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UNIQUENESS OF POSITIVE SOLUTIONS FOR FRACTIONAL
q-DIFFERENCE BOUNDARY-VALUE PROBLEMS WITH

p-LAPLACIAN OPERATOR

FENGHUA MIAO, SIHUA LIANG

Abstract. In this article, we study the fractional q-difference boundary-value

problems with p-Laplacian operator

Dγq (φp(Dαq u(t))) + f(t, u(t)) = 0, 0 < t < 1, 2 < α < 3,

u(0) = (Dqu)(0) = 0, (Dqu)(1) = β(Dqu)(η),

where 0 < γ < 1, 2 < α < 3, 0 < βηα−2 < 1, Dα0+ is the Riemann-Liouville

fractional derivative, φp(s) = |s|p−2s, p > 1. By using a fixed-point theorem

in partially ordered sets, we obtain sufficient conditions for the existence and

uniqueness of positive and nondecreasing solutions.

1. Introduction

Recently, an increasing interest in studying the existence of solutions for boun-
dary-value problems of fractional order functional differential equations has been
observed [5, 7, 8, 17, 18, 19, 20, 21, 28, 29]. Fractional differential equations de-
scribe many phenomena in various fields of science and engineering such as physics,
mechanics, chemistry, control, engineering, etc. For an extensive collection of such
results, we refer the readers to the monographs by Samko et al [27], Podlubny [25]
and Kilbas et al [16].

On the other hand, The q-difference calculus or quantum calculus is an old
subject that was first developed by Jackson [13, 14]. It is rich in history and in
applications as the reader can confirm in the paper [9].

The origin of the fractional q-difference calculus can be traced back to the works
by Al-Salam [3] and Agarwal [1]. More recently, maybe due to the explosion in
research within the fractional differential calculus setting, new developments in this
theory of fractional q-difference calculus were made, e.g., q-analogues of the integral
and differential fractional operators properties such as the q-Laplace transform, q-
Taylor’s formula [4, 26], just to mention some.

Recently, there are few works consider the existence of positive solutions for
nonlinear q-fractional boundary value problem (see [10, 11]). As is well-known, the
aim of finding positive solutions to boundary value problems is of main importance
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in various fields of applied mathematics (see the book [2] and references therein).
In addition, since q-calculus has a tremendous potential for applications [9], we
find it pertinent to investigate such a demand. To the authors’ knowledge, no one
has studied the existence of positive solutions for nonlinear q-fractional three-point
boundary value problem (1.1) and (1.2).

In this article, we study the three-point boundary-value problem

Dγ
q (φp(Dα

q u(t))) + f(t, u(t)) = 0, 0 < t < 1, 2 < α < 3, (1.1) e1.1

u(0) = (Dqu)(0) = 0, (Dqu)(1) = 0, Dγ
0+u(t)|t=0 = 0, (1.2) e1.2

where 0 < βηα−2 < 1, 0 < q < 1. We will prove the existence and uniqueness of
a positive and nondecreasing solution for the boundary value problems (1.1)-(1.2)
by using a fixed point theorem in partially ordered sets. Existence of fixed point in
partially ordered sets has been considered recently in [6, 12, 22, 23, 24]. This work
is motivated by papers [6, 10, 11].

2. Preliminaries

Let q ∈ (0, 1) and define

[a]q =
1− qa

1− q
, a ∈ R.

The q-analogue of the power function (a− b)n with N0 is

(a− b)0 = 1, (a− b)n =
n−1∏
k=0

(a− bqk), n ∈ N, a, b ∈ R.

More generally, if α ∈ R, then

(a− b)(α) = aα
∞∏
n=0

a− bqn

a− bqα+n
.

Note that, if b = 0 then a(α) = aα. The q-gamma function is defined by

Γq(x) =
(1− q)(x−1)

(1− q)x−1
, x ∈ R \ {0,−1,−2, . . .},

and satisfies Γq(x+ 1) = [x]Γq(x). The q-derivative of a function f is here defined
by

(Dqf)(x) =
f(x)− f(qx)

(1− q)x
, (Dqf)(0) = lim

x→0
(Dqf)(x),

and q-derivatives of higher order by

(D0
qf)(x) = f(x) and (Dn

q f)(x) = Dq(Dn−1
q f)(x), n ∈ N.

The q-integral of a function f defined in the interval [0, b] is given by

(Iqf)(x) =
∫ x

0

f(t)dqt = x(1− q)
∞∑
n=0

f(xqn)qn, x ∈ [0, b].

If a ∈ [0, b] and f is defined in the interval [0, b], its integral from a to b is defined
by ∫ b

a

f(t)dqt =
∫ b

0

f(t)dqt−
∫ a

0

f(t)dqt.
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Similarly as done for derivatives, an operator Inq can be defined, namely,

(I0
q f)(x) = f(x) and (Inq f)(x) = Iq(In−1

q f)(x), n ∈ N.

The fundamental theorem of calculus applies to these operators Iq and Dq; i.e.,

(DqIqf)(x) = f(x),

and if f is continuous at x = 0, then

(IqDqf)(x) = f(x)− f(0).

Basic properties of the two operators can be found in the book [15]. We now point
out three formulas that will be used later (iDq denotes the derivative with respect
to variable i)

[a(t− s)](α) = aα(t− s)(α), (2.1) e2.1

tDq(t− s)(α) = [α]q(t− s)(α−1), (2.2) e2.2(
xDq

∫ x

0

f(x, t)dqt
)

(x) =
∫ x

0
xDqf(x, t)dqt+ f(qx, x). (2.3) e2.3

remark2.1 Remark 2.1 ([10]). We note that if α > 0 and a ≤ b ≤ t, then (t − a)(α) ≥
(t− b)(α).

The following definition was considered first in [1].

def2.1 Definition 2.2. Let α ≥ 0 and f be a function defined on [0, 1]. The fractional
q-integral of the Riemann-Liouville type is (I0

q f)(x) = f(x) and

(Iαq f)(x) =
1

Γq(α)

∫ x

0

(x− qt)(α−1)f(t)dqt, α > 0, x ∈ [0, 1].

def2.2 Definition 2.3 ([26]). The fractional q-derivative of the Riemann-Liouville type
of order α ≥ 0 is defined by (D0

qf)(x) = f(x) and

(Dα
q f)(x) = (Dm

q I
m−α
q f)(x), α > 0,

where m is the smallest integer greater than or equal to α.

Next, we list some properties that are already known in the literature. Its proof
can be found in [1, 26].

lemma2.1 Lemma 2.4. Let α, β ≥ 0 and f be a function defined on [0, 1]. Then the next
formulas hold:

(1) (Iβq I
α
q f)(x) = (Iα+β

q f)(x),
(2) (Dα

q I
α
q f)(x) = f(x).

lemma2.2 Lemma 2.5 ([10]). Let α > 0 and p be a positive integer. Then the following
equality holds:

(Iαq D
p
qf)(x) = (Dp

qI
α
q f)(x)−

p−1∑
k=0

xα−p+k

Γq(α+ k − p+ 1)
(Dk

q f)(0).

The following fixed-point theorems in partially ordered sets are fundamental for
the proofs of our main results.



4 F. MIAO, S. LIANG EJDE-2013/174

the2.1 Theorem 2.6 ([12]). Let (E,≤) be a partially ordered set and suppose that there
exists a metric d in E such that (E, d) is a complete metric space. Assume that E
satisfies the condition:

if {xn} is a nondecreasing sequence in E such that xn → x,
then xn ≤ x, for all n ∈ N.

(2.4) e2.4

Let T : E → E be nondecreasing mapping such that

d(Tx, Ty) ≤ d(x, y)− ψ(d(x, y)), for x ≥ y,
where ψ : [0,+∞)→ [0,+∞) is a continuous and nondecreasing function such that
ψ is positive in (0,+∞), ψ(0) = 0 and limt→∞ ψ(t) = ∞. If there exists x0 ∈ E
with x0 ≤ T (x0), then T has a fixed point.

If we assume that (E,≤) satisfies the condition

for x, y ∈ E there exists z ∈ E which is comparable to x and y, (2.5) e2.5

then we have the following result.

the2.2 Theorem 2.7 ([22]). Adding condition (2.5) to the hypotheses of Theorem 2.6, we
obtain uniqueness of the fixed point.

3. Related lemmas

The basic space used in this paper is E = C[0, 1]. Then E is a real Banach space
with the norm ‖u‖ = max0≤t≤1 |u(t)|. Note that this space can be equipped with
a partial order given by

x, y ∈ C[0, 1], x ≤ y ⇔ x(t) ≤ y(t), ∀t ∈ [0, 1].

In [22] it is proved that (C[0, 1],≤) with the classic metric given by

d(x, y) = sup
0≤t≤1

{|x(t)− y(t)|}

satisfied condition (2.4) of Theorem 2.6. Moreover, for x, y ∈ C[0, 1] as the function
max{x, y} ∈ C[0, 1], (C[0, 1],≤) satisfies condition (2.5).

lemma3.1 Lemma 3.1. If h ∈ C[0, 1], then the boundary-value problem

(Dα
q u)(t) + h(t) = 0, 0 < t < 1, 2 < α < 3, (3.1) e3.1

u(0) = (Dqu)(0) = 0, (Dqu)(1) = 0 (3.2) e3.2

has a unique solution

u(t) =
∫ 1

0

G(t, qs)h(s)dqs, (3.3) e3.3

where

G(t, s) =
1

Γq(α)

{
(1− s)(α−2)tα−1 − (t− s)(α−1), 0 ≤ s ≤ t ≤ 1,
(1− s)(α−2)tα−1, 0 ≤ t ≤ s ≤ 1,

(3.4) e3.4

Proof. In this case p = 3. In view of Lemma 2.4 and Lemma 2.5, from (3.1) we see
that

(Iαq D
3
qI

3−α
q u)(x) = −Iαq f(t, u(t))

and

u(t) = c1t
α−1 + c2t

α−2 + c3t
α−3 −

∫ t

0

(t− qs)(α−1)

Γq(α)
h(s)dqs. (3.5) e3.5
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From (3.2), we know that c3 = 0. Differentiating both sides of (3.5), with the help
of (2.1) and (2.2), one obtains

(Dqu)(t) = [α− 1]qc1tα−2 + [α− 2]qc2tα−3 − [α− 1]q
Γq(α)

∫ t

0

(t− qs)(α−2)h(s)dqs.

Using the boundary condition (3.2), we have c2 = 0 and

c1 =
1

Γq(α)

∫ 1

0

(1− qs)(α−2)h(s)dqs.

Therefore, the unique solution of boundary-value problem (3.1), (3.2) is

u(t) = −
∫ t

0

(t− qs)(α−1)

Γq(α)
h(s)dqs+

tα−1

Γq(α)

∫ 1

0

(1− qs)(α−2)h(s)dqs

=
1

Γq(α)

∫ t

0

((1− qs)(α−2)tα−1 − (t− qs)(α−1))h(s)dqs

+
1

Γq(α)

∫ 1

t

(1− qs)(α−2)tα−1h(s)dqs

=
∫ 1

0

G(t, qs)h(s)dqs.

The proof is complete. �

lemma3.2 Lemma 3.2. If f ∈ C([0, 1]× [0,+∞), [0,+∞)), then the boundary-value problem
(1.1)-(1.2) is equivalent to the integral equation

u(t) =
∫ 1

0

G(t, qs)φ−1
p

(
1

Γq(γ)

∫ s

0

(s− τ)(γ−1)f(τ, u(τ))dqτ
)
dqs, (3.6) e3.9

where G(t, s) is defined by (3.4).

Proof. By the boundary-value problem (1.1)-(1.2) and Lemma 2.5, we have

φp(Dα
0+
u(t)) = ctγ−1 −

∫ t

0

(t− qs)(γ−1)

Γq(γ)
f(s, u(s))dqs.

By Dα
0+
u(t)|t=0 = 0, there is c = 0, and then

Dα
0+
u(t) = −φ−1

p

(∫ t

0

(t− qs)(γ−1)

Γq(γ)
f(s, u(s))dqs

)
.

Therefore, boundary-value problem (1.1)-(1.2) is equivalent to the problem

Dα
0+
u(t) + φ−1

p

(∫ t

0

(t− qs)(γ−1)

Γq(γ)
f(s, u(s))dqs

)
= 0, 0 < t < 1, 2 < α ≤ 3,

u(0) = (Dqu)(0) = 0, (Dqu)(1) = 0.
(3.7) e3.2b

By Lemma 3.1, boundary-value problem (1.1)-(1.2) is equivalent to the integral
equation (3.6). The proof is complete. �

lemma3.3 Lemma 3.3. The function G defined by (3.4) has the following properties:
(1) G is a continuous function and G(t, qs) ≥ 0;
(2) G is strictly increasing in the first variable.
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Proof. The continuity of G is easily checked. On the other hand, let

g1(t, s) = (1− s)(α−2)tα−1 − (t− s)(α−1), 0 ≤ s ≤ t ≤ 1,

g2(t, s) = (1− s)(α−2)tα−1, 0 ≤ t ≤ s ≤ 1.

It is obvious that g2(t, qs) ≥ 0. Now, g1(0, qs) = 0 and, in view of Remark 2.1, for
t 6= 0

g1(t, qs) = (1− qs)(α−2)tα−1 − (1− q s
t
)(α−1)tα−1

≥ tα−1
[
(1− qs)(α−2) − (1− qs)(α−1)

]
≥ 0.

Then we conclude that G(t, qs) ≥ 0 for all (t, s) ∈ [0, 1]× [0, 1]. This concludes the
proof of Lemma 3.3 (1).

Next, for fixed s ∈ [0, 1], we have

tDqg1(t, qs) = (1− qs)(α−2)[α− 1]qtα−2 − [α− 1]q(t− qs)(α−2)

= (1− qs)(α−2)[α− 1]qtα−2 − [α− 1]q(1− q
s

t
)(α−2)tα−2

≥ (1− qs)(α−2)[α− 1]qtα−2 − [α− 1]q(1− qs)(α−2)tα−2 = 0.

This implies that g1(t, qs) is an increasing function of t. Obviously, g2(t, qs) is
increasing in t. Therefore G(t, qs) is an increasing function of t for fixed s ∈ [0, 1].
The proof is complete. �

4. Main result

For notational convenience, we denote by

M = φ−1
p

(
1

Γq(γ)

)
sup

0≤t≤1

∫ 1

0

G(t, qs)dqs > 0.

The main result of this paper is the following.

the3.1 Theorem 4.1. The boundary-value problem (1.1)-(1.2) has a unique positive and
increasing solution u(t) if the following conditions are satisfied:

(i) f : [0, 1] × [0,+∞) → [0,+∞) is continuous and nondecreasing respect to
the second variable;

(ii) There exists 0 < λ + 1 < M such that for u, v ∈ [0,+∞) with u ≥ v and
t ∈ [0, 1]

φp(ln(v + 2)) ≤ f(t, v) ≤ f(t, u) ≤ φp(ln(u+ 2)(u− v + 1)λ).

Proof. Consider the cone

K = {u ∈ C[0, 1] : u(t) ≥ 0}.

As K is a closed set of C[0, 1], K is a complete metric space with the distance given
by d(u, v) = supt∈[0,1] |u(t)− v(t)|. Now, we consider the operator T defined by

Tu(t) =
∫ 1

0

G(t, qs)φ−1
p

( 1
Γq(γ)

∫ s

0

(s− τ)(γ−1)f(τ, u(τ))dqτ
)
dqs.

By Lemma 3.3 and condition (i), we have that T (K) ⊂ K.
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We now show that all the conditions of Theorem 2.6 and Theorem 2.7 are satis-
fied. Firstly, by condition (i), for u, v ∈ K and u ≥ v, we have

Tu(t) =
∫ 1

0

G(t, qs)φ−1
p

( 1
Γq(γ)

∫ s

0

(s− τ)(γ−1)f(τ, u(τ))dqτ
)
dqs

≥
∫ 1

0

G(t, qs)φ−1
p

( 1
Γq(γ)

∫ s

0

(s− τ)(γ−1)f(τ, v(τ))dqτ
)
dqs

= Tv(t).

This proves that T is a nondecreasing operator.
On the other hand, for u ≥ v and by condition (ii) we have

d(Tu, Tv) = sup
0≤t≤1

|(Tu)(t)− (Tv)(t)|

= sup
0≤t≤1

(
(Tu)(t)− (Tv)(t)

)
≤ sup

0≤t≤1

[ ∫ 1

0

G(t, qs)φ−1
p

( 1
Γq(γ)

∫ s

0

(s− τ)(γ−1)f(τ, u(τ))dqτ
)
dqs

−
∫ 1

0

G(t, qs)φ−1
p

( 1
Γq(γ)

∫ s

0

(s− τ)(γ−1)f(τ, v(τ))dqτ
)
dqs
]

≤
(

ln(u+ 2)(u− v + 1)λ − ln(v + 2)
)

× sup
0≤t≤1

∫ 1

0

G(t, qs)φ−1
p

( 1
Γq(γ)

∫ s

0

(s− τ)(γ−1)dqτ
)
dqs

≤ ln
(u+ 2)(u− v + 1)λ

v + 2
φ−1
p

( 1
Γq(γ)

)
sup

0≤t≤1

∫ 1

0

G(t, qs)dqs

≤
(
λ+ 1

)
ln(u− v + 1)φ−1

p

( 1
Γq(γ)

)
sup

0≤t≤1

∫ 1

0

G(t, qs)dqs.

Since the function h(x) = ln(x+ 1) is nondecreasing, by condition (ii), we have

d(Tu, Tv) ≤ (λ+ 1) ln(‖u− v‖+ 1)φ−1
p

( 1
Γq(γ)

)
sup

0≤t≤1

∫ 1

0

G(t, qs)dqs

= (λ+ 1) ln(‖u− v‖+ 1)M

≤ ‖u− v‖ − (‖u− v‖ − ln(‖u− v‖+ 1)).

Let ψ(x) = x− ln(x+ 1). Obviously ψ : [0,+∞) → [0,+∞) is continuous, nonde-
creasing, positive in (0,+∞), ψ(0) = 0 and limx→+∞ ψ(x) = +∞. Thus, for u ≥ v,
we have

d(Tu, Tv) ≤ d(u, v)− ψ(d(u, v)).

As G(t, qs) ≥ 0 and f ≥ 0, (T0)(t) =
∫ 1

0
G(t, qs)f(s, 0)dqs ≥ 0 and by Theorem 2.6

we know that problem (1.1)-(1.2) has at least one nonnegative solution. As (K,≤)
satisfies condition (2.2), thus, Theorem 2.7 implies that uniqueness of the solution.
The proof is complete. �

the3.2 Theorem 4.2. If we add the condition f(t, 0) > 0 for all t ∈ [0, 1] to Theorem 4.1,
then the solution u(t) of boundary value problem (1.1)-(1.2) obtained from 4.1 is
strictly increasing.
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Proof. At first, we take the unique solution u(t) given to us from Theorem 4.1, we
will prove that this solution u(t) is strictly increasing function. Next, as u(0) =∫ 1

0
G(0, qs)f(s, u(s))dqs and G(0, qs) = 0 we have u(0) = 0. Moreover, if we take

t1, t2 ∈ [0, 1] with t1 < t2, we can consider the following cases.
Case 1: t1 = 0, in this case, u(t1) = 0 and, as u(t) ≥ 0, suppose that u(t2) = 0.

Then

0 = u(t2) =
∫ 1

0

G(t2, qs)f(s, u(s))dqs

+
βtα−1

2

[α− 1]q(1− βηα−2)

∫ 1

0

H(η, qs)f(s, u(s))dqs.

This implies that
G(t2, qs) · f(s, u(s)) = 0, a.e. (s)

and as G(t2, s) 6= 0 a.e.(s) we get f(s, u(s)) = 0 a.e. (s). On the other hand, f is
nondecreasing respect to the second variable, then we have

f(s, 0) ≤ f(s, u(s)) = 0, a.e. (s)

which contradicts the condition f(t, 0) > 0 for all t ∈ [0, 1]. Thus u(t1) = 0 < u(t2).
Case 2: 0 < t1. In this case, let us take t2, t1 ∈ [0, 1] with t1 < t2, then

u(t2)− u(t1) = (Tu)(t2)− (Tu)(t1)

=
∫ 1

0

(G(t2, qs)−G(t1, qs))f(s, u(s))dqs

+
β(tα−1

2 − tα−1
1 )

[α− 1]q(1− βηα−2)

∫ 1

0

H(η, qs)f(s, u(s))dqs.

Taking into account Lemma 3.3 (2) and the fact that f ≥ 0, we get u(t2)−u(t1) ≥ 0.
Suppose that u(t2) = u(t1) then∫ 1

0

(G(t2, qs)−G(t1, qs))f(s, u(s))dqs = 0

and this implies

(G(t2, qs)−G(t1, qs))f(s, u(s)) = 0 a.e. (s).

Again, Lemma 3.3 (2) gives us

f(s, u(s)) = 0 a.e.(s)

and using the same reasoning as above we have that this contradicts condition
f(t, 0) > 0 for all t ∈ [0, 1] . Thus u(t1) = 0 < u(t2). At last, in all cases imply
that this solution u(t) is strictly increasing function. The proof is complete. �

5. Examples

Example 5.1. The fractional boundary-value problem

D
5/2
1/2u(t) + (

1
10
t2 + 1) ln(2 + u(t)) = 0, 0 < t < 1,

u(0) = (D1/2u)(0) = 0, (D1/2u)(1) =
1
2

(D1/2u)(1)
(5.1) e5.1

has a unique and strictly increasing solution.
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In this case, q = 1/2, α = 5/2, β = 1/2, η = 1 and f(t, u) = ( 1
10 t

2+1) ln(2+u(t))
for (t, u) ∈ [0, 1] × [0,∞). Note that f is a continuous function and f(t, u) 6= 0
for t ∈ [0, 1]. Moreover, f is nondecreasing respect to the second variable since
∂f
∂u = 1

u+2 ( 1
10 t

2 + 1) > 0. On the other hand, for u ≥ v and t ∈ [0, 1], we have

f(t, u)− f(t, v) = (
1
10
t2 + 1) ln(2 + u)− (

1
10
t2 + 1) ln(2 + v)

= (
1
10
t2 + 1) ln

(2 + u

2 + v

)
= (

1
10
t2 + 1) ln

(2 + v + u− v
2 + v

)
= (

1
10
t2 + 1) ln

(
1 +

u− v
2 + v

)
≤ (

1
10
t2 + 1) ln (1 + (u− v))

≤ 11
10

ln(1 + u− v).

In this case, λ = 11/10 because

M ≤ 1− (1− q)α−1

Γq(α)
≈ 0.48636,

1
M +N

≥ 1.41514 >
11
10

= λ.

Thus Theorem 4.1 implies that boundary value problem (1.1)-(1.2) has a unique
solution u(t); i.e.,

u(t) =
∫ 1

0

G(t, qs)φ−1
p

( 1
Γq(γ)

∫ s

0

(s− τ)(γ−1)f(τ, u(τ))dqτ
)
dqs.

By Lemma 3.3, we know that G is strictly increasing in the first variable. Therefore,
The unique solution u(t) of boundary value problem (5.1) is strictly increasing
solution.
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