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ON THE DIMENSION OF THE KERNEL OF THE LINEARIZED
THERMISTOR OPERATOR

GIOVANNI CIMATTI

Abstract. The elliptic system of partial differential equations of the thermis-

tor problem is linearized to obtain the system

∇ · (σ(ū)∇Φ + σ′(ū)U∇ϕ̄) = 0 in Ω, Φ = 0 on Γ

∆U + σ′(ū)|∇ϕ̄|2U + 2σ(ū)∇ϕ̄ · ∇Φ = 0 in Ω, U = 0 on Γ.

We study the existence of nontrivial solutions for this linear boundary-value

problem, which is useful in the study of the thermistor problem.

1. Introduction

The name “thermistor” refers to a three-dimensional body made up of substances
conducting both heat and electricity (typically a mixture of semiconductors) for
which the electrical conductivity depends sharply on the temperature. We shall
represent the body of the thermistor by Ω, an open and bounded subset of R3. The
regular boundary Γ of Ω consists of two disjoint surfaces Γ1 and Γ2, the electrodes,
to which a difference of potential 2V is applied.

Under stationary conditions the electric potential ϕ(x), x = (x1, x2, x3) and
the temperature u(x) inside Ω are determined by the following nonlinear elliptic
boundary-value problem

∇ · (σ(u)∇ϕ) = 0 in Ω,
ϕ = −V on Γ1, ϕ = V on Γ2,

∆u+ σ(u)|∇ϕ|2 = 0 in Ω,
u = ub on Γ,

(1.1)

where V is a given constant and ub a given function on Γ. If ub is an arbitrary
boundary data, many papers give results of existence of both classical and weak
solutions (see [1, 8, 6] and references therein). However, the nonlinear structure of
(1.1) seems to be, in full generality, an open problem. We quote, in this respect,
the following result [5].
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Figure 1. Thermistor and its circuit

Theorem 1.1. Let σ(u) ∈ C0(R1), σ(u) > 0 satisfy∫ ∞
0

dt

σ(t)
=∞

and suppose in the problem (1.1),

u = 0 on Γ,

then problem (1.1) has one and only one classical solution.

For more comprehensive results a first step is certainly to linearize the equations
and to study the corresponding linear boundary value problem. Thus we consider
the following linear problem in the unknowns (Φ(x), U(x))

∇ · (σ(ū)∇Φ + σ′(ū)U∇ϕ̄) = 0 in Ω, (1.2)

∆U + σ′(ū)|∇ϕ̄|2U + 2σ(ū)∇ϕ̄ · ∇Φ = 0 in Ω, (1.3)

Φ = 0 on Γ, U = 0 on Γ, (1.4)

where (ϕ̄, ū) is a solution of (1.1). We have the following result.

Lemma 1.2. Let (ϕ̄(x), ū(x)) ∈ (C1(Ω̄))2 and assume

σM ≥ σ(u) ≥ σm > 0. (1.5)

Define

α = sup{|2σ(ū(x))− σ′(ū(x))| |∇ϕ̄|, x ∈ Ω},
β = sup{σ′(ū(x))|∇ϕ̄|2, x ∈ Ω}

and suppose that

σm −
α

2
> 0, 1− α

2λ0
− β

λ0
> 0, (1.6)

where λ0 is the first eigenvalue of the laplacian with zero boundary conditions. Then
the problem (1.2)–(1.4) has only the trivial solution.
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Proof. Let us multiply (1.2) by Φ and (1.3) by U . Integrating by parts over Ω and
adding we obtain∫

Ω

(σ(ū)|∇Φ|2 + |∇U |2)dx =
∫

Ω

(2σ(ū)− σ′(ū))U∇ϕ̄ · ∇Φdx+
∫

Ω

σ′(ū)U2|∇ϕ̄|2dx.

Hence, by (1.5) we have

σm

∫
Ω

|∇Φ|2 + |∇U |2dx ≤ α
∫

Ω

|U ||∇Φ|dx+ β

∫
Ω

U2dx.

Using the Cauchy-Schwartz and the Poincarè inequalities we obtain

(σm −
α

2
)
∫

Ω

|∇Φ|2dx+ (1− α

2λ0
− β

λ0
)
∫

Ω

|∇U |2dx ≤ 0.

This implies Φ = 0 and U = 0 by (1.6). �

As an application of Lemma 1.2 we have the following lemma.

Lemma 1.3. Assume σ(u) ∈ C1(R1) and

σM ≥ σ(u) ≥ σm > 0. (1.7)

Let (ϕ̄, ū) be the unique corresponding solution of (1.1) when ub = 0. Suppose that

Φ = 0, U = 0 (1.8)

is the only solution of (1.2)-(1.4).
Let ub ∈ C0,α(Γ). Then there exists µ0 > 0 such that, if ‖ub‖C0,α(Γ) ≤ µ0, the

problem

∇ · (σ(u)∇ϕ) = 0 in Ω, ϕ = −V on Γ1, ϕ = V on Γ2

∆u+ σ(u)|∇ϕ|2 = 0 in Ω, u = ub on Γ

has one and only one solution.

Proof. Let F : X → Y , where

X = {(ϕ(x), u(x)) ∈ (C2,α(Ω̄))2, ϕ = −V on Γ1, ϕ = V on Γ2},
Y = (C0,α(Ω̄))2 × C2,α(Γ), F ((ϕ, u)) = (∇ · (σ(u)∇ϕ), ∆u+ σ(u)|∇ϕ|2, u|Γ).

We apply the local inversion theorem at (ϕ̄, ū) [2]. We have

F ′((ϕ̄, ū))[Φ, U ]

= (∇ · (σ(ū)∇Φ + σ′(ū)U∇ϕ̄),∆U + σ′(ū)|∇ϕ̄|2U + 2σ(ū)∇ϕ̄ · ∇Φ, u|Γ).

We claim that the problem

∇ · (σ(ū)∇Φ + σ′(ū)U∇ϕ̄) = f

∆U + σ′(ū)|∇ϕ̄|2U + 2σ(ū)∇ϕ̄ · ∇Φ = g

Φ = 0 on Γ, U = Ub on Γ

has one and only one solution if ((f, g), Ub) ∈ Y . If (Φ1, U1) and (Φ2, U2) are two
solutions we set (Ψ,W ) = (Φ1 − Φ2, U1 − U2) and use (1.8). This gives (Φ1, U1) =
(Φ2, U2). To prove existence we use a continuity method ( se e.g. [4] page 336). We
construct a one-parameter family of problems depending on the parameter t ∈ [0, 1].
Let U = (Φ, U) and define

Lt[U] =
[

(1− t)∆Φ + t(∇ · (σ(ū)∇Φ + σ′(ū)U∇ϕ̄))
(1− t)∆U + t(σ′(ū)|∇ϕ̄|2U + 2σ(ū)∇ϕ̄ · ∇Φ)

]
.
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By the Schauder’s estimates [7] any solution of the problem

Lt[U] = f in Ω, f =
[
f
g

]
, U =

[
0
Ub

]
on Γ (1.9)

satisfies
‖U‖C2,a ≤ K1

(
‖f‖Cα + ‖Ub‖Cα

)
. (1.10)

We call T the set of those value of t in the unit interval [0, 1] for which problem (1.9)
is uniquely solvable. T is not empty since it contains t = 0. We prove that T is an
open set; i.e., for every t0 ∈ T there exists ε(t0) > 0 such that every t ∈ [0, 1], for
which |t− t0| < ε(t0), belongs to T . This can be seen with a contraction mapping
argument as follows. We rewrite (1.9) in the form

Lt0 [U] = Lt0 [U]− Lt[U] + f in Ω, U =
[

0
Ub

]
on Γ

or

Lt0 [U] = (1− t)(∆U− L1[U]) + f in Ω, U =
[

0
Ub

]
on Ω. (1.11)

Substituting any function U ∈ C2,α on the right hand side of (1.11) we obtain a
function F ∈ Cα. Since t0 ∈ T there exists W ∈ Cα such that

Lt0 [W] = F in Ω, W =
[

0
Ub

]
on Γ. (1.12)

The problem (1.12) defines a transformation

W = A(U). (1.13)

We claim that there exists a fixed point of (1.13) if |t − t0| is sufficiently small.
From (1.11) we have

‖F‖Cα ≤
(
|t− t0|‖U‖C2,α + ‖f‖Cα

)
.

Using again the Schauder’s estimates, we obtain

‖W‖C2,α ≤ K1K2|t− t0|‖U‖C2,α +K1‖f‖Cα +K1‖Ub‖Cα . (1.14)

Hence, if we assume 2K1K2|t− t0| ≤ 1, an inequality of the form

‖U‖C2,α ≤ 2K1

(
‖f‖Cα + ‖Ub‖Cα

)
would imply

‖W‖C2,α = ‖A(U)‖C2,α ≤ K1

(
‖f‖Cα + ‖Ub‖Cα

)
.

Moreover, if W1 = A(U1) and W2 = A(U2), W1-W2 is a solution of

Lt0 [W1 −W2] = (t− t0)
(
∆(U1 −U2)− L1[U1 −U2]), W1 −W2 =

[
0
0

]
.

Recalling (1.14) we conclude that, if

2K1K2|t− t0| ≤ 1, (1.15)

then
‖W1 −W2‖C2,α ≤ 1

2
‖U1 −U2‖C2,α . (1.16)

Therefore, if (1.15) holds the transformation A(U) maps the set of functions sat-
isfying

‖U‖C2,α ≤ 2K2‖f‖Cα
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into itself and, by (1.16), is a contraction. Thus (1.13) has a fixed point U which
gives the desired solution of (1.9) if |t − t0| ≤ (1/2)K1K2. Hence T is open.
Moreover, T is a closed set. For, let t̃ be a cluster point of a sequence {tn} in T .
Consider any f in Cα and let {Un} be the corresponding sequence of solutions in
C2,α such that

Ltn [Un] = f in Ω, Un =
[

0
Ub

]
on Γ.

By (1.10) we have
‖Un‖C2,α ≤ K1(‖f‖Cα + ‖Ub‖Cα).

Thus the sequence {Un} and their first and second derivatives are equibounded
and equicontinuous in Ω̄. Let {Unj} be a subsequence converging with first and
second derivatives. If Ũ is the limit function it gives a solution to the problem

Lt̃[Ũ] = f in Ω, Ũ =
[

0
Ub

]
on Γ.

Hence t̃ ∈ T , therefore T = [0, 1]. �

We may also consider the problem
∇ · (σ(u)∇ϕ) = 0 in Ω

ϕ = −V on Γ1, ϕ = V on Γ2

∆u+ σ(u)|∇ϕ|2 + µR(u, ϕ) = 0 in Ω
u = 0 on Γ,

(1.17)

where R(u, ϕ) ∈ C0(R2) is a temperature depending source and µ a numerical
parameter.

Lemma 1.4. Assume σ(u) ∈ C1(R1) and

σM ≥ σ(u) ≥ σm > 0.

Let (ϕ̄, ū) be the solution (unique by Theorem 1.1) of the problem (1.1) when ub = 0.
Suppose that the problem (1.2)-(1.4) has only the trivial solution. Then there exists
µ0 > 0 such that the problem (1.17) has one and only one solution if |µ| < µ0.

Proof. We apply the implicit function theorem. Let F : X × R1 → Y, where

X = {(ϕ(x), u(x)) ∈ (C2,α(Ω̄))2, ϕ = −V on Γ1, ϕ = V on Γ2, u = 0 on Γ},
Y = (C0,α(Ω̄))2,

F((ϕ, u), µ) = (∇ · (σ(u)∇ϕ),∆u+ σ(u)|∇ϕ|2 + µR(u, ϕ)), (ϕ, u) ∈ X , µ ∈ R1.

We have F((ϕ̄, ū), 0) = ((0, 0), 0). Moreover, the partial derivative of F with respect
to (ϕ, u) at ((ϕ̄, ū), 0) is

F(ϕ,u)((ϕ̄, ū), 0)[Φ, U ]

= (∇ · (σ(ū)∇Φ + σ′(ū)U∇ϕ̄),∆U + σ′(ū)|∇ϕ̄|2U + 2σ(ū)∇ϕ̄ · ∇Φ).

Proceeding, with minor changes, as in Lemma 1.2 we can prove that the problem

∇ · (σ(ū)∇Φ + σ′(ū)U∇ϕ̄) = f, Φ = 0 on Γ

∆U + σ′(ū)|∇ϕ̄|2U + 2σ(ū)∇ϕ̄ · ∇Φ = g, U = 0 on Γ

has one and only one solution for every (f, g) ∈ Y. Thus F(ϕ,u)((ϕ̄, ū), 0) is invert-
ible and therefore there exists µ0 > 0 such that the thesis holds. �
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2. The one-dimensional case

In this Section we study the one-dimensional version of the problem (1.1); i.e.,

(σ(u)ϕ′)′ = 0, (2.1)

ϕ(−L) = −V, ϕ(L) = V, L > 0, (2.2)

u′′ + σ(u)ϕ′2 = 0, (2.3)

u(−L) = 0, u(L) = 0. (2.4)

In the next Lemma we collect certain elementary properties of the solution of (2.1)–
(2.4).

Lemma 2.1. Let σ(u) ∈ C1(R1) and σ(u) > 0 for all u ∈ R1. Suppose∫ ∞
0

dt

σ(t)
=∞. (2.5)

Under these hypotheses there exists one and only one solution (ϕ(x), u(x)) of the
problem (2.1)–(2.4), and the solution satisfies

ϕ′(x) > 0, (2.6)

ϕ(x) = −ϕ(−x), u(x) = u(−x). (2.7)

Moreover, if we define

F (u) =
∫ u

0

dt

σ(t)
, (2.8)

ξ = G(ϕ) =
∫ ϕ

0

σ(F−1(
V 2

2
− t2

2
))dt (2.9)

we have
dϕ

dx
(x) =

G(V )
Lσ(u(x))

. (2.10)

Proof. Let us define the transformation

θ =
1
2
ϕ2 +

V

2
ϕ+ F (u). (2.11)

Therefore, by (2.8),

σ(u)θ′ = σ(u)ϕϕ′ +
V

2
σ(u)ϕ′ + u′.

Recalling (2.1) and (2.3) we have

(σ(u)θ′)′ = 0.

Hence in terms of ϕ and θ the problem (2.1)–(2.4) can be restated as

(σ(u)ϕ′)′ = 0,

ϕ(−L) = −V, ϕ(L) = V,

(σ(u)θ′)′ = 0,

θ(−L) = 0, θ(L) = V 2.

(2.12)

This suggests the existence of a functional relation between θ and ϕ, of the form

θ =
V

2
ϕ+

V 2

2
.
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Hence, by (2.11), we have

F (u) =
V 2

2
− ϕ2

2
.

By (2.5), F is globally invertible and

u = F−1(
V 2

2
− ϕ2

2
). (2.13)

Thus we can write (2.12) in the form

(σ(F−1(
V 2

2
− ϕ2

2
))ϕ′)′ = 0.

Using (2.9), we have

ξ′′ = 0,

ξ(−L) = G(−V ) = −G(V ), ξ(L) = G(V ).

Thus we obtain

ξ(x) =
G(V )
L

x.

The potential ϕ(x) can be computed from

G(ϕ(x)) =
G(V )
L

x (2.14)

which gives

ϕ(x) = G−1(
G(V )
L

x).

Finally the temperature u(x) is obtained from (2.13). The solution (ϕ(x), u(x)) of
problem (2.1)–(2.4) obtained in this way is also unique [5]. Now we prove (2.10).
From (2.14) we have

G(V )
L

=
dG

dϕ
(ϕ(x))ϕ′(x)

and by (2.13) and (2.9)
dG

dϕ
= σ(u).

Hence (2.10) follows. From (2.1) we have σ(u)ϕ′ = c with c > 0 by (2.2), thus we
obtain (2.6). To prove (2.7) we define

ϕ̃(x) = −ϕ(−x), ũ(x) = u(−x).

As it is easily verified (ϕ̃(x), ũ(x)) satisfy (2.1)-(2.4). Therefore, by the uniqueness
of the solution of the problem (2.1)–(2.4) we obtain (2.7). �

The linearized problem corresponding, in the present one-dimensional case, to
(1.2)-(1.4) reads

(σ(ū)Φ′ + σ′(ū)Uϕ̄′)′ = 0,
(
σ′ =

dσ

du
, ϕ′ =

dϕ

dx

)
, (2.15)

Φ(−L) = 0, Φ(L) = 0, (2.16)

U ′′ + σ′(ū)ϕ̄′2U + 2σ(ū)ϕ̄′Φ′ = 0, (2.17)

U(−L) = 0, U(L) = 0, (2.18)
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where (ϕ̄(x), ū(x)) is a solution of the problem (2.1)–(2.4). Here we proceed by
direct integration the linear problem (2.15)–(2.18). From (2.15) we have

σ(ū)Φ′ = c1 − σ′(ū)Uϕ̄′. (2.19)

Substituting (2.19) in (2.17) we obtain, as a problem equivalent to (2.15)–(2.18),

σ′(ū)ϕ̄′U + σ(ū)Φ′ = c1, (2.20)

Φ(−L) = 0, Φ(L) = 0, (2.21)

U ′′ − σ′(ū)ϕ̄′2U = −2c1ϕ̄′, (2.22)

U(−L) = 0, U(L) = 0. (2.23)

If V(x) is a solution of the auxiliary problem

V ′′ − σ′(ū)ϕ̄′2V = −2ϕ̄′, (2.24)

V(−L) = 0, V(L) = 0, (2.25)

then the function
U(x) = c1V(x) (2.26)

solves (2.22) and (2.23) and vice versa. Substituting (2.26) into (2.20) we obtain

Φ′(x) =
c1
σ(ū)

(1− σ′(ū)ϕ̄′V).

Integrating, we have

Φ(x) = c1

∫ x

−L

1− σ′(ū(t))ϕ̄(t)V(t)
σ(ū(t))

dt. (2.27)

The condition Φ(L) = 0 becomes

c1

∫ L

−L

1− σ′(ū(t))ϕ̄(t)V(t)
σ(ū(t))

dt = 0. (2.28)

Let us assume that
(H0) the number 1 is not an eigenvalue of the problem

V ′′ − σ′(ū)ϕ̄′2V = 0, V(−L) = 0, V(L) = 0. (2.29)

When (H0) holds, the auxiliary problem (2.24), (2.25) has one and only one
solution V(x) and two possibilities occur: a generic case,∫ L

−L

1− σ′(ū(t))ϕ̄′(t)V(t)
σ(ū(t))

dt 6= 0, (2.30)

and a special case ∫ L

−L

1− σ′(ū(t))ϕ̄′(t)V(t)
σ(ū(t))

dt = 0. (2.31)

Assume (H0) and (2.30) hold. Then, from (2.28), c1 = 0 and (2.27) imply

Φ(x) = 0. (2.32)

Moreover, from (2.22) and (2.23) we have

U ′′ − σ′(ū)ϕ̄′2U = 0, U(−L) = 0, U(L) = 0. (2.33)

On the other hand, by (H0), the value 1 is not an eigenvalue of (2.33), hence
U(x) = 0. Therefore the problem (2.15)-(2.18) has only the trivial solution and the
one-dimensional version of Lemma 1.4 applies.
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We consider next the special case in which the assumption (H0) holds, but∫ L

−L

1− σ′(ū(t))ϕ̄′(t)V(t)
σ(ū(t))

dt = 0, (2.34)

where in (2.34) V(x) is the unique solution of problem (2.24)-(2.25). We have

Φ(x) = c1

∫ x

−L

1− σ′(ū(t))ϕ̄(t)V(t)
σ(ū(t))

dt,

where c1 is an arbitrary constant and, by (2.26), U(x) = c1V(x). Thus in this case
the linear problem (2.20)-(2.23) has nontrivial solutions, more precisely the space
of its solutions has dimension 1.

Example 2.2. The problem (2.29) can be solved only in special cases and it is
therefore difficult to check the condition (H0). However, this can be done for the
physical relevant conductivity law

σ(u) =
K

au+ b
, K > 0, a > 0, b > 0 (2.35)

which is quite accurate for metals. If (2.35) holds, we have, using the notation of
Lemma 2.1,

ξ = F (u) =
1
K

(
au2

2
+ bu), u = F−1(ξ) =

−b+
√
b2 + 2aξK
a

.

Moreover,

σ(F−1(
V 2

2
− t2

2
)) =

K√
b2 + aK(V 2 − t2)

and

G(V ) =
√
K√
a

arctan
√
aKV

b
. (2.36)

Problem (2.29) can be restated, in view of (2.10), in the form

V ′′ − σ′(ū)(G(V ))2

L2(σ(ū))2
V = 0, V(−L) = 0, V(L) = 0. (2.37)

If (2.35) holds, we have
σ′(ū)

(σ(ū))2
= − a

K
.

Hence, by (2.36), the equation in (2.37) becomes

V ′′ + 1
L2

(
arctan

√
aKV

b

)2V = 0.

Recalling that µ0 = π2

4L2 is the first eigenvalue of the problem

V ′′ + µV = 0, V(−L) = 0, V(L) = 0

and taking into account that

1
L2

(
arctan

√
aKV

b

)2
<

π2

4L2
(2.38)

we conclude that 1 is not an eigenvalue of the problem (2.29) if (2.35) holds. Hence
the condition (H0) is certainly verified. Moreover, in view of (2.38) the operator

d2

dx2
+

1
L2

(
arctan

√
aKV

b

)2
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is a “maximum principle operator”. Thus the unique solution of the problem

V ′′ + 1
L2

(arctan
√
aKV

b
)2V = −2ϕ̄′(x), V(−L) = 0, V(L) = 0

is positive in (−L,L) since ϕ′(x) > 0 by (2.6). It follows∫ L

−L

1− σ′(ū(t))ϕ̄′(t)V(t)
σ(ū(t))

dt > 0.

Therefore, the condition (2.30) is satisfied. It follows that the problem (2.15)-(2.18)
has only the trivial solution and the one-dimensional version of Lemma 1.4 applies.

Example 2.3. If σ′(u) ≥ 0 the problem (2.29) has only the trivial solution V(x) = 0
[2], therefore (H0) is verified. However, in this case, we have by the maximum
principle, from (2.24)-(2.25) and, in view of (2.6), V(x) > 0. Thus the cases (2.30)
and (2.31) are, in principle, both possible.

To treat the case in which 1 is an eigenvalue of (2.29), we recall [3] the following
result on the eigenvalues and eigenfunctions of the problem

v′′ + λp(x)v = 0, v(L) = 0, (L) = 0. (2.39)

Lemma 2.4. If p(x) ∈ C0([−L,L]) and p(x) > 0, then the eigenvalues λn, n =
0, 1, 2, . . . of problem (2.39) are all simple. When the eigenvalues are arranged
in increasing order, the eigenfunctions vn(x) (determined except for a constant
multiplier) possess exactly n zeros in (−L,L). In particular, the first eigenvalue
v0(x) has constant sign.

Lemma 2.5. Let p(x) ∈ C0([−L,L]) be even and p(x) > 0. Then the eigenfunc-
tions vn(x) of (2.39) with an even index are even, and the eigenfunctions with an
odd index are odd.

Proof. All eigenfunctions of (2.39) are either even or odd. Let v(x) be an eigen-
function corresponding to the eigenvalue λ. Let v(0) 6= 0 and define

W (x) = v(−x). (2.40)

It is easily seen that W (x) is also an eigenfunction corresponding to λ. Thus
W (x) = Cv(x) and W (0) = v(0) by (2.40). Hence C = 1 and therefore v(−x) =
v(x). Let v(0) = 0. We have v′(0) = α 6= 0 since v′(0) = 0 would imply v(x) = 0.
Define W (x) = −v(−x). W (x) is an eigenfunction corresponding to λ. On the
other hand, W (0) = −v(0) = 0. Therefore W (x) = v(x) and v(x) = −v(−x). To
prove that v0(x) is even we simply note that v0(x) 6= 0. We prove that v1(x) is odd.
By Lemma 2.4, v1(x) has only one zero x∗ in (−L,L) with v′1(x∗) 6= 0. We claim
that x∗ = 0. Let x∗ 6= 0, thus either v1(x∗) = 0 and v1(−x∗) = 0 or v(x∗) = 0
and −v1(−x∗) = 0 and this cannot be since v1(x) has only one zero in (−L,L).
Suppose, by contradiction, v1(x) to be even. This implies

v′1(0) = 0. (2.41)

But v1(0) = 0 and that, together with (2.41), would imply v1(x) = 0. Hence v1(x)
is odd. In a similar vein we can prove the general result: vn(x) is even if n is even
and vn(x) is odd if n is odd. �
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Lemma 2.6. Let p(x) ∈ C0([−L,L]), f(x) ∈ C0([−L,L]) be even functions and
p(x) > 0. Consider the two-point problem

v′′ + λp(x)v = f(x), v(L) = 0, v(L) = 0. (2.42)

Let λ be an eigenvalue of odd index of the problem (2.39) and ṽ(x) the corresponding
(odd) eigenfunction. Then the solutions of (2.42) can be written as follows

v(x) = Cṽ(x) + w(x),

where C is an arbitrary constant and w(x) is the only solution of (2.42) which is
even and satisfies the condition∫ L

−L
w(x)ṽ(x)dx = 0. (2.43)

Proof. The condition of solvability of problem (2.42), i. e.,
∫ L
−L f(x)ṽ(x)dx = 0

is satisfied in view of the assumptions on f(x) and on the eigenvalue λ. Let us
normalize the eigenfunction ṽ(x) assuming

∫ L
−L ṽ

2dx = 1. The solutions of problem
(2.42) are given by

v(x) = Cṽ(x) + v∗(x),
where v∗(x) is an arbitrary function which satisfies

d2v∗

dx2
+ λv∗ = f(x), v∗(−L) = 0, v∗(L) = 0.

Define

w(x) = v∗(x)−
∫ L

−L
v∗(t)ṽ(t)dt ṽ(x).

We have ∫ L

−L
w(x)ṽ(x)dx = 0.

On the other hand, if w1(x) and w2(x) both satisfy (2.42) and (2.43) and if we
define h(x) = w1(x) − w2(x), we have h(x) = Cṽ(x). If C = 0 we have done. If
C 6= 0 we have ∫ L

−L
h(x)ṽ(x)dx = 0, C

∫ L

−L
ṽ2(x)dx = 0

which cannot be. Thus there exists only one solution of (2.42) which satisfies (2.43).
We claim that w(x) is even. Define z(x) = w(−x). Since ṽ(x) is odd we have∫ L

−L
z(x)ṽ(x)dx =

∫ L

−L
w(x)ṽ(x)dx = 0.

Also we have
d2z

dx2
+ λp(x)z = f(x), z(−L) = 0, z(L) = 0

since p(x) and f(x) are even functions. By uniqueness we conclude that w(x) is
even. �

We assume now
(H1) σ′(ū(x)) < 0 and the number 1 is the first eigenvalue of the problem

V ′′ − σ′(ū)ϕ̄′2V = 0, V(−L) = 0, V(L) = 0.
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Denote by V0(x) the corresponding eigenfunction normalized with the condition∫ L
−L V

2(x)dx = 1. Then we have∫ L

−L
ϕ̄′(x)V0(x)dx 6= 0

since V0(x) 6= 0 by Lemma 2.4 and ϕ̄′(x) > 0 by Lemma 2.1. Hence the auxiliary
problem

V ′′ − σ′(ū)ϕ̄′2V = −2ϕ̄′, V(−L) = 0, V(L) = 0
has no solution. Therefore the problem

U ′′ − σ′(ū)ϕ̄′2U = −2c1ϕ̄′, U(−L) = 0, U(L) = 0

has solutions only when
c1 = 0 (2.44)

and these solutions are
U(x) = γV0(x), γ ∈ R1. (2.45)

From (2.19), (2.44) and (2.45) we have

σ(ū)Φ′ = −γσ′(ū)V0(x)ϕ̄′(x), (2.46)

Φ(−L) = 0, Φ(L) = 0. (2.47)

The condition of solvability of (2.46) and (2.47) is thus given by

γ

∫ L

−L

σ′(ū(t))V0(t)ϕ̄′(t)dt
σ(ū(t))

= 0.

On the other hand, by (H1), Lemma 2.1 and Lemma 2.4, we have∫ L

−L

σ′(ū(t))V0(t)ϕ̄′(t)dt
σ(ū(t))

6= 0

which implies γ = 0 and U(x) = 0 and, from (2.46) and (2.47), Φ(x) = 0. Therefore,
the problem (2.20)-(2.23) has only the trivial solution and Lemma 1.4 applies.

Next we examine the case when
(H2) σ′(ū(x)) < 0 and the number 1 is the second eigenvalue of the problem

V ′′ − σ′(ū)ϕ̄′2V = 0, V(−L) = 0, V(L) = 0.

Let V1(x) be the corresponding eigenvalue which is normalized with the condition∫ L
−L V

2
1 (x)dx = 1. By Lemma 2.5, V1(x) is an odd function. Thus we have, recalling

that ϕ̄′(x) is an even function,∫ L

−L
ϕ̄′(x)V1(x)dx = 0.

Thus, by Lemma 2.6, the solutions of

V ′′ − σ′(ū)ϕ̄′2V = −2ϕ̄′, V(−L) = 0, V(L) = 0 (2.48)

are given by
V(x) = CV1(x) + Ṽ(x),

where C is an arbitrary constant and Ṽ(x) the only solution of (2.48) which is even
and satisfies ∫ L

−L
Ṽ(x)V1(x)dx = 0.
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Therefore, the solutions of

U ′′ − σ′(ū)ϕ̄′2U = −2c1ϕ̄′, U(−L) = 0, U(L) = 0

are given by
U(x) = c1CV1(x) + c1Ṽ(x) (2.49)

or, if we put K = c1C,
U(x) = KV1(x) + c1Ṽ(x). (2.50)

From (2.19), using (2.50), we have

Φ′(x) =
c1
σ(ū)

(1− σ′(ū)ϕ̄′Ṽ)− K

σ(ū)
σ′(ū)ϕ̄′V1.

Hence

Φ(x) = c1

∫ x

−L

1
σ(ū)

(1− σ′(ū)ϕ̄′Ṽ)dt−K
∫ x

−L

1
σ(ū)

σ′(ū)ϕ̄′V1dt. (2.51)

The condition Φ(L) = 0 gives

c1

∫ L

−L

1
σ(ū)

(1− σ′(ū)ϕ̄′Ṽ)dt = 0

if we take into account that σ′(ū(x))ϕ̄′V1(x)
σ(ū(x)) is an odd function of x . Thus we need

to distinguish a generic case when∫ L

−L

1
σ(ū)

(1− σ′(ū)ϕ̄′Ṽ)dt 6= 0.

This implies c1 = 0. From (2.50) we have

U(x) = KV1(x)

and from (2.51),

Φ(x) = −K
∫ x

−L

1
σ(ū)

σ′(ū)ϕ̄′V1dt.

Therefore, in the generic case the kernel of the linearized operator has dimension
1. On the other hand, if ∫ L

−L

1
σ(ū)

(1− σ′(ū)ϕ̄′Ṽ)dt = 0

the kernel has dimension 2, since (2.49) and (2.51) hold.
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