OSCILLATION OF SOLUTIONS TO NEUTRAL NONLINEAR IMPULSIVE HYPERBOLIC EQUATIONS WITH SEVERAL DELAYS

JICHEN YANG, ANPING LIU, GUANGJIE LIU

ABSTRACT. In this article, we study oscillatory properties of solutions to neutral nonlinear impulsive hyperbolic partial differential equations with several delays. We establish sufficient conditions for oscillation of all solutions.

1. INTRODUCTION

The theory of partial differential equations can be applied to many fields, such as to biology, population growth, engineering, generic repression, control theory and climate model. In the last few years, the fundamental theory of partial differential equations with deviating argument has undergone intensive development. The qualitative theory of this class of equations, however, is still in an initial stage of development. Many studies have been done under the assumption that the state variables and system parameters change continuously. However, one may easily visualize situations in nature where abrupt change such as shock and disasters may occur. These phenomena are short-time perturbations whose duration is negligible in comparison with the duration of the whole evolution process. Consequently, it is natural to assume, in modeling these problems, that these perturbations act instantaneously, that is, in the form of impulses.

In 1991, the first paper [4] on this class of equations was published. However, on oscillation theory of impulsive partial differential equations only a few of papers have been published. Recently, Bainov, Minchev, Liu and Luo [1, 2, 6, 7, 8, 9, 10, 11] investigated the oscillation of solutions of impulsive partial differential equations with or without deviating argument. But there is a scarcity in the study of oscillation theory of nonlinear impulsive hyperbolic equations of neutral type with several delays.
In this article, we discuss oscillatory properties of solutions for the nonlinear impulsive hyperbolic equation of neutral type with several delays.

\[
\frac{\partial^2}{\partial t^2} \left[u(t, x) + \sum_{i=1}^{m} g_i u(t - \tau_i, x) \right] = a(t)h(u)\Delta u - q(t, x)f(u(t, x)) + \sum_{r=1}^{l} a_r(t)h_r(u(t - \sigma_r, x))\Delta u(t - \sigma_r, x) \tag{1.1}
\]

\[
- \sum_{j=1}^{n} q_j(t, x)f_j(u(t - \rho_j, x)), \quad t \neq t_k, \ (t, x) \in \mathbb{R}^+ \times \Omega = G,
\]

\[
u(t_k^+, x) = h_k(t_k, x, u(t_k, x)), \quad k = 1, 2, \ldots, \tag{1.2}
\]

\[
u(t_k^-, x) = p_k(t_k, x, u(t_k, x)), \quad k = 1, 2, \ldots, \tag{1.3}
\]

with the boundary conditions

\[
u = 0, \quad (t, x) \in \mathbb{R}^+ \times \partial \Omega, \tag{1.4}
\]

\[
\frac{\partial u}{\partial n} + \varphi(t, x)u = 0, \quad (t, x) \in \mathbb{R}^+ \times \partial \Omega, \tag{1.5}
\]

and the initial condition

\[
u(t, x) = \Phi(t, x), \quad \frac{\partial u(t, x)}{\partial t} = \Psi(t, x), \quad (t, x) \in [-\delta, 0] \times \Omega.
\]

Here \(\Omega \subset \mathbb{R}^N \) is a bounded domain with boundary \(\partial \Omega \) smooth enough and \(n \) is a unit exterior normal vector of \(\partial \Omega \), \(\delta = \max\{\tau_i, \sigma_r, \rho_j\} \), \(\Phi(t, x) \in C^2([-\delta, 0] \times \Omega, \mathbb{R}) \), \(\Psi(t, x) \in C^1([-\delta, 0] \times \Omega, \mathbb{R}) \).

This article is organized as follows. In Section 2, we study the oscillatory properties of solutions for problems (1.1), (1.4). In Section 3, we discuss oscillatory properties of solutions for problems (1.1), (1.5).

We will use the following conditions:

\(\text{(H1)}\) \(a(t), a_i(t) \in PC(\mathbb{R}^+, \mathbb{R}^+), \tau_i, \sigma_r, \rho_j \) are positive constants, \(q(t, x), q_j(t, x) \) are functions in \(C(\mathbb{R}^+ \times \Omega, (0, \infty)) \), \(g_i \) is a non-negative constant, \(\sum_{i=1}^{m} g_i < 1, i = 1, 2, \ldots, m, j = 1, 2, \ldots, n, r = 1, 2, \ldots, l; \) where \(PC \) denote the class of functions which are piecewise continuous in \(t \) with discontinuities of first kind only at \(t = t_k, k = 1, 2, \ldots, \) and left continuous at \(t = t_k, k = 1, 2, \ldots, \).

\(\text{(H2)}\) \(h(u), h_r(u) \in C^1(\mathbb{R}, \mathbb{R}), f(u), f_r(u) \in C(\mathbb{R}, \mathbb{R}); f(u)/u \geq C \) a positive constant, \(f_j(u)/u \geq C_j \) a positive constant, \(u \neq 0; h(0) = 0, h_r(0) = 0, u h'(u) \geq 0, u h'_r(u) \geq 0, \varphi(t, x) \in C(\mathbb{R}^+ \times \partial \Omega, \mathbb{R}), h(u)\varphi(t, x) \geq 0, h_r(u)\varphi(t - \sigma_r, x) \geq 0, r = 1, 2, \ldots, l, 0 < t_1 < t_2 < \cdots < t_k < \cdots, \lim_{k \to \infty} t_k = \infty. \)

\(\text{(H3)}\) \(u(t, x) \) and their derivatives \(u_t(t, x) \) are piecewise continuous in \(t \) with discontinuities of first kind only at \(t = t_k, k = 1, 2, \ldots, \) and left continuous at \(t = t_k, u(t_k, x) = u(t_k^-, x), u_t(t_k, x) = u_t(t_k^-, x), k = 1, 2, \ldots. \)

\(\text{(H4)}\) \(h_k(t_k, x, u(t_k, x)), p_k(t_k, x, u_t(t_k, x)) \in PC(\mathbb{R}^+ \times \Omega \times \mathbb{R}, \mathbb{R}), k = 1, 2, \ldots, \) and there exist positive constants \(\overline{a}_k, \underline{a}_k, \overline{b}_k, \underline{b}_k \) and \(\overline{b}_k \leq \underline{a}_k \) such that for \(k = 1, 2, \ldots, \)

\[
\underline{a}_k \leq \frac{h_k(t_k, x, \eta)}{\eta} \leq \overline{a}_k, \quad \underline{b}_k \leq \frac{p_k(t_k, x, \phi)}{\phi} \leq \overline{b}_k.
\]
Let us construct the sequence \(\{t_k\} = \{t_k\} \cup \{t_{kr}\} \cup \{t_{kj}\} \), where \(t_{ki} = t_k + \tau_i \), \(t_{kr} = t_k + \sigma_r \), \(t_{kj} = t_k + \rho_j \) and \(t_k < t_{k+1} \), \(i = 1, 2, \ldots, m \), \(r = 1, 2, \ldots, l, j = 1, 2, \ldots, n \), \(k = 1, 2, \ldots \).

Definition 1.1. By a solution of problems \((1.1), (1.4), (1.5)\) with initial condition, we mean that any function \(u(t,x) \) satisfies (1.4) \((1.5)\) with initial condition.

1. If \(-\delta \leq t \leq 0 \), then \(u(t,x) = \Phi(t,x), \quad \frac{\partial u(t,x)}{\partial t} = \Psi(t,x). \)
2. If \(0 \leq t \leq \bar{t}_1 = t_1 \), then \(u(t,x) \) coincides with the solution of the problems \((1.1)-(1.3)\) and \((1.4) \((1.5)\) with initial condition.
3. If \(t_k < t \leq \bar{t}_{k+1}, \quad t_k \in \{t_k\} \setminus \{(t_{ki}) \cup \{t_{kr}\} \cup \{t_{kj}\}\}, \) then \(u(t,x) \) coincides with the solution of the problems \((1.1)-(1.3)\) and \((1.4) \((1.5)\) and coincides with the solution of the problem

\[
\frac{\partial^2}{\partial t^2} \left[u(t^+,x) + \sum_{i=1}^m g_i u((t-\tau_i)^+,x)\right] = a(t) h(u(t^+,x)) \Delta u(t^+,x) - q(t,x) f(u(t^+,x)) \\
+ \sum_{r=1}^l a_r(t) h_r(u((t-\sigma_r)^+,x)) \Delta u((t-\sigma_r)^+,x) \\
- \sum_{j=1}^n q_j(t,x) f_j(u((t-\rho_j)^+,x)), \quad t \neq t_k, \quad (t,x) \in \mathbb{R}^+ \times \Omega = G, \\
u(t_k^+,x) = u(t_k,x), \quad u(t_k^+,x) = u_t(t_k,x), \\
\text{for } t_k \in \{\{t_{ki}\} \cup \{t_{kr}\} \cup \{t_{kj}\}\} \setminus \{t_k\},
\]

or
\[
u(t_k^+,x) = h_{k_i}(t_k,x,u(t_k,x)), \quad u(t_k^+,x) = p_{k_i}(t_k,x,u_t(t_k,x), \\
\text{for } t_k \in \{\{t_{ki}\} \cup \{t_{kr}\} \cup \{t_{kj}\}\} \cap \{t_k\},
\]

where the number \(k_i \) is determined by the equality \(t_k = t_{k_i} \).

We introduce the notation:

\[
\Gamma_k = \{(t,x) : t \in (t_k,t_{k+1}), x \in \Omega\}, \quad \Gamma = \bigcup_{k=0}^\infty \Gamma_k, \\
\bar{\Gamma}_k = \{(t,x) : t \in (t_k,t_{k+1}), x \in \bar{\Omega}\}, \quad \bar{\Gamma} = \bigcup_{k=0}^\infty \bar{\Gamma}_k, \\
v(t) = \int_\Omega u(t,x) \, dx, \quad q(t) = \min_{x \in \Omega} q(t,x), \quad q_j(t) = \min_{x \in \Omega} q_j(t,x).
\]

Definition 1.2. The solution \(u \in C^2(\Gamma) \cap C^1(\bar{\Gamma}) \) of problems \((1.1), (1.4), (1.5)\) is called non-oscillatory in the domain \(G \) if it is either eventually positive or eventually negative. Otherwise, it is called oscillatory.

2. **Oscillation properties for \((1.1), (1.4)\)**

For the main result of this article, we need following lemmas.
Lemma 2.1. Let $u \in C^2(\Gamma) \cap C^1(\overline{\Gamma})$ be a positive solution of (1.1), (1.4) in G, then function $w(t)$ satisfies the impulsive differential inequality

$$w''(t) + C \left(1 - \sum_{i=1}^{m} g_i \right) q(t) w(t) + \sum_{j=1}^{n} C_j \left(1 - \sum_{i=1}^{m} g_i \right) q_j(t) w(t - \rho_j) \leq 0, \quad t \neq t_k,$$

(2.1)

$$a_k \leq \frac{w(t_k^+)}{w(t_k)} \leq \bar{a}_k, \quad k = 1, 2, \ldots,$$

(2.2)

$$b_k \leq \frac{w'(t_k^+)}{w'(t_k)} \leq \bar{b}_k, \quad k = 1, 2, \ldots,$$

(2.3)

where $w(t) = v(t) + \sum_{i=1}^{m} g_i v(t - \tau_i)$.

Proof. Let $u(t, x)$ be a positive solution of the problem (1.1), (1.4) in G. Without loss of generality, we may assume that there exists a $T > 0$, $t_0 > T$ such that $u(t, x) > 0, u(t - \tau_i, x) > 0, i = 1, 2, \ldots, m, u(t - \sigma_r, x) > 0, r = 1, 2, \ldots, l, u(t - \rho_j, x) > 0, j = 1, 2, \ldots, n$, for any $(t, x) \in [t_0, \infty) \times \Omega$.

For $t \geq t_0, t \neq t_k, k = 1, 2, \ldots$, integrating (1.1) with respect to x over Ω yields

$$\frac{d^2}{dt^2} \left[\int_{\Omega} u(t, x) \, dx + \sum_{i=1}^{m} g_i \int_{\Omega} u(t - \tau_i, x) \, dx \right]$$

$$= a(t) \int_{\Omega} h(u) \Delta u \, dx - \int_{\Omega} q(t, x) f(u(t, x)) \, dx$$

$$+ \sum_{r=1}^{l} a_r(t) \int_{\Omega} h_r(u(t - \sigma_r, x)) \Delta u(t - \sigma_r, x) \, dx$$

$$- \sum_{j=1}^{n} \int_{\Omega} g_j(t, x) f_j(u(t - \rho_j, x)) \, dx.$$

By Green’s formula and the boundary condition, we have

$$\int_{\Omega} h(u) \Delta u \, dx = \int_{\partial \Omega} h(u) \frac{\partial u}{\partial n} \, ds - \int_{\Omega} h'(u) |\nabla u|^2 \, dx$$

$$- \int_{\Omega} h'(u) |\nabla u|^2 \, dx \leq 0,$$

$$\int_{\Omega} h_r(u(t - \sigma_r, x)) \Delta u(t - \sigma_r, x) \, dx \leq 0.$$

From condition (H2), we can easily obtain

$$\int_{\Omega} q(t, x) f(u(t, x)) \, dx \geq C q(t) \int_{\Omega} u(t, x) \, dx,$$

$$\int_{\Omega} g_j(t, x) f_j(u(t - \rho_j, x)) \, dx \geq C_j g_j(t) \int_{\Omega} u(t - \rho_j, x) \, dx.$$

From the above it follows that

$$\frac{d^2}{dt^2} \left[v(t) + \sum_{i=1}^{m} g_i v(t - \tau_i) \right] + C q(t) v(t) + \sum_{j=1}^{n} C_j g_j(t) v(t - \rho_j) \leq 0.$$
Set \(w(t) = v(t) + \sum_{i=1}^{m} g_i v(t - \tau_i) \), we have \(w(t) \geq v(t) \), then we can obtain

\[
w''(t) + C q(t) v(t) + \sum_{j=1}^{n} C_j q_j(t) v(t - \rho_j) \leq 0, \quad t \neq t_k.
\]

From this inequality, we have \(w''(t) < 0 \), and \(w'(t) > 0 \) for \(t \geq t_0 \). In fact, if \(w'(t) < 0 \), there exists \(t_1 \geq t_0 \) such that \(w'(t_1) < 0 \). Hence we have

\[
w(t) - w(t_1) = \int_{t_1}^{t} w'(s) ds \leq \int_{t_1}^{t} w'(t_1)(t - t_1),
\]

\[
\lim_{t \to +\infty} w(t) = -\infty.
\]

This is a contradiction, so \(w'(t) > 0 \). Because

\[
v(t) = w(t) - \sum_{i=1}^{m} g_i v(t - \tau_i)
\]

\[
= w(t) - \sum_{i=1}^{m} g_i \left[w(t - \tau_i) - \sum_{i=1}^{m} g_i v(t - 2\tau_i) \right]
\]

\[
= w(t) - \sum_{i=1}^{m} \sum_{i=1}^{m} g_i w(t - \tau_i) + \sum_{i=1}^{m} g_i \left[\sum_{i=1}^{m} g_i v(t - 2\tau_i) \right]
\]

\[
\geq \left(1 - \sum_{i=1}^{m} g_i \right) w(t),
\]

\[
v(t - \rho_j) \geq \left(1 - \sum_{i=1}^{m} g_i \right) w(t - \rho_j).
\]

Hence, we obtain

\[
w''(t) + C \left(1 - \sum_{i=1}^{m} g_i \right) q(t) w(t) + \sum_{j=1}^{n} C_j \left(1 - \sum_{i=1}^{m} g_i \right) q_j(t) w(t - \rho_j) \leq 0, \quad t \neq t_k.
\]

For \(t \geq t_0 \), \(t = t_k \), \(k = 1, 2, \ldots, \) from (1.2), (1.3) and condition (H4), we obtain

\[
a_k \leq \frac{u(t_k^+, x)}{u(t_k, x)} \leq \sigma_k,
\]

\[
b_k \leq \frac{u(t_k^+, x)}{u(t_k, x)} \leq \beta_k.
\]

According to the \(v(t) = \int_{t \Omega} u(t, x) dx \), we obtain

\[
a_k \leq \frac{v(t_k^+, x)}{v(t_k, x)} \leq \sigma_k, \quad b_k \leq \frac{v'(t_k^+, x)}{v'(t_k, x)} \leq \beta_k.
\]

Because \(w(t) = v(t) + \sum_{i=1}^{m} g_i v(t - \tau_i) \), we finally have

\[
a_k \leq \frac{w(t_k^+, x)}{w(t_k, x)} \leq \sigma_k, \quad b_k \leq \frac{w'(t_k^+, x)}{w'(t_k, x)} \leq \beta_k.
\]

Hence we obtain that \(w(t) \) is a solution of impulsive differential inequality (2.1). This completes the proof.

\[\square\]

Lemma 2.2 (Lemma 1.4.1). Assume that

(A1) the sequence \(\{ t_k \} \) satisfies \(0 < t_0 < t_1 < t_2 < \ldots, \lim_{k \to \infty} t_k = \infty; \)
Theorem 2.4. If condition

\[m(t) \in PC^1[\mathbb{R}^+, \mathbb{R}] \text{ is left continuous at } t_k \text{ for } k = 1, 2, \ldots; \]

(A3) \(m(t) \leq p(t)m(t) + q(t), \ t \neq t_k, \)

\[m(t_k^+) \leq d_km(t_k) + e_k, \]

where \(p(t), q(t) \in C(\mathbb{R}^+, \mathbb{R}), \ d_k \geq 0 \) and \(e_k \) are constants. \(PC \) denotes the class of piecewise continuous function from \(\mathbb{R}^+ \) to \(\mathbb{R} \), with discontinuities of the first kind only at \(t = t_k, \ k = 1, 2, \ldots. \)

Then

\[m(t) \leq m(t_0) \prod_{t_0 < t_k < t} d_k \exp \left(\int_{t_0}^{t_k} p(s)ds \right) + \int_{t_0}^{t} \prod_{s < t_k < t} d_k \exp \left(\int_{s}^{t_k} p(r)dr \right) q(s)ds \]

\[\leq \sum_{t_0 < t_k < t} \prod_{s < t_k < t} d_j \exp \left(\int_{t_k}^{t} p(s)ds \right) e_k. \]

Lemma 2.3. Let \(w(t) \) be an eventually positive (negative) solution of the differential inequality \((1.1)-(2.3)\). Assume that there exists \(T \geq t_0 \) such that \(w(t) > 0 \) \((w(t) < 0)\) for \(t \geq T \). If

\[\lim_{t \to +\infty} \int_{t_0}^{t} \prod_{t_0 < t_i < t} \frac{b_i}{d_k} F(s)ds = +\infty \] (2.6)

hold, then \(w'(t) \geq 0 \) \((w'(t) \leq 0)\) for \(t \in [T, t_1] \cup (\bigcup_{k=0}^{+\infty} (t_k, t_{k+1}]) \), where \(l = \min \{k : t_k \geq T\} \).

The following theorem is the first main result of this article.

Theorem 2.4. If condition \((2.6)\) and the following condition holds,

\[\lim_{t \to +\infty} \int_{t_0}^{t} \prod_{t_0 < t_i < t} \frac{a_i}{b_k} F(s)ds = +\infty, \] (2.7)

where

\[F(s) = C \left(1 - \sum_{i=1}^{m} g_i q(s) + \sum_{j=1}^{m} C_j \left(1 - \sum_{i=1}^{m} g_i \right) q_j(s) \exp(-\delta z(t_0)) \right). \]

Then each solution of \((1.1)-(1.3), (1.4)\) oscillates in \(G \).

Proof. Let \(u(t, x) \) be a non-oscillatory solution of \((1.1), (1.4)\). Without loss of generality, we can assume that there exists \(T > 0, t_0 \geq T, \) such that \(u(t, x) > 0, \ u(t - \tau_i, x) > 0, \ i = 1, 2, \ldots, m, \ u(t - \sigma_r, x) > 0, \ r = 1, 2, \ldots, l, \ u(t - \rho_j, x) > 0, \ j = 1, 2, \ldots, n \) for any \((t, x) \in [t_0, \infty) \times \Omega\). From Lemma 2.1 we know that \(w(t) \) is a solution of \((2.1)-(2.3)\).

For \(t \geq t_0, \ t \neq t_k, \ k = 1, 2, \ldots, \) define

\[z(t) = \frac{w'(t)}{w(t)}, \ t \geq t_0. \] (2.8)

From Lemma 2.3 we have \(z(t) > 0, \ t \geq t_0, w'(t) - z(t)w(t) = 0 \). We may assume that \(w(t_0) = 1 \), thus in view of \((2.1)-(2.3)\) we have that for \(t \geq t_0, \)

\[w(t) = \exp \left(\int_{t_0}^{t} z(s)ds \right). \] (2.9)
\[w'(t) = z(t) \exp \left(\int_{t_0}^{t} z(s) ds \right), \] (2.10)

\[w''(t) = z^2(t) \exp \left(\int_{t_0}^{t} z(s) ds \right) + z'(t) \exp \left(\int_{t_0}^{t} z(s) ds \right). \] (2.11)

We substitute (2.9)–(2.11) into (2.1) and obtain

\[z^2(t) \exp \left(\int_{t_0}^{t} z(s) ds \right) + z'(t) \exp \left(\int_{t_0}^{t} z(s) ds \right)
\]

\[+ C \left(1 - \sum_{i=1}^{m} g_i \right) q(t) \exp \left(\int_{t_0}^{t} z(s) ds \right)
\]

\[+ \sum_{j=1}^{n} C_j \left(1 - \sum_{i=1}^{m} g_i \right) q_j(t) \exp \left(\int_{t_0}^{t-\rho_j} z(s) ds \right) \leq 0. \]

Hence we have

\[z^2(t) + z'(t) + C \left(1 - \sum_{i=1}^{m} g_i \right) q(t)
\]

\[+ \sum_{j=1}^{n} C_j \left(1 - \sum_{i=1}^{m} g_i \right) q_j(t) \exp \left(- \int_{t-\rho_j}^{t} z(s) ds \right) \leq 0, \quad t \neq t_k,
\]

then we have

\[z'(t) + C \left(1 - \sum_{i=1}^{m} g_i \right) q(t)
\]

\[+ \sum_{j=1}^{n} C_j \left(1 - \sum_{i=1}^{m} g_i \right) q_j(t) \exp \left(- \int_{t-\rho_j}^{t} z(s) ds \right) \leq 0, \quad t \neq t_k.
\]

From above inequality and condition \(\bar{b}_k \leq \underline{a}_k \), we know that \(z(t) \) is non-increasing, then \(z(t) \leq z(t_0) \), for \(t \geq t_0 \), we obtain

\[z'(t) + C \left(1 - \sum_{i=1}^{m} g_i \right) q(t) + \sum_{j=1}^{n} C_j \left(1 - \sum_{i=1}^{m} g_i \right) q_j(t) \exp(-\delta z(t_0)) \leq 0, \quad t \neq t_k.
\]

From (2.2), (2.3) and (2.8), we obtain

\[z(t_k^+) = \frac{w'(t_k^+)}{w(t_k^+)} \leq \frac{\bar{b}_k}{\underline{a}_k} \frac{w'(t_k)}{w(t_k)} = \frac{\bar{b}_k}{\underline{a}_k} z(t_k), \]

so we can easily obtain

\[z'(t) \leq -C \left(1 - \sum_{i=1}^{m} g_i \right) q(t) - \sum_{j=1}^{n} C_j \left(1 - \sum_{i=1}^{m} g_i \right) q_j(t) \exp(-\delta z(t_0)), \quad t \neq t_k,
\]

\[z(t_k^+) \leq \frac{\bar{b}_k}{\underline{a}_k} z(t_k). \]

Let

\[-F(t) = -C \left(1 - \sum_{i=1}^{m} g_i \right) q(t) - \sum_{j=1}^{n} C_j \left(1 - \sum_{i=1}^{m} g_i \right) q_j(t) \exp(-\delta z(t_0)). \]
Then according to Lemma 3.1, we have
\[
z(t) \leq z(t_0) \prod_{t_0 < t_k < t} \frac{\bar{b}_k}{a_k} + \int_{t_0}^{t} \prod_{t_0 < t_k < s} \frac{\bar{b}_k}{a_k} (-F(s)) \, ds
\]
\[
eq \prod_{t_0 < t_k < t} \frac{\bar{b}_k}{a_k} \left[z(t_0) - \int_{t_0}^{t} \prod_{t_0 < t_k < s} \frac{a_k}{\bar{b}_k} F(s) \, ds \right] < 0.
\]
Since \(z(t) \geq 0\), this is a contradiction. The proof is complete. \(\square\)

3. Oscillation Properties of the Problem (1.1), (1.5)

For the second main theorem, we need following lemma.

Lemma 3.1. Let \(u \in C^2(\Gamma) \cap C^1(\bar{\Gamma})\) be a positive solution of (1.1), (1.5) in \(G\), then function \(w(t)\) satisfies the impulsive differential inequality
\[
w''(t) + C \left(1 - \sum_{i=1}^{m} g_i \right) q(t) w(t) + \sum_{j=1}^{n} C_j \left(1 - \sum_{i=1}^{m} g_i \right) g_j(t) w(t - \rho_j) \leq 0, \quad t \neq t_k,
\]
where \(w(t) = v(t) + \sum_{i=1}^{m} g_i v(t - \sigma_i)\).

Proof. Let \(u(t, x)\) be a positive solution of the problem (1.1), (1.5) in \(G\). Without loss of generality, we may assume that there exists a \(T > 0, t_0 > T\) such that \(u(t, x) > 0, u(t - \tau_i, x) > 0, i = 1, 2, \ldots, m, u(t - \sigma_r, x) > 0, r = 1, 2, \ldots, l, u(t - \rho_j, x) > 0, j = 1, 2, \ldots, n\), for any \((t, x) \in [t_0, \infty) \times \Omega\). For \(t \geq t_0, t \neq t_k, k = 1, 2, \ldots\), integrating (1.1) with respect to \(t\) over \(\Omega\) yields
\[
\frac{d^2}{dt^2} \left[\int_{\Omega} u(t, x) \, dx + \sum_{i=1}^{m} g_i \int_{\Omega} u(t - \tau_i, x) \, dx \right]
\]
\[
= a(t) \int_{\Omega} h(u) \Delta u \, dx - \int_{\Omega} q(t, x) f(u(t, x)) \, dx
\]
\[
+ \sum_{r=1}^{l} a_r(t) \int_{\Omega} h_r(u(t - \sigma_r, x)) \Delta u(t - \sigma_r, x) \, dx
\]
\[- \sum_{j=1}^{n} \int_{\Omega} g_j(t, x) f_j(u(t - \rho_j, x)) \, dx.
\]
By Green’s formula and the boundary condition, we have
\[
\int_{\Omega} h(u) \Delta u \, dx = \int_{\partial \Omega} h(u) \frac{\partial u}{\partial n} \, ds - \int_{\Omega} h'(u) |\nabla u|^2 \, dx
\]
\[
= - \int_{\partial \Omega} h(u) \varphi(t, x) u \, ds - \int_{\Omega} h'(u) |\nabla u|^2 \, dx
\]
\[
\leq - \int_{\Omega} h'(u) |\nabla u|^2 \, dx \leq 0,
\]
Consider the equation

\[\int_{\Omega} h_r(u(t - \sigma_r, x)) \Delta u(t - \sigma_r, x) \, dx \leq 0. \]

The rest of the proof is similar to the one in Lemma 2.1 We omit it. \(\square \)

The following theorem is the second main result of this article.

Theorem 3.2. If conditions (2.6) and (2.7) hold, then each solution of (1.1)–(1.3), (1.5) oscillates in \(G \).

The proof of the above theorem is similar to that of Theorem 2.4 We omit it.

4. Examples

Example 4.1. Consider the equation

\[
\frac{\partial^2}{\partial t^2} \left[u(t, x) + \frac{1}{2} u(t - \frac{\pi}{2}) \right] = u^2 \Delta u - we^{u^2} + u^2(t - \frac{\pi}{2}, x) \Delta u(t - \frac{\pi}{2}, x)
\]

\[
- (x^2 + 1)e^u(t - \frac{3\pi}{2}, x)e^{u^2(t - \frac{3\pi}{2}, x)},
\]

\(t > 1, \quad t \neq 2^k, \quad (t, x) \in \mathbb{R}^+ \times \Omega = G, \)

\(u((2^k)^+, x) = (4 + \sin 2^k \cos x)u(2^k, x), \quad k = 1, 2, \ldots, \)

\(u_i((2^k)^+, x) = (2 + \sin 2^k \cos x)u_i(2^k, x), \quad k = 1, 2, \ldots, \)

with the boundary condition

\(u = 0, \quad (t, x) \in \mathbb{R}^+ \times \partial \Omega, \)

where \(a(t) = 1, \quad a_1(t) = e^t, \quad \tau_1 = \frac{\pi}{2}, \quad \sigma_1 = \frac{\pi}{2}, \quad \rho_1 = \frac{3\pi}{2}, \quad h(u) = u^2, \quad h_1(u) = u^2, \)

\(f(u) = we^{u^2}, \quad f_1(u) = we^{u^2}, \quad q(t, x) = 1, \quad q_1(t, x) = (x^2 + 1)e^t, \quad g_1 = \frac{1}{2}, \quad t_k = 2^k. \)

It is easy to verify that the condition (H1)–(H4) and the conditions of Theorem 2.4 are satisfied. Hence the all solutions of above problem oscillate.

Example 4.2. Consider the equation

\[
\frac{\partial^2}{\partial t^2} \left[u(t, x) + \frac{1}{2} u(t - \frac{\pi}{2}) \right] = u^2 \Delta u - we^{u^2} + u^2(t - \frac{\pi}{2}, x) \Delta u(t - \frac{\pi}{2}, x)
\]

\[
- (x^2 + 1)e^u(t - \frac{3\pi}{2}, x)e^{u^2(t - \frac{3\pi}{2}, x)},
\]

\(t > 1, \quad t \neq 3k, \quad (t, x) \in \mathbb{R}^+ \times \Omega = G, \)

\(u((3k)^+, x) = (4 + \sin 3k \cos x)u(3k, x), \quad k = 1, 2, \ldots, \)

\(u_i((3k)^+, x) = (2 + \sin 3k \cos x)u_i(3k, x), \quad k = 1, 2, \ldots, \)

with the boundary condition

\(\frac{\partial u}{\partial n} + t^2 x^2 u = 0, \quad (t, x) \in \mathbb{R}^+ \times \partial \Omega, \)

where \(a(t) = 1, \quad a_1(t) = e^t, \quad \tau_1 = \frac{\pi}{2}, \quad \sigma_1 = \frac{\pi}{2}, \quad \rho_1 = \frac{3\pi}{2}, \quad h(u) = u^2, \quad h_1(u) = u^2, \)

\(f(u) = we^{u^2}, \quad f_1(u) = we^{u^2}, \quad q(t, x) = 1, \quad q_1(t, x) = (x^2 + 1)e^t, \quad g_1 = \frac{1}{2}, \quad t_k = 3k, \)

\(\varphi(t, x) = t^2 x^2. \) It is easy to verify that the condition (H) and condition of Theorem 3.2 are satisfied. Hence the all solutions of the above problem oscillate.

Acknowledgments. This research was partially supported by grants from the National Basic Research Program of China, nos. 2010CB950904 and 2011CB710604.
References

Jichen Yang
School of Mathematics and Physics, China University of Geosciences, Wuhan, Hubei, 430074, China
E-mail address: yjch_0102@hotmail.com

Anping Liu (corresponding author)
School of Mathematics and Physics, China University of Geosciences, Wuhan, Hubei, 430074, China
E-mail address: wh_apliu@sina.com

Guangjie Liu
School of Mathematics and Physics, China University of Geosciences, Wuhan, Hubei, 430074, China
E-mail address: guangjieliu@foxmail.com