (a) We express the first term in the right side of (2.2) as

I8 TV [ il ~ s o
P’ —a Xig - '
Note that by means of orthogonality conditions ([1.5) and part (a) of Lemma

. o e:ti\/Ez
with w(z) = o

eiz\/&x eii\/ax
n s T = 07 S N7 v T =
(7@ =) oy =0 N (P =) L
such that f,(+y/a) and f(+/a) vanish and via [23, Lemma 5] equations (T.2) and

(1.3) considered in one dimension with a > 0 admit unique solutions u(z) € H?(R)
and u,(z) € H*(R) respectively. By using the trivial estimate

, we have

0, (25)

d ~ ~ 1
n - S LTfn —Z ) € R? 2.6
\dq[f (@) = F(a)]| \/%” fo—zfllorm) g (2.6)
we easily derive the upper bound on the absolute value of (2.4) as

1 lzfn —2fllzrmw)
X;-(p)-
2 2[ -9 s
Therefore, the L?(R) norm of the first term in the right side of (2.2)) can be esti-
mated from above by

S llzfn —zfllom

v 2/a— 46
according to one of the assumptions of the theorem. Similarly to (2.4) and using
relations (2.5)), we write the second term in the right side of (2.2)) as

P d An Yy d
[ dq [pr(q_) . F(@)] qXI; ), 28)

which can be easily estimated from above in the absolute value by means of (2.6)
by

— 0, n— o0 (2.7

1 lzfo —2fllom
Hence, the L?(R) norm of the second term in the right side of admits the
upper bound as well. Thus, via Lemma which guarantees that

lim & “(p) || z2(m) = 0,

we have u, () — u(z) in L?(R) as n — oo and complete the proof of part a) of the
theorem by means of part (a) of Lemma
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(b) By means of orthogonality relations (|1.6) for all n € N we have
- dfn
n(0) =0, ——
=0 %
Then part (b) of Lemma yields

(f(@), V2w =0, (f(2),2)r2r) =0,

(0) = 0. (2.9)

such that N

~ df
dp
Via part (b) of [23] Lemma 5] equations and studied in one dimension
with @ = 0 admit unique solutions u(z) € H*(R) and u,(z) € H*(R) respectively.
Identities and yield the representation formula

=)= [ ([ i - Fldg)ds. e,

which we are going to use along with the inequality

(0) = 0. (2.10)

> ~ -~ 1
‘TqQ[f’ﬂ(q) - f(fZ)” < E”fﬂzfn - xszLl(]R)a q€R.

Thus, for the first term in the right side of (2.1) in one dimension we have the
upper bound in the absolute value as

1 2 2
x — X 1 .
5 TWH In Flor @ Xper: pi<1}

and in the L?(R) norm as

1
ﬁ||$2fn — I2f||L1(R) — O, n — oo
according to one of the assumptions of the theorem. By means of Lemma 3.2
Tim [l&, *(p) L2 =0

and we arrive at u,(z) — u(z) in L2(R) as n — oo. We complete the proof of the
theorem via part (a) of Lemma O

Proof of Theorem[1., (a) Orthogonality conditions (L.7) along with part (a) of

P

Lemmawwith w(x) = %7 pE Sf/a a.e. imply
( ( i) =0 S 2.11)
f(z), o2 ) ey =0 p eSSy ae, (2.

such that by means of part a) of [23, Lemma 6] equations (1.2]) and (1.3]) with a > 0
admit unique solutions u(z) € H*(RY) and u, (r) € H?(R?) respectively for d > 2.

Due to (1.7) and (2.11)), we have
ﬁl(\/&, w) =0, f(\/ZL,w) =0 ae. (2.12)

Here and below w stands for the angle variables on the sphere centered at the origin
of a given radius. Via identities (2.12)) the first term in the right side of ([2.3]) can
be written as

~

S22 (Fu(s.w) — Fls,w))ds

e XA, - (2.13)
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Clearly, for ¢ € R?, d > 2 we have the inequality

‘8| |fn lal,w) = F(lal,w \_ )d/zlllwlfn 2] fll L1 re), (2.14)

such that expression (2.13]) can be estimated from above in the absolute value by

@ )d/z\[”‘ﬂfn |Z] f1l L1 (rey X A
and therefore in the L?(R%) norm by

] fr — |x|f||L1<Rd>\/le| (Va+o)t = (Va—0)¥ =0,

CoTa
as n — oo due to one of the assumptions of the theorem. Hence, according to
Lemma [3.2]

nhjgo HEZ’Q(P)HLZ(W) =0
and we arrive at u,(r) — u(z) in L?(R9), d > 2 as n — oo. We complete the proof
of part a) of the theorem via part (a) of Lemma
(b) By means of orthogonality conditions (1.8]) along with part (b) of Lemma
we have

(f(l‘), 1)L2(R2) = O, (f(x),a?m)Lz(R2) = 0, m = 1, 2. (215)

Thus via part b) of [23, Lemma 6] equations and with a = 0 considered
in two dimensions admit unique solutions u(z) € H?(R?) and u,(z) € H?(R?)
respectively. Identities and imply fn(O) =0, n € Nand f(O) = 0. Let
0 denote the angle between two vectors p = (|p|,6,) and = = (|z|,0,) in R% Then

Ofn o
%(O,GP) = —%/RQ fn(x)|z|cosbdx

can be easily expressed as
—i{cos Hp/ fn(x)z1d2 + 8in Hp/ fu(x)zadz} =0
2 R2 R2
due to orthogonality relations (1.8). Analogously, we can write %(O, 0,) as

7%{cos Op /R? f(z)z1dz +sin b, /R2 f(z)xadz} =0

via orthogonality conditions (2.15)). The argument above implies

—~ —~ |p| 2 R
R = Fo = [ ([ gelFale.00) - Fie.0,1de) as.

Clearly, for p € R? we have the inequality
0% -
|W[fn(CI) - | Sor H|=’E| S — |$| f||L1(R2),
which yields the upper bound

~ ~ 1
[fn(p) — f(p)| < EIH»TIan — [ fllzr@e Pl p € R
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Thus the first term in the right side of (2.1)) admits the estimate from above in the
absolute value as

1
1Ml o = [P Fll o @2 X per ppi<1)
and in the L?(R?) norm as
1
2T

according to one of the assumptions of the theorem. By means of Lemma we
have

N = |22 fllr@ey = 0, n— o0

Tim |65 ()| L2 (ee) = 0

and then via part a) of Lemma [3.1] we obtain wu,,(z) — u(x) in H?(R?) as n — oo.

(c) Orthogonality condition (1.9) and part a) of Lemma [3.3| with w(z) =1, z €
R? yield

(f($), l)Lz(Rd) = 0, d= 37 4. (216)

Part (c) of [23] Lemma 6] implies that equations (1.2) and (1.3) with @ = 0 in

dimensions d = 3,4 admit unique solutions u(z) € H*(R?) and u,(r) € H?(R?)

respectively. Due to (1.9) and (2.16]), we have ﬁL(O) =0 and f(0) = 0. Hence we
can write the first term in the right side of (2.1)) as

52 (Fullalw) — Fllal.w)ldldl
D2 X{peRd:|p|<1}-

By applying inequality (2.14]) to the expression above we easily obtain the upper
bound for it in the absolute value as

1 X{peRd:|p|<1}
(27r)d/2|||x‘fn |x|f||L1(Rd) |p|

and in the L2(R%) norm as

1

1
- _ d d—3 —
ryarllelss |x|f||L1(Rd>\/ | 184piesalpl = 0. n = o0, d = 5.4

due to one of the assumptions of the theorem. By means of Lemma we have
nh_)néo ”fgf 0(p)HL2(le) =0, d=3,4.

Part (a) of Lemma implies u, () — u(z) in H2(RY), d = 3,4 as n — oo.

(d) In dimensions d > 5 equations and with @ = 0 admit unique
solutions u(r) € H?(R?) and u, (z) € H?(R?) respectively by means of [23, Lemma
7]. No orthogonality conditions are required in this case. We have the following
trivial inequality

1

Fa®) = F0)] < Gzt = flirwey, p € R,

which yields the upper bound in the absolute value on the first term in the right

side of (2.1)) as

X{peR¢:|p|<1}
ann - f”Ll(Rd)Ta
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such that we obtain the upper bound in the L?(R%) norm for it as

1 1
- _ d d—>5
(27T)d/2||fn f”Ll(]Rd)\//(; |S Hp| d|p| _)07 n — 00, d25

due to one of the assumptions of the theorem. By means of Lemma we have

nhfolo [t O(p)llL2ray =0, d > 5.
Part (a) of Lemmayields Up(x) — u(z) in H2(R?), d > 5 as n — oo. O

Let us apply the generalized Fourier transform with respect to the functions of
the continuous spectrum of the Schriodinger operator to both sides of equations

(1.11) and (1.12), which yields

a(k) = k";(]_“)a, (k) = ]i;"g“l keR3 a>0.

For a = 0 we express the difference of the transforms above as

MX{ICGH@ lkj<1} + WX{%RMMMP (2.17)

un (k) — a(k) =
Let 70 (k) stand for the second term in the right side of (2.17).

When a > 0 we introduce the spherical layer in the space of three dimensions as
By ={keR®:Va—oc<|k|<Va+o}, 0<o<a,

which enables us to write

. . Juk) = J(k) Falk) — f (k)

Un (k) — a(k) = Tl Bt T, XBs (2.18)

The second term in the right side of (2.18) is being designated as n2 (k).

Proof of Theorem[I]]. (a) Orthogonality conditions along with [I7, Corol-

lary 2.2] and part (a) of Lemmaﬁ with w(z) = g (z ), k €5, a.e. give us
(f(x), (Pk($))L2(]R3) =0, ke S\/E a.e. (2.19)

Then by means of [I7, Theorem 1.2] equations and with a bounded
potential function V(x) and a > 0 admit unique solutions u(z) € H?(R3) and
un(x) € H?(R3) respectively. Via orthogonality relations and (2.19) dis-
cussed above we have on 53 a.e.

fn(\/&7w):07 fN(\/Eﬂw):Oa
which enables us to express the first term in the right side of (2.18)) as
k
1 g1 alal, ) = Fllgl,w)ldlg

k?—a XBo-

For the expression above we easily obtain the upper bound in the absolute value as

IV, (Fue) = Fla) e 222

and in the L?(R?) norm as

1Vq(fn(q) \/J;(Q)HLM(W) \/4;((\/5+ 03— (Va—o)3) =0, n— oo
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via Lemma [3.4] By means of Lemma [3.2] we have
Jim ([, (F) | 22 sy = 0.

Part (b) of Lemma [3.1| yields u, () — u(z) in H?(R3) as n — oc.
(b) Orthogonality relations (L.17), Corollary 2.2 of [I7] and part (a) of Lemma
with w(z) = po(x) imply

(f(@), po(z))L2®s) = 0. (2.20)

We deduce from part (b) of [I7, Theorem 1.2] that equations (1.11)) and (1.12) with
V(z) satisfying Assumption [1.3[and a = 0 possess unique solutions u(z) € H*(R?)
and u,(x) € H?(R3) respectively. Since orthogonality conditions (1.17) and ([2.20)
yield

fa(0)=0, f(0)=0,
we can express the first term in the right side of (2.17) as

M Fullalw) — Flgl,w)ldldl
L2 X{keR3:|k|<1}-

Obviously, for the quantity above there is an upper bound in the absolute value as

IV4(Fala) = F(@) o ms)

X{keR3:|k|<1}
||

and therefore, in the L?(R?) norm simply as
\ 47T|‘vq(fn(Q) - J?(Q))HL‘”(W) —0, n—oo
due to Lemma Lemmas [3.2] yields
Jim ll7m (F) || L2 ) = 0.

Then by means of part (b) of Lemma [3.1| we arrive at u,(z) — u(z) in H*(R3) as
n — o0. ]

2.1. Remarks. Denote by F a space of functions which belong to L?(R%) N L!(R?)
and for which the norm

117 = FllL2ray + M2l fll 22 ma)

is bounded. A sequence f,, € F such that f,, — f in the norm of the space satisfies
conditions of Theorems Hence if we introduce a space F in such a way
that the operator A acts from E into F, then its image is closed. The functionals
in solvability conditions are linear bounded functionals over F'.

The space F can be defined as a closure of infinitely differentiable functions with
compact supports in the norm

lulle = llullm2®e) + [|Au] F.

The operator A : E — F' is semi-Fredholm.
Similar construction can be considered in the case where |z|?f € L'(R?) (Theo-

rems b and b).
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3. AUXILIARY RESULTS

The following elementary lemma shows that to conclude the proofs of Theorems
and it is sufficient to show the convergence in L? of the solutions of the
studied equations as n — oo.

Lemma 3.1. (a) Let the conditions of Theorem [I.1] hold when d = 1, of Theorem
when d > 2, such that u(z),u, () € H*(R?) are the unique solutions of equa-
tions and respectively and u,(x) — u(z) in L>(R?) as n — co. Then
Un (7) — u(z) in H*(RY) as n — oo.

(b) Let the conditions of Theorem hold, such that u(z),u,(z) € H?(R3) are
the unique solutions of equations (L.11)) and (1.12)) respectively and u,(z) — u(x)
in L?>(R3) as n — oo. Then u,(x) — u(zx) in H*(R?) as n — oco.

Proof. (a) From equations (1.2)) and (1.3]) with a > 0 we easily deduce
|Aun — Aullp2rey < allun — ullp2way + | fn — fllL2@ey — 0, n — oo.

By means of definition (1.4) we have u,(x) — u(z) in H?(R%) as n — oo.
(b) From equations (1.11)) and (1.12)), for a > 0, we easily obtain

||Aun - AUHLz(RS) < (a—|— ||V||L°°(]R3))Hun —u||L2(R3) + ||fn — f||L2(]R3) - 0, n — oQ0.
Therefore, definition (1.4]) yields u,(x) — u(z) in H?(R3) as n — oo. O

The auxiliary statement below will be helpful in establishing the convergence in
L? of the solutions of the equations discussed above as n — oco.

Lemma 3.2. Let n € N and f,(x) € L*(R?), such that f,(x) — f(x) in L*(R?)
as n — oo. Then the expressions £40(p), €1%(p), £4%(p), nO(k), n2(k) defined

in formulas (2.1), (2.2)), (2.3), (2.17) and (2.18)) respectively tend to zero in the

corresponding L*(RY) norms as n — oo.
Proof. Clearly, [ °(p)| < |ﬁl(p) - f(p)\, p € R, such that
€7 ° @) 22 @ay < Ifu = fll2@ey — 0, 0 — oo
The definition of this expression yields |£} *(p)| < ‘ﬁ’(’%ﬂ7 p € R. Hence

Ifn = fll2w)
) < 52

Finally, in the no potential case |49 (p)| < ‘f"'({’)fia_af(p)‘, p € R d > 2. Thus

1€ “Olrze —0, n— .

[fn = fllL2e
ngﬂ(p)HL?(]Rd) < T() — 0, n— oo.

We easily estimate
[0 (B)] < [ fa(k) = f(R)], Kk €R?,
which implies
Hn?z(k)”LQ(lR?) < ”.fn - f||L2(R3) —0, n— oo
The trivial inequality

k) = 0], s

()] < 2
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yields

a | fr = fll2(rs)
7 (B) | L2 ms) < T Ja

which completes the proof of the lemma. (Il

— 0, n — oo,

The following lemma provides better information on the convergence as n — oo
of the right sides of the nonhomogeneous elliptic problems studied in the article.

Lemma 3.3. Let n € N and f,(z) € L>(R?), d € N, such that f,(z) — f(z) in
L?(R%) as n — oo.

(a) If |z| fn(z) € LY*(RY), such that |x|fn(x) — |z|f(x) in L} (R?) as n — oo then
fa(z) = f(z) in LY(RY) as n — co. Moreover, if (fn(z), w(x))r2rey =0, n €N,
with some w(z) € L (R?) then (f(x), w(x))r2ra) =0 as well.

(b) If |z|? fn(z) € LY(R?), such that |z|?fn(x) — |22 f(z) in L} (R?) as n —
then |z|fn(z) — |z|f(z) in L*RY) and fo(z) — f(z) in LY(R?) as n — oo.
Moreover, if (fn(2),1)2rey = 0 and (fn(x),T%)2@ey = 0 for n € N and k =
1, ....d then (f(x),1)r2ray =0 and (f(z),21)r2ay =0 for k=1,...,d as well.

Proof. (a) Note that f,(x) € L'(R%), n € N via the trivial argument analogous to
the one of Fact 1 of [I7]. We easily estimate the norm using the Schwarz inequality

as
_ Liod _ fI2 o
[ fo = fllzr ey < \//mél | fr — £l dm\//|z§1dx+/|x>1 ||| fr — fldz

<N fn = fllze@ay /1B + lllelfo = 2] fll 1Ry = 0, n — o0
Then for w(x), which is bounded by one of the assumptions of the lemma, we obtain

[(f(2), w(z)) 2wy = [(f(2) = fu(@), w(@)) 2R |

<|fo = fllr@eyllwllpoorey — 0, 1 — o0,

which completes the proof of part (a) of the lemma.
(b) By means of the argument, which relies on the Schwarz inequality and the
assumptions that f,,(z) € L*(R?) and |z|?f,(x) € L' (R?), we easily obtain

2] fu(z) € L'(RY), neN.

Let us apply the Schwarz inequality again to arrive at the bound

el — 2l 21 ey < / fu— flde + / (&P fy — flde

lz|<1 lz|>1
< |1 fn = Flzeay\/ 1B + |z fr — 2 Fll 22 gay — O,

as n — oo. Hence fy(z) — f(z) in L'(RY) as n — oo and (f(z),1)p2re) = 0
according to the argument above of part (a) of the lemma. Here w(z) = 1, x € R%.
Finally, for k =1,...,d we arrive at

|(f($)=$k)L2(Rd)| = |(f(x) - fn($)>$k)L2(Rd)| < | fn — |w‘f||L1(Rd) —0
as n — 0o, which completes the proof of part (b) of the lemma. O

The L>°(R3) norm studied in the lemma below is finite due to [I7, Lemma 2.4].
We go further by proving that it tends to zero.
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Lemma 3.4. Let the conditions of Theorem[1.]] hold. Then we have
IV (Fa(k) = F(k)) oo @) = 0, n — oo

Proof. Clearly, we need to estimate the quantity

Vi(fa(k) = F(K)) = (fu(2) = f(2), Vior(@)) L2e9)- (3.1)
It easily follows from the Lippmann-Schwinger equation that
ikx ikx ikx
B e . _ 1 € . _ —1 _ -1 ¢

Here the operator V;Q : L (R3) — L>(R3; C3) possesses the integral kernel
i k
\V/ Ly, k) = ——etlFllz=yl Zyr gy,
WQ(@,y k) = ——e 7 ()
Evidently, for the operator norm
1
IViQlloo < = IIVllLr@®s) < o0 (3-2)
4
due to the rate of decay of the potential function V(x) stated in Assumption
Therefore, in order to prove the convergence to zero as n — oo of the L>°(R?) norm
of expression ([3.1]), we need to estimate the three terms defined below. The first
one is given by

ikx

n(Ly . _ € : 3
Rl (k) T (fn(x) f(x)7 (271_)3/2 ZfL') L2(R3)’ ke R°.
We easily arrive at
1
[RY (B) || Lo (ms) < Wlllﬂfn — |zl fllLr ey — 0, n— o0

according to one of our assumptions. The second term which we need to estimate

18
ikx

n - _ _ -1 e - 3
R = (Jal) = 1), (1 = Q' Qg sin) o WER
Let us use the upper bound

RS ()~ o) < oy T 190 el = fllosce

In the proof of [17, Lemma 2.4] it was established that the norm ||Qe™*z|| o gs)
is bounded above by a finite quantity independent of k. According to the part (a)
of Lemma when n — oo, f, — f in L'(R3). Therefore,

||Rg(k)||Loo(R3) — O, n — oQ.
Finally, it remains to estimate the expression
Ry (k) o= (fule) = f(@). (1 - Q) (V4 - Q)"
Using ([3.2)), we easily deduce the inequality

1 IVIlz s
I W) = Gy G~ Q)

via the statement of the part (a) of Lemma O

e’LkI

—s ke R3.
(277)3/2>L2(R3)’ ©

QH.fn_fHLl(]RS)_)Oa n—oo
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