ON THE DIMENSION OF THE KERNEL OF THE LINEARIZED THERMISTOR OPERATOR

GIOVANNI CIMATTI

$$
\begin{aligned}
& \text { ABSTRACT. The elliptic system of partial differential equations of the thermis- } \\
& \text { tor problem is linearized to obtain the system } \\
& \qquad \nabla \cdot\left(\sigma(\bar{u}) \nabla \Phi+\sigma^{\prime}(\bar{u}) U \nabla \bar{\varphi}\right)=0 \quad \text { in } \Omega, \quad \Phi=0 \quad \text { on } \Gamma \\
& \qquad \Delta U+\sigma^{\prime}(\bar{u})|\nabla \bar{\varphi}|^{2} U+2 \sigma(\bar{u}) \nabla \bar{\varphi} \cdot \nabla \Phi=0 \quad \text { in } \Omega, \quad U=0 \quad \text { on } \Gamma .
\end{aligned}
$$

We study the existence of nontrivial solutions for this linear boundary-value problem, which is useful in the study of the thermistor problem.

1. Introduction

The name "thermistor" refers to a three-dimensional body made up of substances conducting both heat and electricity (typically a mixture of semiconductors) for which the electrical conductivity depends sharply on the temperature. We shall represent the body of the thermistor by Ω, an open and bounded subset of \mathbb{R}^{3}. The regular boundary Γ of Ω consists of two disjoint surfaces Γ_{1} and Γ_{2}, the electrodes, to which a difference of potential $2 V$ is applied.

Under stationary conditions the electric potential $\varphi(\mathbf{x}), \mathbf{x}=\left(x_{1}, x_{2}, x_{3}\right)$ and the temperature $u(\mathbf{x})$ inside Ω are determined by the following nonlinear elliptic boundary-value problem

$$
\begin{gather*}
\nabla \cdot(\sigma(u) \nabla \varphi)=0 \quad \text { in } \Omega, \\
\varphi=-V \quad \text { on } \Gamma_{1}, \quad \varphi=V \quad \text { on } \Gamma_{2}, \\
\Delta u+\sigma(u)|\nabla \varphi|^{2}=0 \quad \text { in } \Omega, \tag{1.1}\\
u=u_{b} \quad \text { on } \Gamma,
\end{gather*}
$$

where V is a given constant and u_{b} a given function on Γ. If u_{b} is an arbitrary boundary data, many papers give results of existence of both classical and weak solutions (see [1, [8, 6] and references therein). However, the nonlinear structure of (1.1) seems to be, in full generality, an open problem. We quote, in this respect, the following result [5].

[^0]

Figure 1. Thermistor and its circuit

Theorem 1.1. Let $\sigma(u) \in C^{0}\left(\mathbb{R}^{1}\right), \sigma(u)>0$ satisfy

$$
\int_{0}^{\infty} \frac{d t}{\sigma(t)}=\infty
$$

and suppose in the problem (1.1),

$$
u=0 \quad \text { on } \Gamma
$$

then problem 1.1 has one and only one classical solution.
For more comprehensive results a first step is certainly to linearize the equations and to study the corresponding linear boundary value problem. Thus we consider the following linear problem in the unknowns $(\Phi(\mathbf{x}), U(\mathbf{x}))$

$$
\begin{gather*}
\nabla \cdot\left(\sigma(\bar{u}) \nabla \Phi+\sigma^{\prime}(\bar{u}) U \nabla \bar{\varphi}\right)=0 \quad \text { in } \Omega \tag{1.2}\\
\Delta U+\sigma^{\prime}(\bar{u})|\nabla \bar{\varphi}|^{2} U+2 \sigma(\bar{u}) \nabla \bar{\varphi} \cdot \nabla \Phi=0 \quad \text { in } \Omega, \tag{1.3}\\
\Phi=0 \quad \text { on } \Gamma, \quad U=0 \quad \text { on } \Gamma, \tag{1.4}
\end{gather*}
$$

where $(\bar{\varphi}, \bar{u})$ is a solution of 1.1$)$. We have the following result.
Lemma 1.2. Let $(\bar{\varphi}(\mathbf{x}), \bar{u}(\mathbf{x})) \in\left(C^{1}(\bar{\Omega})\right)^{2}$ and assume

$$
\begin{equation*}
\sigma_{M} \geq \sigma(u) \geq \sigma_{m}>0 \tag{1.5}
\end{equation*}
$$

Define

$$
\begin{gathered}
\alpha=\sup \left\{\left|2 \sigma(\bar{u}(\mathbf{x}))-\sigma^{\prime}(\bar{u}(\mathbf{x}))\right||\nabla \bar{\varphi}|, \mathbf{x} \in \Omega\right\} \\
\beta=\sup \left\{\sigma^{\prime}(\bar{u}(\mathbf{x}))|\nabla \bar{\varphi}|^{2}, \mathbf{x} \in \Omega\right\}
\end{gathered}
$$

and suppose that

$$
\begin{equation*}
\sigma_{m}-\frac{\alpha}{2}>0, \quad 1-\frac{\alpha}{2 \lambda_{0}}-\frac{\beta}{\lambda_{0}}>0 \tag{1.6}
\end{equation*}
$$

where λ_{0} is the first eigenvalue of the laplacian with zero boundary conditions. Then the problem (1.2)-(1.4) has only the trivial solution.

Proof. Let us multiply $\sqrt{1.2}$ by Φ and 1.3 by U. Integrating by parts over Ω and adding we obtain
$\int_{\Omega}\left(\sigma(\bar{u})|\nabla \Phi|^{2}+|\nabla U|^{2}\right) d x=\int_{\Omega}\left(2 \sigma(\bar{u})-\sigma^{\prime}(\bar{u})\right) U \nabla \bar{\varphi} \cdot \nabla \Phi d x+\int_{\Omega} \sigma^{\prime}(\bar{u}) U^{2}|\nabla \bar{\varphi}|^{2} d x$.
Hence, by 1.5 we have

$$
\sigma_{m} \int_{\Omega}|\nabla \Phi|^{2}+|\nabla U|^{2} d x \leq \alpha \int_{\Omega}|U||\nabla \Phi| d x+\beta \int_{\Omega} U^{2} d x
$$

Using the Cauchy-Schwartz and the Poincarè inequalities we obtain

$$
\left(\sigma_{m}-\frac{\alpha}{2}\right) \int_{\Omega}|\nabla \Phi|^{2} d x+\left(1-\frac{\alpha}{2 \lambda_{0}}-\frac{\beta}{\lambda_{0}}\right) \int_{\Omega}|\nabla U|^{2} d x \leq 0
$$

This implies $\Phi=0$ and $U=0$ by (1.6).
As an application of Lemma 1.2 we have the following lemma.
Lemma 1.3. Assume $\sigma(u) \in C^{1}\left(\mathbb{R}^{1}\right)$ and

$$
\begin{equation*}
\sigma_{M} \geq \sigma(u) \geq \sigma_{m}>0 \tag{1.7}
\end{equation*}
$$

Let $(\bar{\varphi}, \bar{u})$ be the unique corresponding solution of (1.1) when $u_{b}=0$. Suppose that

$$
\begin{equation*}
\Phi=0, \quad U=0 \tag{1.8}
\end{equation*}
$$

is the only solution of $(1.2)-(1.4)$.
Let $u_{b} \in C^{0, \alpha}(\Gamma)$. Then there exists $\mu_{0}>0$ such that, if $\left\|u_{b}\right\|_{C^{0, \alpha}(\Gamma)} \leq \mu_{0}$, the problem

$$
\begin{gathered}
\nabla \cdot(\sigma(u) \nabla \varphi)=0 \quad \text { in } \Omega, \quad \varphi=-V \quad \text { on } \Gamma_{1}, \quad \varphi=V \quad \text { on } \Gamma_{2} \\
\Delta u+\sigma(u)|\nabla \varphi|^{2}=0 \quad \text { in } \Omega, \quad u=u_{b} \quad \text { on } \Gamma
\end{gathered}
$$

has one and only one solution.
Proof. Let $F: X \rightarrow Y$, where

$$
\begin{gathered}
X=\left\{(\varphi(\mathbf{x}), u(\mathbf{x})) \in\left(C^{2, \alpha}(\bar{\Omega})\right)^{2}, \varphi=-V \text { on } \Gamma_{1}, \varphi=V \text { on } \Gamma_{2}\right\}, \\
Y=\left(C^{0, \alpha}(\bar{\Omega})\right)^{2} \times C^{2, \alpha}(\Gamma), F((\varphi, u))=\left(\nabla \cdot(\sigma(u) \nabla \varphi), \Delta u+\sigma(u)|\nabla \varphi|^{2},\left.u\right|_{\Gamma}\right) .
\end{gathered}
$$

We apply the local inversion theorem at $(\bar{\varphi}, \bar{u})$ [2]. We have

$$
\begin{aligned}
& F^{\prime}((\bar{\varphi}, \bar{u}))[\Phi, U] \\
& =\left(\nabla \cdot\left(\sigma(\bar{u}) \nabla \Phi+\sigma^{\prime}(\bar{u}) U \nabla \bar{\varphi}\right), \Delta U+\sigma^{\prime}(\bar{u})|\nabla \bar{\varphi}|^{2} U+2 \sigma(\bar{u}) \nabla \bar{\varphi} \cdot \nabla \Phi,\left.u\right|_{\Gamma}\right) .
\end{aligned}
$$

We claim that the problem

$$
\begin{gathered}
\nabla \cdot\left(\sigma(\bar{u}) \nabla \Phi+\sigma^{\prime}(\bar{u}) U \nabla \bar{\varphi}\right)=f \\
\Delta U+\sigma^{\prime}(\bar{u})|\nabla \bar{\varphi}|^{2} U+2 \sigma(\bar{u}) \nabla \bar{\varphi} \cdot \nabla \Phi=g \\
\Phi=0 \quad \text { on } \Gamma, \quad U=U_{b} \quad \text { on } \Gamma
\end{gathered}
$$

has one and only one solution if $\left((f, g), U_{b}\right) \in Y$. If $\left(\Phi_{1}, U_{1}\right)$ and $\left(\Phi_{2}, U_{2}\right)$ are two solutions we set $(\Psi, W)=\left(\Phi_{1}-\Phi_{2}, U_{1}-U_{2}\right)$ and use 1.8 . This gives $\left(\Phi_{1}, U_{1}\right)=$ $\left(\Phi_{2}, U_{2}\right)$. To prove existence we use a continuity method (se e.g. 4] page 336). We construct a one-parameter family of problems depending on the parameter $t \in[0,1]$. Let $\mathbf{U}=(\Phi, U)$ and define

$$
\mathbf{L}_{t}[\mathbf{U}]=\left[\begin{array}{c}
(1-t) \Delta \Phi+t\left(\nabla \cdot\left(\sigma(\bar{u}) \nabla \Phi+\sigma^{\prime}(\bar{u}) U \nabla \bar{\varphi}\right)\right) \\
(1-t) \Delta U+t\left(\sigma^{\prime}(\bar{u})|\nabla \bar{\varphi}|^{2} U+2 \sigma(\bar{u}) \nabla \bar{\varphi} \cdot \nabla \Phi\right)
\end{array}\right]
$$

By the Schauder's estimates [7] any solution of the problem

$$
\mathbf{L}_{t}[\mathbf{U}]=\mathbf{f} \quad \text { in } \Omega, \quad \mathbf{f}=\left[\begin{array}{l}
f \tag{1.9}\\
g
\end{array}\right], \quad \mathbf{U}=\left[\begin{array}{c}
0 \\
U_{b}
\end{array}\right] \quad \text { on } \Gamma
$$

satisfies

$$
\begin{equation*}
\|\mathbf{U}\|_{C^{2, a}} \leq K_{1}\left(\|\mathbf{f}\|_{C^{\alpha}}+\left\|U_{b}\right\|_{C^{\alpha}}\right) \tag{1.10}
\end{equation*}
$$

We call T the set of those value of t in the unit interval $[0,1]$ for which problem 1.9) is uniquely solvable. T is not empty since it contains $t=0$. We prove that T is an open set; i.e., for every $t_{0} \in T$ there exists $\epsilon\left(t_{0}\right)>0$ such that every $t \in[0,1]$, for which $\left|t-t_{0}\right|<\epsilon\left(t_{0}\right)$, belongs to T. This can be seen with a contraction mapping argument as follows. We rewrite 1.9 in the form

$$
\mathbf{L}_{t_{0}}[\mathbf{U}]=\mathbf{L}_{t_{0}}[\mathbf{U}]-\mathbf{L}_{t}[\mathbf{U}]+\mathbf{f} \quad \text { in } \Omega, \quad \mathbf{U}=\left[\begin{array}{c}
0 \\
U_{b}
\end{array}\right] \quad \text { on } \Gamma
$$

or

$$
\mathbf{L}_{t_{0}}[\mathbf{U}]=(1-t)\left(\Delta \mathbf{U}-\mathbf{L}_{1}[\mathbf{U}]\right)+\mathbf{f} \quad \text { in } \Omega, \quad \mathbf{U}=\left[\begin{array}{c}
0 \tag{1.11}\\
U_{b}
\end{array}\right] \quad \text { on } \Omega .
$$

Substituting any function $\mathbf{U} \in C^{2, \alpha}$ on the right hand side of 1.11) we obtain a function $F \in C^{\alpha}$. Since $t_{0} \in T$ there exists $\mathbf{W} \in C^{\alpha}$ such that

$$
\mathbf{L}_{t_{0}}[\mathbf{W}]=\mathbf{F} \quad \text { in } \Omega, \quad \mathbf{W}=\left[\begin{array}{c}
0 \tag{1.12}\\
U_{b}
\end{array}\right] \quad \text { on } \Gamma .
$$

The problem 1.12) defines a transformation

$$
\begin{equation*}
\mathbf{W}=\mathbf{A}(\mathbf{U}) \tag{1.13}
\end{equation*}
$$

We claim that there exists a fixed point of 1.13 if $\left|t-t_{0}\right|$ is sufficiently small. From (1.11) we have

$$
\|\mathbf{F}\|_{C^{\alpha}} \leq\left(\left|t-t_{0}\right|\|\mathbf{U}\|_{C^{2, \alpha}}+\|\mathbf{f}\|_{C^{\alpha}}\right)
$$

Using again the Schauder's estimates, we obtain

$$
\begin{equation*}
\|\mathbf{W}\|_{C^{2, \alpha}} \leq K_{1} K_{2}\left|t-t_{0}\right|\|\mathbf{U}\|_{C^{2, \alpha}}+K_{1}\|\mathbf{f}\|_{C^{\alpha}}+K_{1}\left\|U_{b}\right\|_{C^{\alpha}} \tag{1.14}
\end{equation*}
$$

Hence, if we assume $2 K_{1} K_{2}\left|t-t_{0}\right| \leq 1$, an inequality of the form

$$
\|\mathbf{U}\|_{C^{2, \alpha}} \leq 2 K_{1}\left(\|\mathbf{f}\|_{C^{\alpha}}+\left\|U_{b}\right\|_{C^{\alpha}}\right)
$$

would imply

$$
\|\mathbf{W}\|_{C^{2, \alpha}}=\|\mathbf{A}(\mathbf{U})\|_{C^{2, \alpha}} \leq K_{1}\left(\|\mathbf{f}\|_{C^{\alpha}}+\left\|U_{b}\right\|_{C^{\alpha}}\right)
$$

Moreover, if $\mathbf{W}_{1}=\mathbf{A}\left(\mathbf{U}_{1}\right)$ and $\mathbf{W}_{2}=\mathbf{A}\left(\mathbf{U}_{2}\right), \mathbf{W}_{1}-\mathbf{W}_{2}$ is a solution of

$$
\mathbf{L}_{t_{0}}\left[\mathbf{W}_{1}-\mathbf{W}_{2}\right]=\left(t-t_{0}\right)\left(\Delta\left(\mathbf{U}_{1}-\mathbf{U}_{2}\right)-\mathbf{L}_{1}\left[\mathbf{U}_{1}-\mathbf{U}_{2}\right]\right), \quad \mathbf{W}_{1}-\mathbf{W}_{2}=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

Recalling 1.14 we conclude that, if

$$
\begin{equation*}
2 K_{1} K_{2}\left|t-t_{0}\right| \leq 1 \tag{1.15}
\end{equation*}
$$

then

$$
\begin{equation*}
\left\|\mathbf{W}_{1}-\mathbf{W}_{2}\right\|_{C^{2, \alpha}} \leq \frac{1}{2}\left\|\mathbf{U}_{1}-\mathbf{U}_{2}\right\|_{C^{2, \alpha}} \tag{1.16}
\end{equation*}
$$

Therefore, if 1.15 holds the transformation $\mathbf{A}(\mathbf{U})$ maps the set of functions satisfying

$$
\|\mathbf{U}\|_{C^{2, \alpha}} \leq 2 K_{2}\|\mathbf{f}\|_{C^{\alpha}}
$$

into itself and, by (1.16), is a contraction. Thus 1.13 has a fixed point \mathbf{U} which gives the desired solution of (1.9) if $\left|t-t_{0}\right| \leq(1 / 2) K_{1} K_{2}$. Hence T is open. Moreover, T is a closed set. For, let \tilde{t} be a cluster point of a sequence $\left\{t_{n}\right\}$ in T. Consider any \mathbf{f} in C^{α} and let $\left\{\mathbf{U}_{n}\right\}$ be the corresponding sequence of solutions in $C^{2, \alpha}$ such that

$$
\mathbf{L}_{t_{n}}\left[\mathbf{U}_{n}\right]=\mathbf{f} \quad \text { in } \Omega, \quad \mathbf{U}_{n}=\left[\begin{array}{c}
0 \\
U_{b}
\end{array}\right] \quad \text { on } \Gamma .
$$

By (1.10) we have

$$
\left\|\mathbf{U}_{n}\right\|_{C^{2, \alpha}} \leq K_{1}\left(\|\mathbf{f}\|_{C^{\alpha}}+\left\|U_{b}\right\|_{C^{\alpha}}\right)
$$

Thus the sequence $\left\{\mathbf{U}_{n}\right\}$ and their first and second derivatives are equibounded and equicontinuous in $\bar{\Omega}$. Let $\left\{\mathbf{U}_{n_{j}}\right\}$ be a subsequence converging with first and second derivatives. If $\tilde{\mathbf{U}}$ is the limit function it gives a solution to the problem

$$
\mathbf{L}_{\tilde{t}}[\tilde{\mathbf{U}}]=\mathbf{f} \quad \text { in } \Omega, \quad \tilde{\mathbf{U}}=\left[\begin{array}{c}
0 \\
U_{b}
\end{array}\right] \quad \text { on } \Gamma .
$$

Hence $\tilde{t} \in T$, therefore $T=[0,1]$.
We may also consider the problem

$$
\begin{gather*}
\nabla \cdot(\sigma(u) \nabla \varphi)=0 \quad \text { in } \Omega \\
\varphi=-V \quad \text { on } \Gamma_{1}, \quad \varphi=V \quad \text { on } \Gamma_{2} \\
\Delta u+\sigma(u)|\nabla \varphi|^{2}+\mu R(u, \varphi)=0 \quad \text { in } \Omega \tag{1.17}\\
u=0 \quad \text { on } \Gamma,
\end{gather*}
$$

where $R(u, \varphi) \in C^{0}\left(\mathbb{R}^{2}\right)$ is a temperature depending source and μ a numerical parameter.

Lemma 1.4. Assume $\sigma(u) \in C^{1}\left(\mathbb{R}^{1}\right)$ and

$$
\sigma_{M} \geq \sigma(u) \geq \sigma_{m}>0
$$

Let $(\bar{\varphi}, \bar{u})$ be the solution (unique by Theorem 1.1) of the problem (1.1) when $u_{b}=0$. Suppose that the problem $(1.2)-(1.4)$ has only the trivial solution. Then there exists $\mu_{0}>0$ such that the problem (1.17) has one and only one solution if $|\mu|<\mu_{0}$.

Proof. We apply the implicit function theorem. Let $\mathcal{F}: \mathcal{X} \times \mathbb{R}^{1} \rightarrow \mathcal{Y}$, where

$$
\begin{gathered}
\mathcal{X}=\left\{(\varphi(\mathbf{x}), u(\mathbf{x})) \in\left(C^{2, \alpha}(\bar{\Omega})\right)^{2}, \varphi=-V \text { on } \Gamma_{1}, \varphi=V \text { on } \Gamma_{2}, u=0 \text { on } \Gamma\right\}, \\
\mathcal{Y}=\left(C^{0, \alpha}(\bar{\Omega})\right)^{2}, \\
\mathcal{F}((\varphi, u), \mu)=\left(\nabla \cdot(\sigma(u) \nabla \varphi), \Delta u+\sigma(u)|\nabla \varphi|^{2}+\mu R(u, \varphi)\right), \quad(\varphi, u) \in \mathcal{X}, \mu \in \mathbb{R}^{1} .
\end{gathered}
$$

We have $\mathcal{F}((\bar{\varphi}, \bar{u}), 0)=((0,0), 0)$. Moreover, the partial derivative of \mathcal{F} with respect to (φ, u) at $((\bar{\varphi}, \bar{u}), 0)$ is

$$
\begin{aligned}
& \mathcal{F}_{(\varphi, u)}((\bar{\varphi}, \bar{u}), 0)[\Phi, U] \\
& =\left(\nabla \cdot\left(\sigma(\bar{u}) \nabla \Phi+\sigma^{\prime}(\bar{u}) U \nabla \bar{\varphi}\right), \Delta U+\sigma^{\prime}(\bar{u})|\nabla \bar{\varphi}|^{2} U+2 \sigma(\bar{u}) \nabla \bar{\varphi} \cdot \nabla \Phi\right) .
\end{aligned}
$$

Proceeding, with minor changes, as in Lemma 1.2 we can prove that the problem

$$
\begin{gathered}
\nabla \cdot\left(\sigma(\bar{u}) \nabla \Phi+\sigma^{\prime}(\bar{u}) U \nabla \bar{\varphi}\right)=f, \quad \Phi=0 \quad \text { on } \Gamma \\
\Delta U+\sigma^{\prime}(\bar{u})|\nabla \bar{\varphi}|^{2} U+2 \sigma(\bar{u}) \nabla \bar{\varphi} \cdot \nabla \Phi=g, \quad U=0 \quad \text { on } \Gamma
\end{gathered}
$$

has one and only one solution for every $(f, g) \in \mathcal{Y}$. Thus $\mathcal{F}_{(\varphi, u)}((\bar{\varphi}, \bar{u}), 0)$ is invertible and therefore there exists $\mu_{0}>0$ such that the thesis holds.

2. The one-dimensional case

In this Section we study the one-dimensional version of the problem 1.1; i.e.,

$$
\begin{gather*}
\left(\sigma(u) \varphi^{\prime}\right)^{\prime}=0 \tag{2.1}\\
\varphi(-L)=-V, \quad \varphi(L)=V, \quad L>0 \tag{2.2}\\
u^{\prime \prime}+\sigma(u) \varphi^{\prime 2}=0 \tag{2.3}\\
u(-L)=0, \quad u(L)=0 \tag{2.4}
\end{gather*}
$$

In the next Lemma we collect certain elementary properties of the solution of 2.1 2.4.

Lemma 2.1. Let $\sigma(u) \in C^{1}\left(\mathbb{R}^{1}\right)$ and $\sigma(u)>0$ for all $u \in \mathbb{R}^{1}$. Suppose

$$
\begin{equation*}
\int_{0}^{\infty} \frac{d t}{\sigma(t)}=\infty \tag{2.5}
\end{equation*}
$$

Under these hypotheses there exists one and only one solution $(\varphi(x), u(x))$ of the problem 2.1-2.4, and the solution satisfies

$$
\begin{gather*}
\varphi^{\prime}(x)>0 \tag{2.6}\\
\varphi(x)=-\varphi(-x), u(x)=u(-x) \tag{2.7}
\end{gather*}
$$

Moreover, if we define

$$
\begin{gather*}
F(u)=\int_{0}^{u} \frac{d t}{\sigma(t)} \tag{2.8}\\
\xi=G(\varphi)=\int_{0}^{\varphi} \sigma\left(F^{-1}\left(\frac{V^{2}}{2}-\frac{t^{2}}{2}\right)\right) d t \tag{2.9}
\end{gather*}
$$

we have

$$
\begin{equation*}
\frac{d \varphi}{d x}(x)=\frac{G(V)}{L \sigma(u(x))} \tag{2.10}
\end{equation*}
$$

Proof. Let us define the transformation

$$
\begin{equation*}
\theta=\frac{1}{2} \varphi^{2}+\frac{V}{2} \varphi+F(u) \tag{2.11}
\end{equation*}
$$

Therefore, by 2.8,

$$
\sigma(u) \theta^{\prime}=\sigma(u) \varphi \varphi^{\prime}+\frac{V}{2} \sigma(u) \varphi^{\prime}+u^{\prime}
$$

Recalling 2.1 and 2.3 we have

$$
\left(\sigma(u) \theta^{\prime}\right)^{\prime}=0
$$

Hence in terms of φ and θ the problem (2.1)-(2.4) can be restated as

$$
\begin{gather*}
\left(\sigma(u) \varphi^{\prime}\right)^{\prime}=0 \\
\varphi(-L)=-V, \quad \varphi(L)=V \\
\left(\sigma(u) \theta^{\prime}\right)^{\prime}=0 \tag{2.12}\\
\theta(-L)=0, \quad \theta(L)=V^{2}
\end{gather*}
$$

This suggests the existence of a functional relation between θ and φ, of the form

$$
\theta=\frac{V}{2} \varphi+\frac{V^{2}}{2}
$$

Hence, by 2.11, we have

$$
F(u)=\frac{V^{2}}{2}-\frac{\varphi^{2}}{2}
$$

By (2.5), F is globally invertible and

$$
\begin{equation*}
u=F^{-1}\left(\frac{V^{2}}{2}-\frac{\varphi^{2}}{2}\right) \tag{2.13}
\end{equation*}
$$

Thus we can write $\sqrt{2.12}$) in the form

$$
\left(\sigma\left(F^{-1}\left(\frac{V^{2}}{2}-\frac{\varphi^{2}}{2}\right)\right) \varphi^{\prime}\right)^{\prime}=0
$$

Using (2.9), we have

$$
\begin{gathered}
\xi^{\prime \prime}=0 \\
\xi(-L)=G(-V)=-G(V), \quad \xi(L)=G(V)
\end{gathered}
$$

Thus we obtain

$$
\xi(x)=\frac{G(V)}{L} x
$$

The potential $\varphi(x)$ can be computed from

$$
\begin{equation*}
G(\varphi(x))=\frac{G(V)}{L} x \tag{2.14}
\end{equation*}
$$

which gives

$$
\varphi(x)=G^{-1}\left(\frac{G(V)}{L} x\right)
$$

Finally the temperature $u(x)$ is obtained from 2.13 . The solution $(\varphi(x), u(x))$ of problem $\sqrt{2.1}-\sqrt{2.4})$ obtained in this way is also unique [5]. Now we prove 2.10 . From (2.14) we have

$$
\frac{G(V)}{L}=\frac{d G}{d \varphi}(\varphi(x)) \varphi^{\prime}(x)
$$

and by 2.13 and 2.9

$$
\frac{d G}{d \varphi}=\sigma(u)
$$

Hence (2.10) follows. From (2.1) we have $\sigma(u) \varphi^{\prime}=c$ with $c>0$ by (2.2), thus we obtain (2.6). To prove 2.7) we define

$$
\tilde{\varphi}(x)=-\varphi(-x), \quad \tilde{u}(x)=u(-x)
$$

As it is easily verified $(\tilde{\varphi}(x), \tilde{u}(x))$ satisfy 2.1 - 2.4 . Therefore, by the uniqueness of the solution of the problem (2.1)-2.4) we obtain 2.7).

The linearized problem corresponding, in the present one-dimensional case, to (1.2)-(1.4) reads

$$
\begin{gather*}
\left(\sigma(\bar{u}) \Phi^{\prime}+\sigma^{\prime}(\bar{u}) U \bar{\varphi}^{\prime}\right)^{\prime}=0, \quad\left(\sigma^{\prime}=\frac{d \sigma}{d u}, \varphi^{\prime}=\frac{d \varphi}{d x}\right) \tag{2.15}\\
\Phi(-L)=0, \quad \Phi(L)=0 \tag{2.16}\\
U^{\prime \prime}+\sigma^{\prime}(\bar{u}) \bar{\varphi}^{\prime 2} U+2 \sigma(\bar{u}) \bar{\varphi}^{\prime} \Phi^{\prime}=0 \tag{2.17}\\
U(-L)=0, \quad U(L)=0 \tag{2.18}
\end{gather*}
$$

where $(\bar{\varphi}(x), \bar{u}(x))$ is a solution of the problem 2.1)-2.4). Here we proceed by direct integration the linear problem (2.15-2.18). From 2.15) we have

$$
\begin{equation*}
\sigma(\bar{u}) \Phi^{\prime}=c_{1}-\sigma^{\prime}(\bar{u}) U \bar{\varphi}^{\prime} \tag{2.19}
\end{equation*}
$$

Substituting 2.19 in 2.17 we obtain, as a problem equivalent to 2.15-2.18,

$$
\begin{gather*}
\sigma^{\prime}(\bar{u}) \bar{\varphi}^{\prime} U+\sigma(\bar{u}) \Phi^{\prime}=c_{1} \tag{2.20}\\
\Phi(-L)=0, \quad \Phi(L)=0 \tag{2.21}\\
U^{\prime \prime}-\sigma^{\prime}(\bar{u}) \bar{\varphi}^{\prime 2} U=-2 c_{1} \bar{\varphi}^{\prime} \tag{2.22}\\
U(-L)=0, \quad U(L)=0 \tag{2.23}
\end{gather*}
$$

If $\mathcal{V}(x)$ is a solution of the auxiliary problem

$$
\begin{align*}
& \mathcal{V}^{\prime \prime}-\sigma^{\prime}(\bar{u}) \bar{\varphi}^{\prime 2} \mathcal{V}=-2 \bar{\varphi}^{\prime} \tag{2.24}\\
& \mathcal{V}(-L)=0, \quad \mathcal{V}(L)=0 \tag{2.25}
\end{align*}
$$

then the function

$$
\begin{equation*}
U(x)=c_{1} \mathcal{V}(x) \tag{2.26}
\end{equation*}
$$

solves 2.22 and 2.23 and vice versa. Substituting 2.26 into 2.20 we obtain

$$
\Phi^{\prime}(x)=\frac{c_{1}}{\sigma(\bar{u})}\left(1-\sigma^{\prime}(\bar{u}) \bar{\varphi}^{\prime} \mathcal{V}\right)
$$

Integrating, we have

$$
\begin{equation*}
\Phi(x)=c_{1} \int_{-L}^{x} \frac{1-\sigma^{\prime}(\bar{u}(t)) \bar{\varphi}(t) \mathcal{V}(t)}{\sigma(\bar{u}(t))} d t \tag{2.27}
\end{equation*}
$$

The condition $\Phi(L)=0$ becomes

$$
\begin{equation*}
c_{1} \int_{-L}^{L} \frac{1-\sigma^{\prime}(\bar{u}(t)) \bar{\varphi}(t) \mathcal{V}(t)}{\sigma(\bar{u}(t))} d t=0 \tag{2.28}
\end{equation*}
$$

Let us assume that
(H0) the number 1 is not an eigenvalue of the problem

$$
\begin{equation*}
\mathcal{V}^{\prime \prime}-\sigma^{\prime}(\bar{u}) \bar{\varphi}^{\prime 2} \mathcal{V}=0, \quad \mathcal{V}(-L)=0, \quad \mathcal{V}(L)=0 \tag{2.29}
\end{equation*}
$$

When (H0) holds, the auxiliary problem 2.24, 2.25 has one and only one solution $\mathcal{V}(x)$ and two possibilities occur: a generic case,

$$
\begin{equation*}
\int_{-L}^{L} \frac{1-\sigma^{\prime}(\bar{u}(t)) \bar{\varphi}^{\prime}(t) \mathcal{V}(t)}{\sigma(\bar{u}(t))} d t \neq 0 \tag{2.30}
\end{equation*}
$$

and a special case

$$
\begin{equation*}
\int_{-L}^{L} \frac{1-\sigma^{\prime}(\bar{u}(t)) \bar{\varphi}^{\prime}(t) \mathcal{V}(t)}{\sigma(\bar{u}(t))} d t=0 \tag{2.31}
\end{equation*}
$$

Assume (H0) and 2.30 hold. Then, from 2.28), $c_{1}=0$ and 2.27) imply

$$
\begin{equation*}
\Phi(x)=0 \tag{2.32}
\end{equation*}
$$

Moreover, from 2.22 and 2.23 we have

$$
\begin{equation*}
U^{\prime \prime}-\sigma^{\prime}(\bar{u}) \bar{\varphi}^{\prime 2} U=0, \quad U(-L)=0, \quad U(L)=0 \tag{2.33}
\end{equation*}
$$

On the other hand, by (H0), the value 1 is not an eigenvalue of (2.33), hence $U(x)=0$. Therefore the problem $(2.15)-(2.18)$ has only the trivial solution and the one-dimensional version of Lemma 1.4 applies.

We consider next the special case in which the assumption (H0) holds, but

$$
\begin{equation*}
\int_{-L}^{L} \frac{1-\sigma^{\prime}(\bar{u}(t)) \bar{\varphi}^{\prime}(t) \mathcal{V}(t)}{\sigma(\bar{u}(t))} d t=0 \tag{2.34}
\end{equation*}
$$

where in (2.34) $\mathcal{V}(x)$ is the unique solution of problem 2.24)-2.25). We have

$$
\Phi(x)=c_{1} \int_{-L}^{x} \frac{1-\sigma^{\prime}(\bar{u}(t)) \bar{\varphi}(t) \mathcal{V}(t)}{\sigma(\bar{u}(t))} d t
$$

where c_{1} is an arbitrary constant and, by (2.26), $U(x)=c_{1} \mathcal{V}(x)$. Thus in this case the linear problem $\sqrt{2.20}-(2.23)$ has nontrivial solutions, more precisely the space of its solutions has dimension 1 .

Example 2.2. The problem $(2.29$ can be solved only in special cases and it is therefore difficult to check the condition (H0). However, this can be done for the physical relevant conductivity law

$$
\begin{equation*}
\sigma(u)=\frac{K}{a u+b}, K>0, a>0, b>0 \tag{2.35}
\end{equation*}
$$

which is quite accurate for metals. If 2.35 holds, we have, using the notation of Lemma 2.1

$$
\xi=F(u)=\frac{1}{K}\left(\frac{a u^{2}}{2}+b u\right), \quad u=F^{-1}(\xi)=\frac{-b+\sqrt{b^{2}+2 a \xi K}}{a}
$$

Moreover,

$$
\sigma\left(F^{-1}\left(\frac{V^{2}}{2}-\frac{t^{2}}{2}\right)\right)=\frac{K}{\sqrt{b^{2}+a K\left(V^{2}-t^{2}\right)}}
$$

and

$$
\begin{equation*}
G(V)=\frac{\sqrt{K}}{\sqrt{a}} \arctan \frac{\sqrt{a K} V}{b} \tag{2.36}
\end{equation*}
$$

Problem 2.29 can be restated, in view of 2.10, in the form

$$
\begin{equation*}
\mathcal{V}^{\prime \prime}-\frac{\sigma^{\prime}(\bar{u})(G(V))^{2}}{L^{2}(\sigma(\bar{u}))^{2}} \mathcal{V}=0, \quad \mathcal{V}(-L)=0, \quad \mathcal{V}(L)=0 \tag{2.37}
\end{equation*}
$$

If 2.35 holds, we have

$$
\frac{\sigma^{\prime}(\bar{u})}{(\sigma(\bar{u}))^{2}}=-\frac{a}{K}
$$

Hence, by (2.36), the equation in 2.37) becomes

$$
\mathcal{V}^{\prime \prime}+\frac{1}{L^{2}}\left(\arctan \frac{\sqrt{a K} V}{b}\right)^{2} \mathcal{V}=0
$$

Recalling that $\mu_{0}=\frac{\pi^{2}}{4 L^{2}}$ is the first eigenvalue of the problem

$$
\mathcal{V}^{\prime \prime}+\mu \mathcal{V}=0, \quad \mathcal{V}(-L)=0, \quad \mathcal{V}(L)=0
$$

and taking into account that

$$
\begin{equation*}
\frac{1}{L^{2}}\left(\arctan \frac{\sqrt{a K} V}{b}\right)^{2}<\frac{\pi^{2}}{4 L^{2}} \tag{2.38}
\end{equation*}
$$

we conclude that 1 is not an eigenvalue of the problem 2.29 if 2.35 holds. Hence the condition (H0) is certainly verified. Moreover, in view of 2.38 the operator

$$
\frac{d^{2}}{d x^{2}}+\frac{1}{L^{2}}\left(\arctan \frac{\sqrt{a K} V}{b}\right)^{2}
$$

is a "maximum principle operator". Thus the unique solution of the problem

$$
\mathcal{V}^{\prime \prime}+\frac{1}{L^{2}}\left(\arctan \frac{\sqrt{a K} V}{b}\right)^{2} \mathcal{V}=-2 \bar{\varphi}^{\prime}(x), \mathcal{V}(-L)=0, \mathcal{V}(L)=0
$$

is positive in $(-L, L)$ since $\varphi^{\prime}(x)>0$ by 2.6. It follows

$$
\int_{-L}^{L} \frac{1-\sigma^{\prime}(\bar{u}(t)) \bar{\varphi}^{\prime}(t) \mathcal{V}(t)}{\sigma(\bar{u}(t))} d t>0
$$

Therefore, the condition 2.30 is satisfied. It follows that the problem 2.15$)-2.18$ has only the trivial solution and the one-dimensional version of Lemma 1.4 applies.

Example 2.3. If $\sigma^{\prime}(u) \geq 0$ the problem (2.29) has only the trivial solution $\mathcal{V}(x)=0$ [2], therefore (H 0) is verified. However, in this case, we have by the maximum principle, from (2.24)-2.25 and, in view of 2.6, $\mathcal{V}(x)>0$. Thus the cases 2.30) and 2.31) are, in principle, both possible.

To treat the case in which 1 is an eigenvalue of 2.29 , we recall [3] the following result on the eigenvalues and eigenfunctions of the problem

$$
\begin{equation*}
v^{\prime \prime}+\lambda p(x) v=0, \quad v(L)=0, \quad(L)=0 . \tag{2.39}
\end{equation*}
$$

Lemma 2.4. If $p(x) \in C^{0}([-L, L])$ and $p(x)>0$, then the eigenvalues $\lambda_{n}, n=$ $0,1,2, \ldots$ of problem 2.39 are all simple. When the eigenvalues are arranged in increasing order, the eigenfunctions $v_{n}(x)$ (determined except for a constant multiplier) possess exactly n zeros in $(-L, L)$. In particular, the first eigenvalue $v_{0}(x)$ has constant sign.

Lemma 2.5. Let $p(x) \in C^{0}([-L, L])$ be even and $p(x)>0$. Then the eigenfunctions $v_{n}(x)$ of (2.39 with an even index are even, and the eigenfunctions with an odd index are odd.

Proof. All eigenfunctions of 2.39 are either even or odd. Let $v(x)$ be an eigenfunction corresponding to the eigenvalue λ. Let $v(0) \neq 0$ and define

$$
\begin{equation*}
W(x)=v(-x) \tag{2.40}
\end{equation*}
$$

It is easily seen that $W(x)$ is also an eigenfunction corresponding to λ. Thus $W(x)=C v(x)$ and $W(0)=v(0)$ by 2.40 . Hence $C=1$ and therefore $v(-x)=$ $v(x)$. Let $v(0)=0$. We have $v^{\prime}(0)=\alpha \neq 0$ since $v^{\prime}(0)=0$ would imply $v(x)=0$. Define $W(x)=-v(-x)$. $W(x)$ is an eigenfunction corresponding to λ. On the other hand, $W(0)=-v(0)=0$. Therefore $W(x)=v(x)$ and $v(x)=-v(-x)$. To prove that $v_{0}(x)$ is even we simply note that $v_{0}(x) \neq 0$. We prove that $v_{1}(x)$ is odd. By Lemma 2.4, $v_{1}(x)$ has only one zero x^{*} in $(-L, L)$ with $v_{1}^{\prime}\left(x^{*}\right) \neq 0$. We claim that $x^{*}=0$. Let $x^{*} \neq 0$, thus either $v_{1}\left(x^{*}\right)=0$ and $v_{1}\left(-x^{*}\right)=0$ or $v\left(x^{*}\right)=0$ and $-v_{1}\left(-x^{*}\right)=0$ and this cannot be since $v_{1}(x)$ has only one zero in $(-L, L)$. Suppose, by contradiction, $v_{1}(x)$ to be even. This implies

$$
\begin{equation*}
v_{1}^{\prime}(0)=0 \tag{2.41}
\end{equation*}
$$

But $v_{1}(0)=0$ and that, together with 2.41, would imply $v_{1}(x)=0$. Hence $v_{1}(x)$ is odd. In a similar vein we can prove the general result: $v_{n}(x)$ is even if n is even and $v_{n}(x)$ is odd if n is odd.

Lemma 2.6. Let $p(x) \in C^{0}([-L, L]), \quad f(x) \in C^{0}([-L, L])$ be even functions and $p(x)>0$. Consider the two-point problem

$$
\begin{equation*}
v^{\prime \prime}+\lambda p(x) v=f(x), \quad v(L)=0, \quad v(L)=0 \tag{2.42}
\end{equation*}
$$

Let λ be an eigenvalue of odd index of the problem 2.39) and $\tilde{v}(x)$ the corresponding (odd) eigenfunction. Then the solutions of 2.42 can be written as follows

$$
v(x)=C \tilde{v}(x)+w(x),
$$

where C is an arbitrary constant and $w(x)$ is the only solution of (2.42) which is even and satisfies the condition

$$
\begin{equation*}
\int_{-L}^{L} w(x) \tilde{v}(x) d x=0 \tag{2.43}
\end{equation*}
$$

Proof. The condition of solvability of problem 2.42, i. e., $\int_{-L}^{L} f(x) \tilde{v}(x) d x=0$ is satisfied in view of the assumptions on $f(x)$ and on the eigenvalue λ. Let us normalize the eigenfunction $\tilde{v}(x)$ assuming $\int_{-L}^{L} \tilde{v}^{2} d x=1$. The solutions of problem 2.42) are given by

$$
v(x)=C \tilde{v}(x)+v^{*}(x)
$$

where $v^{*}(x)$ is an arbitrary function which satisfies

$$
\frac{d^{2} v^{*}}{d x^{2}}+\lambda v^{*}=f(x), v^{*}(-L)=0, v^{*}(L)=0
$$

Define

$$
w(x)=v^{*}(x)-\int_{-L}^{L} v^{*}(t) \tilde{v}(t) d t \tilde{v}(x)
$$

We have

$$
\int_{-L}^{L} w(x) \tilde{v}(x) d x=0
$$

On the other hand, if $w_{1}(x)$ and $w_{2}(x)$ both satisfy 2.42 and 2.43 and if we define $h(x)=w_{1}(x)-w_{2}(x)$, we have $h(x)=C \tilde{v}(x)$. If $C=0$ we have done. If $C \neq 0$ we have

$$
\int_{-L}^{L} h(x) \tilde{v}(x) d x=0, \quad C \int_{-L}^{L} \tilde{v}^{2}(x) d x=0
$$

which cannot be. Thus there exists only one solution of 2.42 which satisfies 2.43. We claim that $w(x)$ is even. Define $z(x)=w(-x)$. Since $\tilde{v}(x)$ is odd we have

$$
\int_{-L}^{L} z(x) \tilde{v}(x) d x=\int_{-L}^{L} w(x) \tilde{v}(x) d x=0 .
$$

Also we have

$$
\frac{d^{2} z}{d x^{2}}+\lambda p(x) z=f(x), \quad z(-L)=0, \quad z(L)=0
$$

since $p(x)$ and $f(x)$ are even functions. By uniqueness we conclude that $w(x)$ is even.

We assume now
(H1) $\sigma^{\prime}(\bar{u}(x))<0$ and the number 1 is the first eigenvalue of the problem

$$
\mathcal{V}^{\prime \prime}-\sigma^{\prime}(\bar{u}) \bar{\varphi}^{\prime 2} \mathcal{V}=0, \quad \mathcal{V}(-L)=0, \quad \mathcal{V}(L)=0
$$

Denote by $\mathcal{V}_{0}(x)$ the corresponding eigenfunction normalized with the condition $\int_{-L}^{L} \mathcal{V}^{2}(x) d x=1$. Then we have

$$
\int_{-L}^{L} \bar{\varphi}^{\prime}(x) \mathcal{V}_{0}(x) d x \neq 0
$$

since $\mathcal{V}_{0}(x) \neq 0$ by Lemma 2.4 and $\bar{\varphi}^{\prime}(x)>0$ by Lemma 2.1. Hence the auxiliary problem

$$
\mathcal{V}^{\prime \prime}-\sigma^{\prime}(\bar{u}) \bar{\varphi}^{\prime 2} \mathcal{V}=-2 \bar{\varphi}^{\prime}, \quad \mathcal{V}(-L)=0, \quad \mathcal{V}(L)=0
$$

has no solution. Therefore the problem

$$
U^{\prime \prime}-\sigma^{\prime}(\bar{u}) \bar{\varphi}^{\prime 2} U=-2 c_{1} \bar{\varphi}^{\prime}, \quad U(-L)=0, \quad U(L)=0
$$

has solutions only when

$$
\begin{equation*}
c_{1}=0 \tag{2.44}
\end{equation*}
$$

and these solutions are

$$
\begin{equation*}
U(x)=\gamma \mathcal{V}_{0}(x), \quad \gamma \in \mathbb{R}^{1} . \tag{2.45}
\end{equation*}
$$

From (2.19), (2.44) and 2.45 we have

$$
\begin{gather*}
\sigma(\bar{u}) \Phi^{\prime}=-\gamma \sigma^{\prime}(\bar{u}) \mathcal{V}_{0}(x) \bar{\varphi}^{\prime}(x) \tag{2.46}\\
\Phi(-L)=0, \quad \Phi(L)=0 \tag{2.47}
\end{gather*}
$$

The condition of solvability of 2.46 and 2.47 is thus given by

$$
\gamma \int_{-L}^{L} \frac{\sigma^{\prime}(\bar{u}(t)) \mathcal{V}_{0}(t) \bar{\varphi}^{\prime}(t) d t}{\sigma(\bar{u}(t))}=0
$$

On the other hand, by (H1), Lemma 2.1 and Lemma 2.4, we have

$$
\int_{-L}^{L} \frac{\sigma^{\prime}(\bar{u}(t)) \mathcal{V}_{0}(t) \bar{\varphi}^{\prime}(t) d t}{\sigma(\bar{u}(t))} \neq 0
$$

which implies $\gamma=0$ and $U(x)=0$ and, from 2.46) and 2.47, $\Phi(x)=0$. Therefore, the problem 2.20 - 2.23 has only the trivial solution and Lemma 1.4 applies.

Next we examine the case when
(H2) $\sigma^{\prime}(\bar{u}(x))<0$ and the number 1 is the second eigenvalue of the problem

$$
\mathcal{V}^{\prime \prime}-\sigma^{\prime}(\bar{u}) \bar{\varphi}^{\prime 2} \mathcal{V}=0, \quad \mathcal{V}(-L)=0, \quad \mathcal{V}(L)=0
$$

Let $\mathcal{V}_{1}(x)$ be the corresponding eigenvalue which is normalized with the condition $\int_{-L}^{L} \mathcal{V}_{1}^{2}(x) d x=1$. By Lemma 2.5. $\mathcal{V}_{1}(x)$ is an odd function. Thus we have, recalling that $\bar{\varphi}^{\prime}(x)$ is an even function,

$$
\int_{-L}^{L} \bar{\varphi}^{\prime}(x) \mathcal{V}_{1}(x) d x=0
$$

Thus, by Lemma 2.6 , the solutions of

$$
\begin{equation*}
\mathcal{V}^{\prime \prime}-\sigma^{\prime}(\bar{u}) \bar{\varphi}^{\prime 2} \mathcal{V}=-2 \bar{\varphi}^{\prime}, \quad \mathcal{V}(-L)=0, \quad \mathcal{V}(L)=0 \tag{2.48}
\end{equation*}
$$

are given by

$$
\mathcal{V}(x)=C \mathcal{V}_{1}(x)+\tilde{\mathcal{V}}(x)
$$

where C is an arbitrary constant and $\tilde{\mathcal{V}}(x)$ the only solution of 2.48) which is even and satisfies

$$
\int_{-L}^{L} \tilde{\mathcal{V}}(x) \mathcal{V}_{1}(x) d x=0
$$

Therefore, the solutions of

$$
U^{\prime \prime}-\sigma^{\prime}(\bar{u}) \bar{\varphi}^{\prime 2} U=-2 c_{1} \bar{\varphi}^{\prime}, \quad U(-L)=0, \quad U(L)=0
$$

are given by

$$
\begin{equation*}
U(x)=c_{1} C \mathcal{V}_{1}(x)+c_{1} \tilde{\mathcal{V}}(x) \tag{2.49}
\end{equation*}
$$

or, if we put $K=c_{1} C$,

$$
\begin{equation*}
U(x)=K \mathcal{V}_{1}(x)+c_{1} \tilde{\mathcal{V}}(x) \tag{2.50}
\end{equation*}
$$

From 2.19, using 2.50, we have

$$
\Phi^{\prime}(x)=\frac{c_{1}}{\sigma(\bar{u})}\left(1-\sigma^{\prime}(\bar{u}) \bar{\varphi}^{\prime} \tilde{\mathcal{V}}\right)-\frac{K}{\sigma(\bar{u})} \sigma^{\prime}(\bar{u}) \bar{\varphi}^{\prime} \mathcal{V}_{1}
$$

Hence

$$
\begin{equation*}
\Phi(x)=c_{1} \int_{-L}^{x} \frac{1}{\sigma(\bar{u})}\left(1-\sigma^{\prime}(\bar{u}) \bar{\varphi}^{\prime} \tilde{\mathcal{V}}\right) d t-K \int_{-L}^{x} \frac{1}{\sigma(\bar{u})} \sigma^{\prime}(\bar{u}) \bar{\varphi}^{\prime} \mathcal{V}_{1} d t \tag{2.51}
\end{equation*}
$$

The condition $\Phi(L)=0$ gives

$$
c_{1} \int_{-L}^{L} \frac{1}{\sigma(\bar{u})}\left(1-\sigma^{\prime}(\bar{u}) \bar{\varphi}^{\prime} \tilde{\mathcal{V}}\right) d t=0
$$

if we take into account that $\frac{\sigma^{\prime}(\bar{u}(x)) \bar{\varphi}^{\prime} \mathcal{V}_{1}(x)}{\sigma(\bar{u}(x))}$ is an odd function of x. Thus we need to distinguish a generic case when

$$
\int_{-L}^{L} \frac{1}{\sigma(\bar{u})}\left(1-\sigma^{\prime}(\bar{u}) \bar{\varphi}^{\prime} \tilde{\mathcal{V}}\right) d t \neq 0
$$

This implies $c_{1}=0$. From 2.50) we have

$$
U(x)=K \mathcal{V}_{1}(x)
$$

and from 2.51),

$$
\Phi(x)=-K \int_{-L}^{x} \frac{1}{\sigma(\bar{u})} \sigma^{\prime}(\bar{u}) \bar{\varphi}^{\prime} \mathcal{V}_{1} d t
$$

Therefore, in the generic case the kernel of the linearized operator has dimension 1. On the other hand, if

$$
\int_{-L}^{L} \frac{1}{\sigma(\bar{u})}\left(1-\sigma^{\prime}(\bar{u}) \bar{\varphi}^{\prime} \tilde{\mathcal{V}}\right) d t=0
$$

the kernel has dimension 2 , since 2.49 and 2.51 hold.

References

[1] W. Allegretto, H. Xie; Solutions for the microsensor thermistor equations in the small bias case, Proc. Roy. Soc. Edinburgh Sect. A 123 (1993), 987-999.
[2] A. Ambrosetti, G. Prodi; Nonlinear Analysis, Cambridge University Press, 1993.
[3] J. C. Burkill; The Theory of Ordinary Differential Equations, University Mathematical Texts, Oliver and Boid LTD. 1968.
[4] R. Courant, D. Hilbert; Methods of Mathematical Physics, Vol.2, Interscience Publishers, New York, 1966.
[5] G. Cimatti; Remark on existence and uniqueness for the thermistor problem with mixed boundary conditions, Quart. Appl.Math., 47 (1989), 117-121.
[6] G. Cimatti, G. Prodi; Existence results for a nonlinear elliptic system modelling a temperature dependent resistor, Ann. Mat. Appl. (4), 152 (1988), 227-236.
[7] D. Gilbarg, N. S. Trudinger; Elliptic Partial Differential of the Second Order, Springer Verlag, New York, 2001.
[8] S. D. Howison, J. F. Rodrigues, M. Shillor; Stationary solutions to the thermistor problem, J. Math. Anal. Appl., 174 (1993), 573-588.

Giovanni Cimatti
Department of Matematics, University of Pisa, Largo Bruno Pontecorvo 5, 56127 Pisa, Italy

E-mail address: cimatti@dm.unipi.it

[^0]: 2000 Mathematics Subject Classification. 35B15, 35J66.
 Key words and phrases. Elliptic system; thermistor problem; existence; uniqueness of solutions.
 (C) 2013 Texas State University - San Marcos.

 Submitted September 4, 2012. Published February 1, 2013.

