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STABILITY AND BIFURCATION ANALYSIS FOR A
DISCRETE-TIME BIDIRECTIONAL RING NEURAL NETWORK

MODEL WITH DELAY

YAN-KE DU, RUI XU, QI-MING LIU

Abstract. We study a class of discrete-time bidirectional ring neural net-
work model with delay. We discuss the asymptotic stability of the origin and

the existence of Neimark-Sacker bifurcations, by analyzing the corresponding

characteristic equation. Employing M-matrix theory and the Lyapunov func-
tional method, global asymptotic stability of the origin is derived. Applying

the normal form theory and the center manifold theorem, the direction of the

Neimark-Sacker bifurcation and the stability of bifurcating periodic solutions
are obtained. Numerical simulations are given to illustrate the main results.

1. Introduction

Since Hopfiled’s pioneering work [5, 12], the dynamic behavior (including stabil-
ity, periodic oscillatory and chaos) of continuous-time Hopfield neural networks has
received much attention due to their applications in optimization, signal process-
ing, image processing, solving nonlinear algebraic equation, pattern recognition,
associative memories and so on (see, [1, 9, 10, 17] and references therein).

It is well known that time delays in the information processing of neurons exist.
The delayed axonal signal transmissions in the neural networks make the dynamic
behaviors more complicated, and may destabilize stable equilibria and give rise to
periodic oscillation, bifurcation and chaos (see [2, 4, 10, 14]). Therefore, the de-
lay is inevitable and cannot be neglected. For computer simulations, experimental
or computational purposes, it is common to discretize the continuous-time neural
networks. In some sense, the discrete-time model inherits the dynamical charac-
teristics of the continuous-time networks. We refer the reader to [3, 6, 11, 16] for
related discussions on the need and importance of discrete-time analogues to reflect
the dynamics of their continuous-time counterparts.

In the field of neural networks, rings are studied to gain insight into the mech-
anisms underlying the behavior of recurrent networks. In [15], Wang and Han
investigated the following continuous-time bidirectional ring network model with
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delay
ẋ = −x+ αf(y(t− τ)) + βf(z(t− τ)),

ẏ = −y + αf(z(t− τ)) + βf(x(t− τ)),

ż = −z + αf(x(t− τ)) + βf(y(t− τ)),
(1.1)

where τ denotes the synaptic transmission delay, α and β are connection strengths,
f : R→ R is the activation function. In [15], some conditions on the linear stability
of the trivial solution of system (1.1) were given and Hopf bifurcation, including its
direction and stability, were investigated.

Motivated by the work of Wang and Han [15] and the discussions above, in the
present paper, for simplicity, assuming the neurons in the network be identical (see
[18]), we are concerned with the stability and bifurcation analysis of the following
discrete-time bidirectional ring neural network model with delay

x(n+ 1) = ax(n) + βf(y(n− k)) + βf(z(n− k)),

y(n+ 1) = ay(n) + βf(z(n− k)) + βf(x(n− k)),

z(n+ 1) = az(n) + βf(x(n− k)) + βf(y(n− k)),
(1.2)

where a ∈ (0, 1) is the internal decay of the neurons, β is the connection strength,
k ∈ N is the time delay.

This paper contributes to understanding of neural networks as follows:
(1) There is a large body of work discussing the stability and bifurcation of neu-

ral networks with delays, but most of them deal only with continuous-time neural
network models, or discrete-time neural network models of two neurons with or
without time delays ([6, 16]). Here we discuss the dynamic behavior of a tri-neuron
discrete-time bidirectional ring neural network with delay. The characteristic equa-
tion of the neural network is a polynomial equation with high order terms. Using
a new approach, sufficient and necessary conditions are derived to ensure that all
the roots of the characteristic equation stay inside or on the unit circle.

(2) We remove some restrictions on the conditions required by [15], and in a
sense, our results on the asymptotic stability of the origin are less restrictive than
those for the corresponding continuous system in [15].

(3) Employing M-matrix theory and the Lyapunov functional method, global
asymptotic stability of the origin is derived, which was not taken into account in
[15]. The stability criterion is simple and can be easily checked.

The rest of this paper is organized as follows. In Section 2, we analyze the lo-
cation of roots of a class of polynomial equation. In Section 3, the local stability
of the origin and the existence of Neimark-Sacker bifurcations are discussed by an-
alyzing the corresponding characteristic equation, and global asymptotic stability
is derived using the method of M-matrix and Lyapunov function. In Section 4, we
discuss the stability and direction of the Neimark-Sacker bifurcation by employing
the normal form method and the center manifold theorem. Some numerical simu-
lations are carried out in Section 5 to illustrate the main results. In Section 6, a
brief discussion is given to conclude the work of this paper.

2. analysis of polynomial equations

In this section, we analyze the location of the roots of the polynomial equation

λk+1 − aλk − b = 0, a ∈ (0, 1), b ∈ R, (2.1)

which will be used to determine the asymptotic stability of system (1.2).
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Suppose that λ = eiθ is a root of (2.1). Substituting it into (2.1) and separating
the real and imaginary parts, we have

cos((k + 1)θ)− a cos(kθ) = b,

sin((k + 1)θ)− a sin(kθ) = 0.
(2.2)

Using the identities cos((k+ 1)θ) = cos(kθ) cos θ− sin(kθ) sin θ and sin((k+ 1)θ) =
sin(kθ) cos θ + cos(kθ) sin θ, we rewrite (2.2) as√

a2 + 1− 2a cos θ
[ cos θ − a√

a2 + 1− 2a cos θ
cos(kθ)− sin θ√

a2 + 1− 2a cos θ
sin(kθ)

]
= b,√

a2 + 1− 2a cos θ
[ cos θ − a√

a2 + 1− 2a cos θ
sin(kθ) +

sin θ√
a2 + 1− 2a cos θ

cos(kθ)
]

= 0.

It is easy to see that if θ ∈ (0, π), (2.2) is equivalent to the equations√
a2 + 1− 2a cos θ · cos(h(θ)) = b,

sin(h(θ)) = 0,
(2.3)

where

h(θ) = arccot
cos θ − a

sin θ
+ kθ.

Since

h′(θ) =
1

1 +
(

cos θ−a
sin θ

)2 · 1− a cos θ
sin2 θ

+ k > 0

for θ ∈ (0, π) and

lim
θ→0+

h(θ) = 0, lim
θ→π−

h(θ) = (k + 1)π,

we derive that h(θ) : (0, π)→ (0, (k+ 1)π) is an increasing bijective function. From
the second equation in (2.3), we know that h(θ) = jπ, j = 1, 2, . . . , k. Denote
θj = h−1(jπ), j = 1, 2, . . . , k. Then θj satisfies the equation

jπ = arccot
cos θ − a

sin θ
+ kθ,

which yields f(θ) = 0, where

f(θ) = sin((k + 1)θ)− a sin(kθ).

Obviously,

f(0) = 0, f ′(0+) = (1− a)k + 1 > 0, f(
jπ

k + 1
) =

{
a sin jπ

k+1 > 0, if j is even
−a sin jπ

k+1 < 0, if j is odd

j = 1, 2, . . . , k. Therefore, we can deduce that θj ∈ ( (j−1)π
k+1 , jπ

k+1 ), j = 1, 2, . . . , k.
From the first equation in (2.3), we get that

b = bj = (−1)j
√
a2 + 1− 2a cos θj , j = 1, 2, . . . , k. (2.4)

If θ = 0, then b = b0 = 1− a > 0; if θ = π, then b = bk+1 = (−1)k+1(1 + a).
Obviously, if θ is a root of (2.2), −θ is also a root of (2.2). Hence, we only need

to consider the roots λ = eiθ of (2.1) in [0, π]. Further, from (2.4), we deduce that

· · · < b3 < b1 < b0 < b2 < b4 < . . . . (2.5)
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On the other hand, from (2.1), we have

d|λ|2

db
=

d(λλ̄)
db

= λ
dλ̄
db

+ λ̄
dλ
db

=
2 Re(λP (λ))
|P (λ)|2

,

where P (λ) = λk−1[(k + 1)λ− ak]. It follows that

d|λ|2

db

∣∣
b=bj

=
2bj

|P (eiθj )|2
( 1− a cos θj
a2 + 1− 2a cos θj

+ k
)
.

Hence, we have

sign
{d|λ|2

db

∣∣
b=bj

}
= sign{bj} = (−1)j , j = 0, 1, . . . , k + 1.

If b = 0, then system (2.1) has two roots a and 0, which are inside the unit circle.
As the parameter b varies, there exist roots of (2.1) which appear on or cross the
unit circle.

On the other hand, it can be easily verified that both π/2 and 2π/3 are not roots
of the second equation of (2.2), which implies that e±isθj 6= 1 for s = 1, 2, 3, 4 and
j = 1, 2, . . . , k.

From the discussions above, we have the following results.

Theorem 2.1. For equation (2.1) with a ∈ (0, 1) and b ∈ R, we have
(i) if b ∈ (b1, b0), all the roots of (2.1) are inside the unit circle;

(ii) if b = b0 = 1 − a, there is a simple root λ = 1 of (2.1) on the unit circle,
and all the other roots are inside the unit circle;

(iii) if b = bj, j = 1, 2, . . . , k, there is a pair of complex roots e±iθj on the unit
circle. Further, e±isθj 6= 1 for s = 1, 2, 3, 4. Moreover, for the case of
b = b1, all other roots are inside the unit circle;

(iv) if b = bk+1 = (−1)k+1(1 + a), (2.1) has a simple root λ = −1 on the unit
circle;

(v) if |b| > |bk+1| = 1 + a, all roots of (2.1) are outside the unit circle;
(vi) d|λ|2

db

∣∣
b=bj

6= 0 for j = 0, 1, . . . , k + 1, where bj = (−1)j
√
a2 + 1− 2a cos θj,

and θj is the unique solution in ( (j−1)π
k+1 , jπ

k+1 ) of the equation sin((k+1)θ)−
a sin(kθ) = 0 for j = 1, 2, . . . , k.

3. Stability analysis and existence of bifurcations

Throughout this paper, we assume that
(H1) f(0) = 0, f(·) ∈ C3(R).

Denote x0(n) = x(n), xj(n + 1) = xj−1(n); y0(n) = y(n), yj(n + 1) = yj−1(n);
z0(n) = z(n), zj(n + 1) = zj−1(n), j = 1, 2, . . . , k. Then we can transform system
(1.2) into the following system of 3k + 3 difference equations without delays

x0(n+ 1) = ax0(n) + βf(yk(n)) + βf(zk(n)),

y0(n+ 1) = ay0(n) + βf(zk(n)) + βf(xk(n)),

z0(n+ 1) = az0(n) + βf(xk(n)) + βf(yk(n)),

xj(n+ 1) = xj−1(n),

yj(n+ 1) = yj−1(n),

zj(n+ 1) = zj−1(n), j = 1, 2, . . . , k.

(3.1)
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For convenience, we denote c = βf ′(0). The Jacobian matrix of system (3.1) at the
equilibrium E = (0, . . . , 0) is as follows

A =


B 0 0 c 0 c
Ik 0 0 0 0 0
0 c B 0 0 c
0 0 Ik 0 0 0
0 c 0 c B 0
0 0 0 0 Ik 0

 , (3.2)

where B = (a, 0, . . . , 0)1×k, Ik is a k × k identity matrix, 0 is a zero matrix of
appropriate size.

The associated characteristic equation of system (3.1) is

(λk+1 − aλk + c)2(λk+1 − aλk − 2c) = 0. (3.3)

Applying Theorem 2.1 to (3.3) and noting that d1 ≤ −d0, we can obtain the
following results.

Theorem 3.1. Assume (H1) and that 0 < a < 1. Then we have
(i) if max{−b0, b1/2} < c < b0/2, the origin of system (1.2) is asymptotically

stable;
(ii) if c = −b0 or b0/2, a fold bifurcation occurs at the origin in system (1.2);

(iii) if c = b1/2, a Neimark-Sacker bifurcation occurs at the origin in system
(1.2), where b0 = 1 − a, b1 = −

√
a2 + 1− 2a cos θ1, in which θ1 is the

unique solution in (0, π
k+1 ) of the equation sin((k + 1)θ)− a sin(kθ) = 0.

Remark 3.2. As to the case of c = b1/2, if c = −bj or bj/2, Neimark-Sacker bifur-
cations occur at the origin in system (1.2), where bj = (−1)j

√
a2 + 1− 2a cos θj ,

in which θj is the unique solution in ( (j−1)π
k+1 , jπ

k+1 ) of the equation sin((k + 1)θ) −
a sin(kθ) = 0 for j = 1, 2, . . . , k. If c = −bk+1 or bk+1/2, system (1.2) has a Flip
bifurcation at the origin, where dk+1 = (−1)k+1(1 + a).

In what follows, we investigate the global asymptotic stability of system (1.2).

Theorem 3.3. Under assumption (H1), the origin of (1.2) is globally asymptoti-
cally stable if the following conditions hold.

(H2) There exists a constant L > 0 such that |f ′(·)| ≤ L.
(H3) 1− a− 2L|β| > 0.

Proof. Since 1− a− 2L|β| > 0, the matrix

A =

 1− a −L|β| −L|β|
−L|β| 1− a −L|β|
−L|β| −L|β| 1− a


is an M-matrix, and there exists a vector p = (pi)1×3 > 0 such that pA > 0 ([13]);
that is,

pi(1− a)− (
3∑
j=1

pj − pi)L|β| > 0, i = 1, 2, 3.

Hence, we can choose λ > 1 such that

pi(1− aλ)−
( 3∑
j=1

pj − pi
)
L|β|λk+1 > 0, i = 1, 2, 3. (3.4)
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Let U1(n) = λn|x(n)|, U2(n) = λn|y(n)|, U3(n) = λn|z(n)|. From (1.2), we have

Ui(n+ 1) ≤ aλUi(n) + L|β|λk+1
[ 3∑
j=1

Uj(n− k)− Ui(n− k)
]
, i = 1, 2, 3. (3.5)

Define a Lyapunov function

V (n) =
3∑
i=1

piUi(n) +
n−1∑
l=n−k

3∑
i=1

[( 3∑
j=1

pj − pi
)
L|β|λk+1Ui(l)

]
.

Then from (3.4) and (3.5), we deduce that

∆V (n) = V (n+ 1)− V (n) = −
3∑
i=1

[
pi(1− aλ)− (

3∑
j=1

pj − pi)L|β|λk+1
]
Ui(n) ≤ 0,

which implies that V (n) ≤ V (0). Note that

V (n) ≥ m0λ
n(|x(n)|+ |y(n)|+ |z(n)|),

V (0) =
3∑
i=1

piUi(0) +
−1∑
l=−k

3∑
i=1

[
(

3∑
j=1

pj − pi)L|β|λk+1Ui(l)
]

:= M0,

where m0 = mini=1,2,3{pi}, M0 is a positive constant. Thus,

|x(n)|+ |y(n)|+ |z(n)| ≤ M0

m0
λ−n.

Noting that λ > 1, we get limn→+∞ x(n) = 0, limn→+∞ y(n) = 0, limn→+∞ z(n) =
0. Then, the origin of system (1.2) is globally attractive. On the other hand, it is
easy to verify that |c| < b0/2 under conditions (H2) and (H3). Considering that
b1 ≤ b0, we have max{−b0, b1/2} < c < b0/2 if |c| < b0/2. Then the origin of
system (1.2) is asymptotically stable. Consequently, the origin of system (1.2) is
globally asymptotically stable. �

4. Direction and stability of Neimark-Sacker bifurcation

In this section, employing the normal form theory and the center manifold theo-
rem for discrete-time system developed by Kuznetsov [7], we study the direction of
Neimark-Sacker bifurcation and the stability of periodic solutions bifurcating from
the origin of system (1.2).

From the discussions in Section 3, we know that if c = b1/2, a Neimark-Sacker
bifurcation occurs at the origin in system (1.2). For convenience, we denote b1/2
by b̃, and the pair of imaginary roots of the associated characteristic equation for
system (1.2) by e±iθ̃.

Denote λ = eiθ̃. Let q be an eigenvector of A corresponding to eigenvalue λ,
and p be an eigenvector of AT corresponding to eigenvalue λ̄, that is, Aq = λq and
ATp = λ̄p. Obviously, q and p are 3(k + 1)-dimensional complex column vectors.
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By direct calculations, we obtain that

q =
( 2c
λ− a

,
2c

λ(λ− a)
, . . . ,

2c
λk−1(λ− a)

,
2c

λk(λ− a)
,

λk, λk−1, . . . , λ, 1, λk, λk−1, . . . , λ, 1
)T

,

p = E
( 2c
λ̄2k−1(λ̄− a)2

,
2c

λ̄2k−1(λ̄− a)
,

2c
λ̄2k−2(λ̄− a)

, . . . ,
2c

λ̄k+1(λ̄− a)
,

2c
λ̄k(λ̄− a)

,
1

λ̄k−1(λ̄− a)
,

1
λ̄k−1

,
1

λ̄k−2
, . . . ,

1
λ̄
, 1,

1
λ̄k−1(λ̄− a)

,
1

λ̄k−1
,

1
λ̄k−2

, . . . ,
1
λ̄
, 1
)T

,

(4.1)

in which

E =
1

2k + 2λ̄
λ̄−a + 4kc2

λ̄2k(λ̄−a)2
+ 4c2

λ̄2k−1(λ̄−a)3

,

where p and q satisfy 〈p, q〉 = 1.
System (3.1) can be rewritten as

u(n+ 1) = Au(n) + F (u(n)),

where A is defined by (3.2), and

u(n) = (x0(n), x1(n), . . . , xk(n), y0(n), y1(n), . . . , yk(n), z0(n), z1(n), . . . , zk(n))T,

F (u(n)) = (F1(u(n)), 0 . . . , 0, F2(u(n)), 0 . . . , 0, F3(u(n)), 0 . . . , 0)T,

in which Fi (i = 1, 2, 3) can be expanded in the form

F1(ξ) =
1
2
βf ′′(0)[ξ2

2k+2 + ξ2
3k+3] +

1
6
βf ′′′(0)[ξ3

2k+2 + ξ3
3k+3] + h.o.t.,

F2(ξ) =
1
2
βf ′′(0)[ξ2

k+1 + ξ2
3k+3] +

1
6
βf ′′′(0)[ξ3

k+1 + ξ3
3k+3] + h.o.t.,

F3(ξ) =
1
2
βf ′′(0)[ξ2

k+1 + ξ2
2k+2] +

1
6
βf ′′′(0)[ξ3

k+1 + ξ3
2k+2] + h.o.t..

Simple calculations yield

B1(x, y) =
3k+3∑
j,k=1

∂2F1(ξ)
∂ξj∂ξk

∣∣
ξ=0

xjyk = βf ′′(0)[x2k+2y2k+2 + x3k+3y3k+3],

B2(x, y) =
3k+3∑
j,k=1

∂2F2(ξ)
∂ξj∂ξk

∣∣
ξ=0

xjyk = βf ′′(0)[xk+1yk+1 + x3k+3y3k+3],

B3(x, y) =
3k+3∑
j,k=1

∂2F3(ξ)
∂ξj∂ξk

∣∣
ξ=0

xjyk = βf ′′(0)[xk+1yk+1 + x2k+2y2k+2],

C1(x, y, z) =
3k+3∑
j,k,l=1

∂3F1(ξ)
∂ξj∂ξk∂ξl

∣∣
ξ=0

xjykzl

= βf ′′′(0)[x2k+2y2k+2z2k+2 + x3k+3y3k+3z3k+3],
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C2(x, y, z) =
3k+3∑
j,k,l=1

∂3F2(ξ)
∂ξj∂ξk∂ξl

∣∣
ξ=0

xjykzl

= βf ′′′(0)[xk+1yk+1zk+1 + x3k+3y3k+3z3k+3],

C3(x, y, z) =
3k+3∑
j,k,l=1

∂3F3(ξ)
∂ξj∂ξk∂ξl

∣∣
ξ=0

xjykzl

= βf ′′′(0)[xk+1yk+1zk+1 + x2k+2y2k+2z2k+2].

(4.2)

If b = b̃, the restriction of system (3.1) to its two-dimensional center manifold at
the critical parameter value can be transformed into the normal form written in
complex coordinates (see [7, 8]):

w → λw(1 +
1
2
d|w|2) +O(|w|4), w ∈ C,

in which

d = λ̄
〈
p, Ĉ(q, q, q̄) + 2B̂

(
q, (I −A)−1B̂(q, q̄)

)
+ B̂

(
q̄, (λ2I −A)−1B̂(q, q)

)〉
,

with p and q defined by (4.1) and B̂ = (B1, 0, . . . , 0, B2, 0, . . . , 0, B3, 0, . . . , 0, )T,
Ĉ = (C1, 0, . . . , 0, C2, 0, . . . , 0, C3, 0, . . . , 0, )T with Bi, Ci (i = 1, 2, 3) defined by
(4.2).

Theorem 4.1 ([8]). The direction and stability of the Neimark-Sacker bifurcation
are determined by the sign of Re(d). If Re(d) < 0, then the bifurcation is supercrit-
ical, that is, the closed invariant curve bifurcating from the origin is asymptotically
stable. If Re(d) > 0, then the bifurcation is subcritical; that is, the closed invariant
curve bifurcating from the origin is unstable.

5. Numerical simulations

In this section, we give two examples to illustrate the results derived in Sections
3 and 4. In system (1.2), we choose the activation function as the type of inverse
tangent function or hyperbolic tangent function; i.e., f(v) = tanh(v), then f ′(0) =
1, f ′′(0) = 0, f ′′′(0) = −2, and |f ′(x)| ≤ 1. In addition, in the following simulations,
the numerical results of y(n) and z(n) are similar to those of x(n), so they are
omitted.

Example 5.1. For system (1.2), If a = 0.5, k = 2, then b0 = 0.5, b1 ≈ −0.7808.
Choose β = −0.38 and 0.24, respectively, we have max{−b0, b1/2} = −0.3904 <
c < 0.25 = b0/2. By Theorem 3.1, the origin of system (1.2) is asymptotically
stable (see Figure 1). If β = −0.3904 ≈ b1/2, a Neimark-Sacker bifurcation occurs
at the origin in system (1.2). Furthermore, from the formulae in Sections 3 and 4,
and by direct computations, we obtain

θ̃ ≈ 0.8758, d ≈ −0.6168 + 0.1248i.

Therefore, Re(d) ≈ −0.6168 < 0, and from Theorem 4.1, the Neimark-Sacker
bifurcation is supercritical and the bifurcating periodic solution is asymptotically
stable (see Figure 2).
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Figure 1. (a) Dynamic behavior of system (1.2) with a = 0.5,
k = 2, β = −0.38. (b) Dynamic behavior of system (1.2) with a =
0.5, k = 2, β = 0.24. The origin of system (1.2) is asymptotically
stable
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Figure 2. Dynamic behavior of system (1.2) with a = 0.5, k = 2,
β = −0.3904. A Neimark-Sacker bifurcation occurs at the origin
in system (1.2). (a) Diagram in (n, x)-plane. (b) Phase portrait

Example 5.2. Consider the following generalized system with different connection
weights through the neurons

x(n+ 1) = ax(n) + αf(y(n− k)) + βf(z(n− k)),

y(n+ 1) = ay(n) + αf(z(n− k)) + βf(x(n− k)),

z(n+ 1) = az(n) + αf(x(n− k)) + βf(y(n− k)).
(5.1)

Let a = 0.5, α = −0.4, and choose β = 0.25, 0.3, 0.5, 1.2, respectively, numerical
simulations show that Neimark-Sacker bifurcations occur at the origin in system
(5.1). We further find that with the increasing of β, the velocity of the trajectory
going to the bifurcating periodic solution is increasing (see Figure 3). In Figure 4,
we exhibit a typical bifurcation and chaos diagram when we fix other parameters
and choose β as a bifurcation parameter (−4 < β < 4). It clearly shows that system
(5.1) admits rich dynamics including period-doubling bifurcation and chaos.
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Figure 3. Phase plot in space (x, y, z) for system (5.1) with (a)
c = 0.25, (b) c = 0.3, (c) c = 0.5 and (d) c = 1.2
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Figure 4. Bifurcation diagram in (c, x)-plane for system (5.1)
with step size of 0.01 for c. It shows the effect of parameter c
on the dynamic behavior

Conclusion. In this article, a class of discrete-time bidirectional ring neural net-
work model with delay was investigated. Analyzing the corresponding character-
istic equation, the asymptotic stability of the origin was discussed, and choosing
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c = βf ′(0) as a bifurcation parameter, we showed that system (1.2) undergoes
Neimark-Sacker bifurcations at the origin. Using the M-matrix method and the
Lyapunov function, global asymptotic stability of the origin was derived. Apply-
ing the normal form theory and the center manifold theorem, the direction of the
Neimark-Sacker bifurcation and the stability of bifurcating periodic solution were
obtained.

We removed the restrictions of the conditions that f ′(0) = 1 and xf(x) 6= 0
for x 6= 0 in [15], and derived conditions under which the origin is asymptotically
stable. Noting that b1 > 1a, the hypotheses of Theorem 3.1 are less restrictive than
those for the corresponding continuous system (α = β) in [15]. Moreover, when
the connection weights through the neurons in a bidirectional ring neural network
model are different, numerical simulations show that the corresponding system still
undergoes Neimark-Sacker bifurcations at the origin. We leave for future work
the study of (1.2) with different connection weights, activation functions and time
delays.
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