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SOLUTIONS TO NONLOCAL FRACTIONAL DIFFERENTIAL
EQUATIONS USING A NONCOMPACT SEMIGROUP

SHAOCHUN JI, GANG LI

Abstract. This article concerns the existence of solutions to nonlocal frac-
tional differential equations in Banach spaces. By using a type of newly-defined

measure of noncompactness, we discuss this problem in general Banach spaces

without any compactness assumptions to the operator semigroup. Some ex-
istence results are obtained when the nonlocal term is compact and when is

Lipschitz continuous.

1. Introduction

In this article, we study the following fractional differential equations with non-
local conditions

CDαu(t) = Au(t) + f(t, u(t)), t ∈ J = [0, b],

u(0) = g(u),
(1.1)

where A : D(A) ⊆ X → X is the infinitesimal generator of a strongly continuous
semigroup of bounded linear operators {T (t)}t≥0 in a Banach space X; CDα is
the Caputo fractional derivative operator of order α with 0 < α ≤ 1; f and g are
appropriate continuous functions to be specified later.

Fractional differential equations arise in many engineering and scientific prob-
lems, such as diffusion process, control theory, signal and image processing. Com-
pared with the classical integer-order models, the fractional-order models are more
realistic and practical to describe many phenomena in nature (see [5]). For some
recent development on this topic, we refer to the monographs of Kilbas et al. [16],
Podlubny [25], Lakshmikantham et al. [18], and [1, 7, 17, 19, 20, 30]. By using
some probability density functions, El-Borai [9] introduced fundamental solutions
of fractional evolution equations in a Banach space. Wang et al. [28] obtained
the existence and uniqueness of α-mild solutions by means of fractional calculus
and Leray-Schauder fixed point theorem with a compact analytic semigroup. Ren
et al. [26, 27] established the existence of mild solutions for a class of semilinear
integro-differential equations of fractional order with delays.

The study of nonlocal semilinear differential equation in Banach spaces was
initiated by Byszewski [6] and the importance of the problem consists in the fact
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that it is more general and has better effect than the classical initial conditions
u(0) = u0 alone. For example, Deng [8] defined the function g by

g(u) =
q∑
j=1

cju(sj),

where cj are given constants and 0 < s1 < s2 < · · · < sq ≤ b. This allows
measurements to be made at t = 0, s1, . . . , sq, rather than just at t = 0 and more
information can be obtained. Subsequently several authors have investigated some
different types of differential equations and integrodifferential equations in Banach
spaces[23, 2, 32]. Most of the previous results are obtained with the assumption that
semigroup T (t) is compact. Then one of the difficulties on the nonlocal problems is
how to deal with the compactness on the solution operator. By using the measure
of noncompactness, Xue[29] discussed integral solutions of the nonlinear nonlocal
initial value problem and Fan et al.[10], Ji et al.[14] discussed nonlocal impulsive
differential equations when the semigroup T (t) is equicontinuous.

From the viewpoint of theory and practice, it is natural for mathematics to com-
bine fractional differential equations and nonlocal conditions. Mophou et al.[22]
and Balachandran et al.[3] investigated the existence of solutions of fractional ab-
stract differential equations with nonlocal conditions. Zhou and Jiao[31] discussed
the problem based on Krasnoselskii’s fixed point theorem with the assumption that
semigroup T (t) is compact and nonlocal item g is Lipschitz continuous. Very re-
cently, Li, Peng and Gao[21] study the existence of mild solutions to the problem
(1.1) by using the Hausdorff measure of noncompactness when the semigroup T (t)
is equicontinuous and g is compact. In this paper, we study (1.1) without assuming
T (t) is compact or equicontinuous and do not require additional conditions com-
pared with those in[21]. Therefore, the existence theorems of mild solutions given
here are quite general, even in the case of integer-order differential equations. The
work is based on a type of newly-defined measure of noncompactness (see Lemma
3.1), which can be seen as a generalization of classical Hausdorff measure of non-
compactness. Moreover, we do not need the assumption of separability on the
Banach space X.

The article is organized as follows. In Section 2 we recall some preliminary facts
that we need in the sequel. In Section 3 we prove our results when nonlocal item
g is compact. In Section 4 we get our results when nonlocal item g is Lipschitz
continuous. The conclusions and applications of the paper are given in Section 5.

2. Preliminaries

Let (X, ‖ · ‖) be a real Banach space and N be the set of positive integers. We
denote by C([0, b];X) the space of X-valued continuous functions on [0, b] with
the norm ‖x‖ = sup{‖x(t)‖, t ∈ [0, b]} and by L1([0, b];X) the space of X-valued
Bochner integrable functions on [0, b] with the norm ‖f‖L1 =

∫ b
0
‖f(t)‖ dt.

Let us recall the following definitions. For basic facts about fractional derivatives
and fractional calculus, one can refer to the books [16, 25].

Definition 2.1. The Riemann-Liouville fractional integral of order α > 0 with the
lower limit zero for a function f can be defined as

Iαf(t) =
1

Γ(α)

∫ t

0

(t− s)α−1f(s) ds, t > 0,
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provided the right-hand side is pointwise defined on [0,∞), where Γ(·) is the gamma
function.

Definition 2.2. The Riemann-Liouville derivative of order α with the lower limit
zero for a function f can be written as

R−LDαf(t) =
1

Γ(n− α)
dn

dtn

∫ t

0

(t− s)n−α−1f(s) ds, t > 0,

where α ∈ (n− 1, n), n ∈ N.

Definition 2.3. The Caputo derivative of order α with the lower limit zero for a
function f can be written as

CDαf(t) =
1

Γ(n− α)

∫ t

0

(t− s)n−α−1f (n)(s) ds, t > 0,

where α ∈ (n− 1, n), n ∈ N.

If f takes values in a Banach space X, the integrals which appear in the above
three definitions are taken in Bochner’s sense. Especially, when 0 < α < 1, we have

CDαf(t) =
1

Γ(1− α)

∫ t

0

f ′(s)
(t− s)α

ds.

We firstly recall the concept of mild solutions to equation (1.1) developed in
[9, 31].

Definition 2.4. A function u ∈ C(J ;X) is said to be a mild solution of (1.1) if u
satisfies

u(t) = Sα(t)g(u) +
∫ t

0

(t− s)α−1Tα(t− s)f(s, u(s)) ds,

for t ∈ J , where

Sα(t) =
∫ ∞

0

ξα(θ)T (tαθ) dθ, Tα(t) = α

∫ ∞
0

θξα(θ)T (tαθ) dθ,

ξα(θ) =
1
α
θ−1− 1

α$α(θ−
1
α ) ≥ 0,

$α(θ) =
1
π

∞∑
n=1

(−1)n−1θ−αn−1 Γ(nα+ 1)
n!

sin(nπα), θ ∈ (0,∞).

Here ξα(θ) is a probability density function defined on (0,∞) satisfying∫ ∞
0

ξα(θ) dθ = 1,
∫ ∞

0

θvξα(θ) dθ =
Γ(1 + v)

Γ(1 + αv)
, v ∈ [0, 1].

Lemma 2.5 ([28]). For any fixed t ≥ 0, the operators Sα(t) and Tα(t) are linear
and bounded operators; i.e., for any x ∈ X, ‖Sα(t)x‖ ≤ M‖x‖ and ‖Tα(t)x‖ ≤
Mα

Γ(1+α)‖x‖, where M is the constant such that ‖T (t)‖ ≤M for all t ∈ [0, b].

Now we give some facts on measure of noncompactness, see Banas and Goebel[4].

Definition 2.6. Let E+ be the positive cone of an ordered Banach space (E,≤).
A function Φ defined on the set of all bounded subsets of the Banach space X
with values in E+ is called a measure of noncompactness (in short MNC) on X if
Φ(coΩ) = Φ(Ω) for all bounded subsets Ω ⊂ X, where coΩ stands for the closed
convex hull of Ω. A measure of noncompactness Φ is said to be:
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(1) monotone if for all bounded subsets Ω1,Ω2 of X we have: (Ω1 ⊆ Ω2) ⇒
(Φ(Ω1) ≤ Φ(Ω2));

(2) nonsingular if Φ({a} ∪ Ω) = Φ(Ω) for every a ∈ X, Ω ⊂ X;
(3) regular if Φ(Ω) = 0 if and only if Ω is relatively compact in X.

One of the most important examples of MNC is the Hausdorff measure of non-
compactness β(·) defined by

β(B) = inf{ε > 0 : Bhas a finite ε-net in X},
for each bounded subset B in a Banach space X.

It is well known that the Hausdorff measure of noncompactness β enjoys the
above properties.

Lemma 2.7 ([4]). Let X be a real Banach space and B,C ⊆ X be bounded. Then
the following properties are satisfied:

(1) B is relatively compact if and only if β(B) = 0;
(2) β(B) = β(B) = β(convB), where B and convB mean the closure and

convex hull of B, respectively;
(3) β(B) ≤ β(C) when B ⊆ C;
(4) β(B + C) ≤ β(B) + β(C), where B + C = {x+ y : x ∈ B, y ∈ C};
(5) β(B ∪ C) ≤ max{β(B), β(C)};
(6) β(λB) ≤ |λ|β(B) for any λ ∈ R;
(7) If the map Q : D(Q) ⊆ X → Z is Lipschitz continuous with constant k,

then βZ(QB) ≤ kβ(B) for any bounded subset B ⊆ D(Q), where Z is a
Banach space.

(8) If {Wn}∞n=1 is a decreasing sequence of bounded closed nonempty subsets of
X and limn→∞ β(Wn) = 0, then ∩∞n=1Wn is nonempty and compact in X.

We will also use the sequential MNC β0 generated by β, that is, for any bounded
subset B ⊂ X, we define

β0(B) = sup
{
β({xn : n ≥ 1}) : {xn}∞n=1 is a sequence in B

}
.

It follows that
β0(B) ≤ β(B) ≤ 2β0(B). (2.1)

If X is a separable space, we have β0(B) = β(B).

Lemma 2.8 ([15]). If {un}∞n=1 ⊂ L1(J ;X) satisfies ‖un(t)‖ ≤ ϕ(t) a.e. on [0, b]
for all n ≥ 1 with some ϕ ∈ L1(J ; R+), then for t ∈ [0, b], we have

β
({∫ t

0

un(s) ds
}∞
n=1

)
≤ 2

∫ t

0

β({un(s)}∞n=1) ds.

Lemma 2.9 ([12]). Suppose b ≥ 0, σ > 0 and a(t) is nonnegative function locally
integrable on 0 ≤ t < b (b ≤ +∞), and suppose c(t) is nonnegative and locally
integrable on 0 ≤ t < b with

c(t) ≤ a(t) + b

∫ t

0

(t− s)σ−1c(s) ds

on this interval. Then

c(t) ≤ a(t) + µ

∫ t

0

E′σ(µ(t− s))a(s) ds, 0 ≤ t ≤ b,

where µ = (bΓ(σ))1/σ, Eσ(z) =
∑∞
n=0 z

nσ/Γ(nσ + 1), E′σ(z) = d
dzEσ(z).
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3. T (t) strongly continuous and g compact

Let r be a positive constant and Br = {x ∈ X : ‖x‖ ≤ r}, Wr = {x ∈ C(J ;X) :
x(t) ∈ Br, t ∈ J}. We define the solution operator G : C(J ;X)→ C(J ;X) by

Gu(t) = Sα(t)g(u) +
∫ t

0

(t− s)α−1Tα(t− s)f(s, u(s)) ds

with

G1u(t) = Sα(t)g(u),

G2u(t) =
∫ t

0

(t− s)α−1Tα(t− s)f(s, u(s)) ds,

for all t ∈ J . It is easy to see that u is the mild solution of the problem (1.1) if and
only if u is a fixed point of the map G.

Now we introduce some noncompact measures. For any bounded set B ⊂
C(J ;X), we define

χ1(B) = sup
t∈J

β(B(t)),

where β is the Hausdorff MNC on X and it is easy to see that χ1 coincides with
the the Hausdorff MNC βC on equicontinuous sets. We also define

χ2(B) = sup
t∈J

modC(B(t)),

where modC(B(t)) is the modulus of equicontinuity of the set B at t ∈ J , given by
the formula

modC(B(t)) = lim
δ→0

sup{‖x(t1)− x(t2)‖ : t1, t2 ∈ (t− δ, t+ δ), x ∈ B}.

Then the MNC χ1, χ2 are well-defined and are both monotone and nonsingular,
but in general they are not necessarily regular. Similar definitions with χ1, χ2 can
be found in Kamenskii [15] or Fan[11]. Now we define

χ(B) = χ1(B) + χ2(B).

Then we have the following result.

Lemma 3.1. χ is a monotone, nonsingular and regular measure of noncompactness
defined on bounded subsets of C(J ;X).

Proof. It is easy to check that χ is well-defined, monotone and nonsingular. Now
we shall show that χ is regular. If B is relatively compact in C(J ;X), then by the
abstract version of the Ascoli-Arzela theorem, we have χ(B) = 0.

On the other hand, if χ(B) = 0, by the definition of χ, we have

χ1(B) = 0, χ2(B) = 0.

That is, for every t ∈ J , B(t) is precompact in X. Then it remains to prove that
B is equicontinuous on J . Suppose not, then there exist ε0 > 0 and sequences
{un} ⊆ B, {tn}, {tn} ⊆ [0, b], such that tn → t0, tn → t0 as n→∞ and

‖un(tn)− un(tn)‖ ≥ ε0,

for all n ≥ 1. Note that

‖un(tn)− un(tn)‖ ≤ sup{‖u(tn)− u(tn)‖ : u ∈ B}.
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We take the upper limit for n and get that

lim
n
‖un(tn)− un(tn)‖ ≤ modC(B(t0)) ≤ χ2(B) = 0,

which gives the contradiction 0 < ε0 ≤ 0. Thus B ⊆ C(J ;X) is equicontinuous on
J . This completes the proof. �

We will use the following hypotheses:

(HA) The operator A generates a strongly continuous semigroup {T (t)}t≥0 in
X. Moreover, there exists a positive constant M > 0 such that M =
sup0≤t≤b ‖T (t)‖ (see Pazy[24]).

(HG1) g : C(J ;X) → X is continuous and compact. There exists a positive
constant N such that ‖g(u)‖ ≤ N for all u ∈ C(J ;X).

(HF1) f : [0, b]×X → X is continuous.
(HF2) there exists a constant L > 0, such that for any bounded set D ⊂ X,

β(f(t,D)) ≤ Lβ(D), for a.e. t ∈ J .

The following lemma is useful for our proofs.

Lemma 3.2. Suppose that the semigroup {T (t)}t≥0 is strongly continuous and
hypotheses (HF1), (HF2) are satisfied. Then for any bounded set B ⊂ C(J ;X), we
have

β(G2B(t)) ≤ 4αML

Γ(1 + α)

∫ t

0

(t− s)α−1β(B(s)) ds,

for t ∈ [0, b].

Proof. For t ∈ [0, b], due to the inequality (2.1), we obtain that for arbitrary ε > 0,
there exists a sequence {vk}∞k=1 ⊂ B such that

β(G2B(t)) ≤ 2β({G2vk(t)}∞k=1) + ε. (3.1)

It follows from Lemma 2.8 and hypotheses (Hf1), (Hf2) that

β({G2vk(t)}∞k=1) ≤ 2
∫ t

0

(t− s)α−1β({Tα(t− s)f(s, vk(s))}∞k=1) ds

≤ 2
∫ t

0

(t− s)α−1 αM

Γ(1 + α)
Lβ({vk(s)}∞k=1) ds

≤ 2αML

Γ(1 + α)

∫ t

0

(t− s)α−1β(B(s)) ds.

According to e3.1, we can derive that

β(G2B(t)) ≤ 4αML

Γ(1 + α)

∫ t

0

(t− s)α−1β(B(s)) ds+ ε.

Since the above inequality holds for arbitrary ε > 0, it follows that

β(G2B(t)) ≤ 4αML

Γ(1 + α)

∫ t

0

(t− s)α−1β(B(s)) ds.

This completes the proof. �

Now, we give the main existence result of this section.
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Theorem 3.3. Assume that the hypotheses (HA), (HG1), (HF1), (HF2) are sat-
isfied. Then the nonlocal fractional differential system (1.1) has at least one mild
solution on [0, b], provided that there exists a constant r > 0 such that

MN +
Mbα

Γ(1 + α)
sup

s∈[0,b],u∈Wr

‖f(s, u(s))‖ ≤ r. (3.2)

Proof. We shall prove this result by using the Schauder’s fixed point theorem.
Step 1. We shall prove that G is continuous on C(J ;X). Let {um}∞m=1 be a

sequence in C(J ;X) with limm→∞ um = u in C(J ;X). By the continuity of f , we
deduce that for each s ∈ [0, b], f(s, um(s)) converges to f(s, u(s)) in X uniformly
for s ∈ [0, b]. And we have

‖Gum −Gu‖ ≤ ‖Sα(t)g(um)− g(u)‖

+
∫ t

0

(t− s)α−1‖Tα(t− s)[f(s, um(s))− f(s, u(s))]‖ ds

≤M‖g(um)− g(u)‖+
Mbα

Γ(1 + α)
sup
s∈[0,b]

‖f(s, um(s))− f(s, u(s))‖.

Then by the continuity of g, we get limm→∞Gum = Gu in C(J ;X), which implies
that G is continuous on C(J ;X).

Step 2. We construct a bounded convex and closed set W ⊂ C(J ;X) such that
G maps W into itself. Let W0 = {u ∈ C(J ;X) : ‖u(t)‖ ≤ r, t ∈ J}, where r satisfies
the condition (3.2). For any u ∈ W0, by hypotheses (HG1), (HF1) and (3.2), we
have

‖Gu(t)‖ ≤ ‖Sα(t)g(u)‖+ ‖
∫ t

0

(t− s)α−1Tα(t− s)f(s, u(s)) ds

≤MN +
Mbα

Γ(1 + α)
sup

s∈[0,b],u∈W0

‖f(s, u(s))‖ ≤ r,

for t ∈ [0, b], which implies that GW0 ⊆W0.
Define W1 = conv{G(W0), u0}, where conv means the closure of convex hull,

u0 ∈W0. Then W1 ⊂W0 is nonempty bounded closed and convex. We define Wn =
conv{G(Wn−1), u0} for n ≥ 1. It is easy to know that {Wn}∞n=0 is a decreasing
sequence of C(J ;X). Moreover, set

W = ∩∞n=0Wn,

then W is a nonempty, convex, closed and bounded subset of C(J ;X) and GW ⊆
W .

Step 3. We claim that W is compact in C(J ;X) by using the newly-defined
MNC χ. As {Wn} is a decreasing sequence of C(J ;X), then {β(Wn(t))}∞n=0 is
nonnegative decreasing sequence for any t ∈ [0, b]. From the compactness of g and
Lemma 3.2, we get

β(Wn+1(t)) ≤ β({Sα(t)g(u) : u ∈Wn})

+ β({
∫ t

0

(t− s)α−1Tα(t− s)f(s, u(s)) ds : u ∈Wn})

≤ 4αML

Γ(1 + α)

∫ t

0

(t− s)α−1β(Wn(s))ds.

(3.3)
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Taking n→∞ to both sides of (3.3), we have

β(W (t)) ≤ 4αML

Γ(1 + α)

∫ t

0

(t− s)α−1β(W (s))ds.

By Lemma 2.9 we obtain that β(W (t)) = 0 for any t ∈ [0, b]. Then according to
the definition of χ1, we have

χ1(Wn)→ 0, as n→∞. (3.4)

Next, we will estimate χ2(Wn). Fix t0 ∈ (0, b), 0 < p < α. Then for given n ∈ N,
according to the continuity of f , we take δ0, 0 < δ0 < min{t0, b− t0} such that

( ∫ t0+δ0

t0−δ0
‖f(s, u(s))‖1/p ds

)p ≤ 1
n
, for any u ∈Wr. (3.5)

From the definition of Hausdorff MNC β, there exist finite points x1, x2, . . . , xk ∈ X
such that

Wn(t0 − δ0) ⊂ ∪ki=1B(xi, 2β(Wn(t0 − δ0))).

Moreover, for each u ∈ GWn−1, there exists v ∈Wn−1 such that

u(t1) = Sα(t1 − (t0 − δ0))u(t0 − δ0)

+
∫ t1

t0−δ0
(t1 − s)α−1Tα(t1 − s)f(s, v(s)) ds,

(3.6)

u(t2) = Sα(t2 − (t0 − δ0))u(t0 − δ0)

+
∫ t2

t0−δ0
(t2 − s)α−1Tα(t2 − s)f(s, v(s)) ds,

(3.7)

for t1, t2 ∈ (t0 − δ, t0 + δ). For the above given u, there exists xj , 1 ≤ j ≤ k, such
that

‖u(t0 − δ0)− xj‖ ≤ 2β(Wn(t0 − δ0)). (3.8)

By the strong continuity of Sα(t), there exists δ, 0 < δ < δ0, such that

‖Sα(t1 − (t0 − δ0))xi − Sα(t2 − (t0 − δ0))xi‖ ≤Mβ(Wn(t0 − δ0)). (3.9)

where i = 1, . . . , k and t1, t2 ∈ (t0 − δ, t0 + δ).
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On the other hand, for 0 < p < α < 1, by the Hölder’s inequality and (3.5), we
have

‖
∫ t1

t0−δ0
(t1 − s)α−1Tα(t1 − s)f(s, v(s)) ds

−
∫ t2

t0−δ0
(t2 − s)α−1Tα(t2 − s)f(s, v(s)) ds‖

≤ αM

Γ(1 + α)

∫ t1

t0−δ0
(t1 − s)α−1‖f(s, v(s))‖ ds

+
αM

Γ(1 + α)

∫ t2

t0−δ0
(t2 − s)α−1‖f(s, v(s))‖ ds

≤ αM

Γ(1 + α)

(∫ t1

t0−δ0
(t1 − s)

α−1
1−p ds

)1−p(∫ t1

t0−δ0
‖f(s, v(s))‖1/p ds

)p
+

αM

Γ(1 + α)
( ∫ t2

t0−δ0
(t2 − s)

α−1
1−p ds

)1−p(∫ t2

t0−δ0
‖f(s, v(s))‖1/p ds

)p
≤ 2αM

Γ(1 + α)
( 1− p
α− p

)1−p
bα−p

(∫ t0+δ0

t0−δ0
‖f(s, v(s))‖1/p ds

)p
≤ 2αM

Γ(1 + α)
( 1− p
α− p

)1−p
bα−p

1
n
.

(3.10)

Therefore, for any given u ∈ GWn−1, it follows from (3.6)–(3.10) that

‖u(t1)− u(t2)‖
≤ ‖Sα(t1 − (t0 − δ0))u(t0 − δ0)− Sα(t1 − (t0 − δ0))xj‖

+ ‖Sα(t1 − (t0 − δ0))xj − Sα(t2 − (t0 − δ0))xj‖
+ ‖Sα(t2 − (t0 − δ0))xj − Sα(t2 − (t0 − δ0))u(t0 − δ0)‖

+ ‖
∫ t1

t0−δ0
(t1 − s)α−1Tα(t1 − s)f(s, v(s)) ds

−
∫ t2

t0−δ0
(t2 − s)α−1Tα(t2 − s)f(s, v(s)) ds‖

≤ 5Mβ(Wn(t0 − δ0)) +
2αM

Γ(1 + α)
( 1− p
α− p

)1−p
bα−p

1
n
,

for t1, t2 ∈ (t0 − δ0, t0 + δ0). Then we have

modC(GWn−1(t0)) ≤ 5Mβ(Wn(t0 − δ0)) +
2αM

Γ(1 + α)
( 1− p
α− p

)1−p
bα−p

1
n

≤ 5Mχ1(Wn) +
2αM

Γ(1 + α)
( 1− p
α− p

)1−p
bα−p

1
n
.

For t0 = 0 or b, we can also verify the above inequality. By the definition of
MNC χ2, we have

χ2(GWn−1) ≤ 5Mχ1(Wn) +
2αM

Γ(1 + α)
( 1− p
α− p

)1−p
bα−p

1
n
. (3.11)

According to the property of MNC, we obtain

χ2(Wn) = χ2(conv{G(Wn−1), u0}) = χ2(GWn−1). (3.12)
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Thus from the definition of χ and (3.4), (3.11), (3.12), it follows that

χ(Wn) = χ1(Wn) +χ2(Wn) ≤ (5M + 1)χ1(Wn) +
2αM

Γ(1 + α)
( 1− p
α− p

)1−p
bα−p

1
n
→ 0,

as n→∞. Therefore, the set W = ∩∞n=1Wn is a nonempty, convex, compact subset
of C(J,X), since χ is a monotone, nonsingular and regular MNC (see Lemma 3.1).
Moreover, G maps W into W .

Therefore, due to the Schauder’s fixed point theorem, G has at lest one fixed
point u ∈ C(J ;X), which is just the mild solution to the problem (1.1). The proof
of Theorem 3.3 is complete. �

Remark 3.4. Li et al. [21] discussed (1.1) when T (t) is equicontinuous, g is
compact and the Banach space X is separable. Our existence results are more
general than many previous results in this field, where the compactness of T (t) and
f are needed. If f is compact or Lipschitz continuous, then hypothesis (HF2) is
obviously satisfied. The regular MNC χ defined by us plays a key role in the proof.

4. T (t)strongly continuous and g Lipschitz continuous

In this section, two existence results are given when g is Lipschitz continuous.
The map Q : D ⊆ X → X is said to be β-condensing if Q is continuous, bounded
and for any nonprecompact bounded subset B ⊂ D, we have β(QB) < β(B), where
X is a Banach space.

Lemma 4.1 (See Darbo-Sadovskii [4]). If D ⊂ X is bounded closed and convex,
the continuous map Q : D → D is β-condensing, then Q has at least one fixed point
in D.

We will use the following hypotheses:
(HG2) g : C([0, b];X) → X and there exists a constant lg > 0 such that ‖g(x) −

g(y)‖ ≤ lg‖x− y‖, x, y ∈ C([0, b];X).
(HF3) f : [0, b]×X → X is continuous and compact.

Theorem 4.2. Assume that (HA), (HG2), (HF3) are satisfied. Then the nonlocal
fractional differential system (1.1) has at least one mild solution on [0, b], provided
that (3.2) and

Mlg < 1. (4.1)

Proof. Define the solution operator G : C(J ;X)→ C(J ;X) by

Gu(t) = Sα(t)g(u) +
∫ t

0

(t− s)α−1Tα(t− s)f(s, u(s)) ds

with

G1u(t) = Sα(t)g(u),

G2u(t) =
∫ t

0

(t− s)α−1Tα(t− s)f(s, u(s)) ds,

for all t ∈ J . From the proof of Theorem 3.3, we have got that the solution operator
G is continuous and maps Wr into itself. It remains to show that G is β-condensing.

For u, v ∈Wr, we have

‖G1u−G1v‖ = ‖Sα(t)g(u)− Sα(t)g(v)‖ ≤Mlg‖u− v‖,
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which implies that G1 is Lipschitz continuous with the constant Mlg. From Lemma
2.7 (7), we have

β(G1Wr) ≤Mlgβ(Wr). (4.2)

Next, we shall show that G2 is a compact operator. From the Ascoli-Arzela
theorem, we need prove that G2Wr is equicontinuous and G2Wr(t) is precompact
in X for t ∈ [0, b]. For u ∈Wr and 0 ≤ t1 < t2 ≤ b, we have

‖G2u(t2)−G2u(t1)‖

≤
∥∥∫ t2

t1

(t2 − s)α−1Tα(t2 − s)f(s, u(s)) ds
∥∥

+
∥∥∫ t1

0

[(t2 − s)α−1 − (t1 − s)α−1]Tα(t2 − s)f(s, u(s)) ds
∥∥

+
∥∥∫ t1

0

(t1 − s)α−1[Tα(t2 − s)− Tα(t1 − s)]f(s, u(s)) ds
∥∥

:= I1 + I2 + I3,

(4.3)

where

I1 =
∥∥∫ t2

t1

(t2 − s)α−1Tα(t2 − s)f(s, u(s)) ds
∥∥,

I2 =
∥∥∫ t1

0

[(t2 − s)α−1 − (t1 − s)α−1]Tα(t2 − s)f(s, u(s)) ds
∥∥,

I3 =
∥∥∫ t1

0

(t1 − s)α−1[Tα(t2 − s)− Tα(t1 − s)]f(s, u(s)) ds
∥∥.

By direct calculation we obtain

I1 ≤
αM

Γ(1 + α)
1
α

(t2 − t1)α sup
t∈J,u∈Wr

f(s, u(s))

≤ M

Γ(1 + α)
sup

t∈J,u∈Wr

f(s, u(s)) · (t2 − t1)α.
(4.4)

For t1 = 0, 0 < t2 ≤ b, it is easy to see that I2 = I3 = 0. For t1 > 0, we have

I2 ≤
αM

Γ(1 + α)
sup

t∈J,u∈Wr

f(s, u(s)) ·
∫ t1

0

(t2 − s)α−1 − (t1 − s)α−1 ds

≤ M

Γ(1 + α)
sup

t∈J,u∈Wr

f(s, u(s)) · (tα2 − tα1 ).
(4.5)

Since f is compact, then ‖[Tα(t2 − s) − Tα(t1 − s)]f(s, u(s))‖ → 0, as t1 → t2,
uniformly for s ∈ J and u ∈ Wr. This implies that, for any ε > 0, there exists
δ > 0, such that

‖[Tα(t2 − s)− Tα(t1 − s)]f(s, u(s))‖ < ε,

for 0 < t2 − t1 < δ and u ∈Wr. Then we have

I3 ≤ ε
∫ t1

0

(t1 − s)α−1 ds ≤ bα

α
ε. (4.6)

Thus, combining the above inequalities (4.3)–(4.6), we obtain the equicontinuity of
GWr on [0, b].
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The set {Tα(t − s)f(s, u(s)) : t, s ∈ J, u ∈ Wr} ⊂ X is precompact in X as
f is compact and T (t) is continuous. Similarly with the proof of Lemma 3.2, for
arbitrary ε > 0, there exists a sequence {vk}∞k=1 ⊂Wr, such that

β(G2Wr(t)) ≤ 2β({G2vk(t) : k ≥ 1}) + ε

≤ 4
∫ t

0

(t− s)α−1β({Tα(t− s)f(s, vk(s)) : k ≥ 1}) ds+ ε.

Noticing that

β({Tα(t− s)f(s, vk(s)) : k ≥ 1}) ≤ β({Tα(t− s)f(s, u(s)) : t, s ∈ J, u ∈Wr}) = 0,

we have β(G2Wr(t)) = 0 for t ∈ J . By the Ascoli-Arzela theorem, we have that G2

is a compact operator, which implies

β(G2Wr) = 0. (4.7)

So, according to (4.2) and (4.7), we can conclude that

β(GWr) ≤ β(G1Wr) + β(G2Wr) ≤Mlgβ(Wr).

From the condition Mlg < 1, G is β−condensing in Wr. By the Darbo-Sadovskii’s
fixed point theorem, G has at least a fixed point u in Wr, which is just a mild
solution of the problem (1.1). The proof is complete. �

By using Banach contraction principle, we also give the existence theorem when
f , g are uniformly Lipschitz continuous. We give the following hypothesis on f .
(HF4) f : C(J ;X) → X is continuous and there exists a constant lf > 0, such

that
‖f(t, x1)− f(t, x2)‖ ≤ lf‖x1 − x2‖, x1, x2 ∈ X.

Theorem 4.3. Assume that the hypotheses (HA), (HG2), (HF4) are satisfied. Then
the nonlocal fractional system (1.1) has a unique mild solution on [0, b], provided
that

Mlg +
Mbα

Γ(1 + α)
lf < 1. (4.8)

Proof. For u, v ∈ C(J ;x), t ∈ J , we have that

‖Gu(t)−Gv(t)‖ ≤ ‖Sα(t)[g(u)− g(v)]‖

+
∫ t

0

(t− s)α−1‖Tα(t− s)[f(s, u(s))− f(s, v(s))]‖ ds

≤Mlg‖u− v‖C +
αM

Γ(1 + α)

∫ t

0

(t− s)α−1 ds · lf‖u− v‖C

≤
(
Mlg +

Mbα

Γ(1 + α)
lf
)
‖u− v‖C .

Then

‖Gu−Gv‖C ≤
(
Mlg +

Mbα

Γ(1 + α)
lf
)
‖u− v‖C .

According to (4.8), we find that G is a contraction operator in C(J ;X). Thus G
has a unique fixed point u, which is the unique mild solution to the problem (1.1).
The proof is complete. �
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Conclusions. This article is motivated by some recent papers [22, 31, 21], where
some fractional nonlocal differential equations are discussed when T (t) is compact
or equicontinuous. Since it is difficult to determine whether an operator semi-
group is compact (see Pazy[24]), we do not assume that A generates a compact
semigroup. It allow us to discuss some differential equations which contain a lin-
ear operator that generates a noncompact semigroup. We give a simple exam-
ple. Let X = L2(−∞,+∞). The ordinary differential operator A = d/dx with
D(A) = H1(−∞,+∞), generates a semigroup T (t) defined by T (t)u(s) = u(t+ s),
for every u ∈ X. The C0-semigroup T (t) is not compact on X.

Another motivation of this paper is the control problem of fractional differential
system. Exact controllability for fractional order systems have been discussed by
many authors. Some controllability results are obtained with the assumptions that
the associated semigroup T (t) is compact and the inverse of control operator is
bounded. However, Hernández and O’Regan [13] have pointed out that in this
case the application of controllability result is restricted to the finite dimensional
space. Here we can also deal with the fractional control problem in the similar way
and give a way to remove the compactness assumptions for the nonlocal control
problems.

Acknowledgments. Research is partially supported by the National Natural Sci-
ence Foundation of China (11271316, 11101353), the Foundation of Huaiyin Insti-
tute of Technology (HGC1229).
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