Electronic Journal of Differential Equations, Vol. 2013 (2013), No. 243, pp. 1-6. ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu ftp ejde.math.txstate.edu

GENERALIZED PICONE'S IDENTITY AND ITS APPLICATIONS

KAUSHIK BAL

Abstract

In this article we give a generalized version of Picone's identity in a nonlinear setting for the p-Laplace operator. As applications we give a Sturmian Comparison principle and a Liouville type theorem. We also study a related singular elliptic system.

1. Introduction

The classical Picone's identity states that, for differentiable functions $v>0$ and $u \geq 0$, we have

$$
\begin{equation*}
|\nabla u|^{2}+\frac{u^{2}}{v^{2}}|\nabla v|^{2}-2 \frac{u}{v} \nabla u \nabla v=|\nabla u|^{2}-\nabla\left(\frac{u^{2}}{v}\right) \nabla v \geq 0 \tag{1.1}
\end{equation*}
$$

Later Allegreto-Huang [1] presented a Picone's identity for the p-Laplacian, which is an extension of (1.1). As an immediate consequence, they obtained a wide array of applications including the simplicity of the eigenvalues, Sturmian comparison principles, oscillation theorems and Hardy inequalities to name a few. This work motivated a lot of generalization of the Picone's identity in different cases see [3, 6, 7] and the reference therein. In a recent paper Tyagi 7] proved a generalized version of Picone's identity in the nonlinear framework, asking the question about the Picone's identity which can deal with problems of the type:

$$
\begin{gathered}
-\Delta u=a(x) f(u) \quad \text { in } \Omega \\
u=0 \quad \text { on } \partial \Omega .
\end{gathered}
$$

where Ω is a open, bounded subset of \mathbb{R}^{n}.
They proved that for differentiable functions $v>0$ and $u \geq 0$ we have

$$
\begin{equation*}
|\nabla u|^{2}+\frac{|\nabla u|^{2}}{f^{\prime}(v)}+\left(\frac{u \sqrt{f^{\prime}(v)} \nabla v}{f(v)}-\frac{\nabla u}{\sqrt{f^{\prime}(v)}}\right)^{2}=|\nabla u|^{2}-\nabla\left(\frac{u^{2}}{f(v)}\right) \cdot \nabla v \geq 0 \tag{1.2}
\end{equation*}
$$

where $f(y) \neq 0$ and $f^{\prime}(y) \geq 1$ for all $y \neq 0 ; f(0)=0$.
Moreover $|\nabla u|^{2}-\nabla\left(u^{2} / f(v)\right) \cdot \nabla v=0$ holds if and only if $u=c v$ for an arbitrary constant c. In this article, we generalize the main result of Tyagi [7 for the p laplacian operator; i.e, we will give a nonlinear analogue of the Picone's identity for the p-Laplacian operator.

In this work, we assume the following hypothesis:

[^0]- Ω denotes any domain in \mathbb{R}^{n}.
- $1<p<\infty$.
- $f:(0, \infty) \rightarrow(0, \infty)$ be a C^{1} function.

2. Main Results

We first start with the Picone's identity for p-Laplacian.
Theorem 2.1. Let $v>0$ and $u \geq 0$ be two non-constant differentiable functions in Ω. Also assume that $f^{\prime}(y) \geq(p-1)\left[f(y)^{\frac{p-2}{p-1}}\right]$ for all y. Define

$$
\begin{gathered}
L(u, v)=|\nabla u|^{p}-\frac{p u^{p-1} \nabla u|\nabla v|^{p-2} \nabla v}{f(v)}+\frac{u^{p} f^{\prime}(v)|\nabla v|^{p}}{[f(v)]^{2}} . \\
R(u, v)=|\nabla u|^{p}-\nabla\left(\frac{u^{p}}{f(v)}\right)|\nabla v|^{p-2} \nabla v
\end{gathered}
$$

Then $L(u, v)=R(u, v) \geq 0$. Moreover $L(u, v)=0$ a.e. in Ω if and only if $\nabla\left(\frac{u}{v}\right)=0$ a.e. in Ω.

Remark 2.2. When $p=2$ and $f(y)=y$ we get the Classical Picone's Identity (1.1) for Laplacian and when $p=2$ we get back its nonlinear version 1.2.

Proof of Theorem 2.1. Expanding $R(u, v)$ by direct calculation we get $L(u, v)$. To show $L(u, v) \geq 0$ we proceed as follows,

$$
\begin{aligned}
L(u, v)= & |\nabla u|^{p}-\frac{p u^{p-1} \nabla u|\nabla v|^{p-2} \nabla v}{f(v)}+\frac{u^{p} f^{\prime}(v)|\nabla v|^{p}}{[f(v)]^{2}} \\
= & |\nabla u|^{p}+\frac{u^{p} f^{\prime}(v)|\nabla v|^{p}}{[f(v)]^{2}}-\frac{p u^{p-1}|\nabla u||\nabla v|^{p-1}}{f(v)} \\
& +\frac{p u^{p-1}|\nabla v|^{p-2}}{f(v)}\{|\nabla u||\nabla v|-\nabla u \nabla v\} \\
= & p\left(\frac{|\nabla u|^{p}}{p}+\frac{(u|\nabla v|)^{(p-1) q}}{q[f(v)]^{q}}\right)-\frac{p}{q} \frac{(u|\nabla v|)^{(p-1) q}}{[f(v)]^{q}}-\frac{p u^{p-1}|\nabla u||\nabla v|^{p-1}}{f(v)} \\
& +\frac{u^{p} f^{\prime}(v)|\nabla v|^{p}}{[f(v)]^{2}}+\frac{p u^{p-1}|\nabla v|^{p-2}}{f(v)}\{|\nabla u||\nabla v|-\nabla u . \nabla v\}
\end{aligned}
$$

Recall from Young's inequality, for non-negative a and b, we have

$$
\begin{equation*}
a b \leq \frac{a^{p}}{p}+\frac{b^{q}}{q} \tag{2.1}
\end{equation*}
$$

where $\frac{1}{p}+\frac{1}{q}=1$. Equality holds if $a^{p}=b^{q}$.
So using Young's Inequality we have,

$$
\begin{equation*}
p\left(\frac{|\nabla u|^{p}}{p}+\frac{(u|\nabla v|)^{(p-1) q}}{q[f(v)]^{q}}\right) \geq \frac{p u^{p-1}|\nabla u||\nabla v|^{p-1}}{f(v)} \tag{2.2}
\end{equation*}
$$

Which is possible since both u and f are non negative. Equality holds when

$$
\begin{equation*}
|\nabla u|=\frac{u}{[f(v)]^{\frac{q}{p}}}|\nabla v| \tag{2.3}
\end{equation*}
$$

Again using the fact that, $f^{\prime}(y) \geq(p-1)\left[f(y)^{\frac{p-2}{p-1}}\right]$ we have

$$
\begin{equation*}
\frac{u^{p} f^{\prime}(v)|\nabla v|^{p}}{[f(v)]^{2}} \geq \frac{p}{q} \frac{(u|\nabla v|)^{(p-1) q}}{[f(v)]^{q}} \tag{2.4}
\end{equation*}
$$

Equality holds when

$$
\begin{equation*}
f^{\prime}(y)=(p-1)\left[f(y)^{\frac{p-2}{p-1}}\right] . \tag{2.5}
\end{equation*}
$$

Combining (2.2) and (2.4) we obtain $L(u, v) \geq 0$. Equality holds when (2.3) and (2.5) together with $|\nabla u||\overline{\nabla v}|=\nabla u . \nabla v$ holds simultaneously.

Solving for 2.5) one obtains $f(v)=v^{p-1}$. So when, $L(u, v)\left(x_{0}\right)=0$ and $u\left(x_{0}\right) \neq$ 0 , then 2.2 together with $f(v)=v^{p-1}$ and $|\nabla u \| \nabla v|=\nabla u . \nabla v$ yields,

$$
\nabla\left(\frac{u}{v}\right)\left(x_{0}\right)=0 .
$$

If $u\left(x_{0}\right)=0$, then $\nabla u=0$ a.e. on $\{u(x)=0\}$ and $\nabla\left(\frac{u}{v}\right)\left(x_{0}\right)=0$.

3. Applications

We begin this section with the application of the above Picone's identity in the nonlinear framework. As is well understood today that Picone's identity plays a significant role in the proof of Sturmian comparison theorems, Hardy-Sobolev inequalities, eigenvalue problems, determining Morse index etc. In this section, following the spirit of [1] we will give some applications of the nonlinear Picone's identity.

Hardy type result. We start this part with a theorem which can be applied to prove Hardy type inequality following the same method as in [1].

Theorem 3.1. Assume that there is a $v \in C^{1}$ satisfying

$$
-\Delta_{p} v \geq \lambda g f(v) \quad v>0 \quad \text { in } \Omega
$$

for some $\lambda>0$ and nonnegative continuous function g. Then for any $u \in C_{c}^{\infty}(\Omega)$; $u \geq 0$ it holds that

$$
\begin{equation*}
\int_{\Omega}|\nabla u|^{p} \geq \lambda \int_{\Omega} g|u|^{p} \tag{3.1}
\end{equation*}
$$

where, f satisfies $f^{\prime}(y) \geq(p-1)\left[f(y)^{\frac{p-2}{p-1}}\right]$.
Proof. Let $\Omega_{0} \subset \Omega, \Omega_{0}$ be compact. Take $\phi \in C_{0}^{\infty}(\Omega), \phi>0$. By Theorem 2.1, we have

$$
\begin{aligned}
0 & \leq \int_{\Omega_{0}} L(\phi, v) \leq \int_{\Omega} L(\phi, v) \\
& =\int_{\Omega} R(\phi, v)=\int_{\Omega}|\nabla \phi|^{p}-\nabla\left(\frac{\phi^{p}}{f(v)}\right)|\nabla v|^{p-2} \nabla v \\
& =\int_{\Omega}|\nabla \phi|^{p}+\nabla\left(\frac{\phi^{p}}{f(v)}\right) \Delta_{p} v \\
& \leq \int_{\Omega}|\nabla \phi|^{p}-\lambda \int_{\Omega} g \phi^{p} .
\end{aligned}
$$

Letting $\phi \rightarrow u$, we have (3.1).

Sturmium Comparison Principle. Comparison principles always played an important role in the qualitative study of partial differential equation. We present here a nonlinear version of the Sturmium comparison principle.
Theorem 3.2. Let f_{1} and f_{2} are the two weight functions such that $f_{1}<f_{2}$ and f satisfies $f^{\prime}(y) \geq(p-1)\left[f(y)^{\frac{p-2}{p-1}}\right]$. If there is a positive solution u satisfying

$$
-\Delta_{p} u=f_{1}(x)|u|^{p-2} u \text { for } x \in \Omega, \quad u=0 \quad \text { on } \partial \Omega
$$

Then any nontrivial solution v of

$$
\begin{gather*}
-\Delta_{p} v=f_{2}(x) f(v) \quad \text { for } x \in \Omega \\
u=0 \quad \text { on } \partial \Omega \tag{3.2}
\end{gather*}
$$

must change sign.
Proof. Let us assume that there exists a solution $v>0$ of 3.2 in Ω. Then by Picone's identity we have

$$
\begin{aligned}
0 & \leq \int_{\Omega} L(u, v)=\int_{\Omega} R(u, v) \\
& =\int_{\Omega}|\nabla u|^{p}-\nabla\left(\frac{u^{p}}{f(v)}\right)|\nabla v|^{p-2} \nabla v \\
& =\int_{\Omega} f_{1}(x) u^{p}-f_{2}(x) u^{p} \\
& =\int_{\Omega}\left(f_{1}-f_{2}\right) u^{p}<0
\end{aligned}
$$

which is a contradiction. Hence, v changes sign in Ω.
Liouville type result. In this section we present a Liouville type result for p Laplacian. Existence of solution for some equation having non-variational structure is generally obtained using the bifurcation method and by obtaining a priori estimates. With this in mind we give a proof of Liouville type result motivated by [5].
Theorem 3.3. Let $c_{0}>0, p>1$ and f satisfy $f^{\prime}(y) \geq(p-1)\left[f(y)^{\frac{p-2}{p-1}}\right]$. Then the inequality

$$
\begin{equation*}
-\Delta_{p} v \geq c_{0} f(v) \tag{3.3}
\end{equation*}
$$

has no positive solution in $W_{\mathrm{loc}}^{1, p}\left(\mathbb{R}^{n}\right)$.
Proof. We start by assuming that v is a positive solution of (3.3). Choose $R>0$ and let ϕ_{1} be the first eigenfunction corresponding to the first eigenvalue $\lambda_{1}\left(B_{R}(y)\right)$ such that $\lambda_{1}\left(B_{R}(y)\right)<c_{0}$.

Taking $\frac{\phi_{1}^{p}}{f(v)}$ as a test function, which is valid since by Vazquez maximum principle [8], $\frac{\phi_{1}^{p}}{f(v)} \in W^{1, p}\left(B_{R}(y)\right)$. Hence,

$$
c_{0} \int_{B_{R}(y)} \phi_{1}^{p}-\int_{B_{R}(y)}\left|\nabla \phi_{1}\right|^{p} \leq-\int_{B_{R}(y)} R\left(\phi_{1}, v\right) \leq 0
$$

Tt follows that

$$
c_{0} \leq \frac{\int_{B_{R}(y)}\left|\nabla \phi_{1}\right|^{p}}{\int_{B_{R}(y)} \phi_{1}^{p}}=\lambda_{1}\left(B_{R}(y)\right)<c_{0}
$$

which is a contradiction.

Quasilinear system with singular nonlinearity. In this part we will start with a singular system of elliptic equations often occurring in chemical heterogeneous catalyst dynamics. We will show that Picone's Identity yields a linear relationship between u and v. For more information on the singular elliptic equations we refer to [2, 4] and the reference therein.

Consider the singular system of elliptic equations

$$
\begin{gather*}
-\Delta_{p} u=f(v) \quad \text { in } \Omega \\
-\Delta_{p} v=\frac{[f(v)]^{2}}{u^{p-1}} \quad \text { in } \Omega \tag{3.4}\\
u>0, \quad v>0 \quad \text { in } \Omega \\
u=0, \quad v=0 \quad \text { on } \partial \Omega .
\end{gather*}
$$

where f satisfies $f^{\prime}(y) \geq(p-1)\left[f(y)^{\frac{p-2}{p-1}}\right]$. We have the following result.
Theorem 3.4. Let (u, v) be a weak solution of 3.4 and f satisfy $f^{\prime}(y) \geq(p-$ 1) $\left[f(y)^{\frac{p-2}{p-1}}\right]$. Then $u=c_{1} v$ where c_{1} is a constant.

Proof. Let (u, v) be the weak solution of (3.4). Now for any ϕ_{1} and ϕ_{2} in $W_{0}^{1, p}(\Omega)$, we have

$$
\begin{gather*}
\int_{\Omega}|\nabla u|^{p-2}|\nabla u| \nabla \phi_{1} d x=\int_{\Omega} f(v) \phi_{1} d x \tag{3.5}\\
\int_{\Omega}|\nabla u|^{p-2}|\nabla u| \nabla \phi_{2} d x=\int_{\Omega} \frac{[f(v)]^{2}}{u^{p-1}} \phi_{2} d x \tag{3.6}
\end{gather*}
$$

Choosing $\phi_{1}=u$ and $\phi_{2}=u^{p} / f(v)$ in (3.5) and (3.6) we obtain

$$
\int_{\Omega}|\nabla u|^{p} d x=\int_{\Omega} u f(v) d x=\int_{\Omega} \nabla\left(\frac{u^{p}}{f(v)}\right)|\nabla v|^{p-2} \nabla v d x
$$

Hence we have

$$
\int_{\Omega} R(u, v) d x=\int_{\Omega}\left(|\nabla u|^{p}-\nabla\left(\frac{u^{p}}{f(v)}\right)|\nabla v|^{p-2} \nabla v\right) d x=0 .
$$

By the positivity of $R(u, v)$ we have that $R(u, v)=0$ and hence

$$
\nabla\left(\frac{u}{v}\right)=0
$$

which gives $u=c_{1} v$ where c_{1} is a constant.
Acknowledgements. The author would like to thank the anonymous referee for his/her useful comments and suggestions.

References

[1] Walter Allegretto, Yin Xi Huang. A Picone's identity for the p-Laplacian and applications. Nonlinear Anal., 32(7):819-830, 1998.
[2] Mehdi Badra, Kaushik Bal, Jacques Giacomoni; A singular parabolic equation: Existence, stabilization. J. Differential Equation, 252:5042-5075, 2012.
[3] G Bognar, O. Dosly; The application of picone-type identity for some nonlinear elliptic differential equations. Acta Mathematica Universitatis Comenianae, 72:45-57, 2003.
[4] J. Giacomoni, K. Saoudi; Multiplicity of positive solutions for a singular and critical problem. Nonlinear Anal., 71(9):4060-4077, 2009.
[5] Leonelo Iturriaga, Sebastián Lorca, Justino Sánchez; Existence and multiplicity results for the p-Laplacian with a p-gradient term. NoDEA Nonlinear Differential Equations Appl., 15(6):729-743, 2008.
[6] Takaŝi Kusano, Jaroslav Jaroš, Norio Yoshida; A Picone-type identity and Sturmian comparison and oscillation theorems for a class of half-linear partial differential equations of second order. Nonlinear Anal., 40(1-8, Ser. A: Theory Methods):381-395, 2000. Lakshmikantham's legacy: a tribute on his 75th birthday.
[7] J Tyagi; A nonlinear picone's identity and its applications. Applied Mathematics Letters, 26:624-626, 2013.
[8] J. L. Vázquez; A strong maximum principle for some quasilinear elliptic equations. Appl. Math. Optim., 12(3):191-202, 1984.

Kaushik Bal
School of Mathematical Sciences, National Institute for Science Education and Research, Institute of Physics Campus, Bhubaneshwar-751005, Odisha, India

E-mail address: kausbal@gmail.com

[^0]: 2000 Mathematics Subject Classification. 35J20, 35J65, 35J70.
 Key words and phrases. Quasilinear elliptic equation; Picone's identity; comparison theorem. © 2013 Texas State University - San Marcos.
 Submitted July 24, 2013. Published November 8, 2013.

