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EXISTENCE AND MULTIPLICITY OF SOLUTIONS FOR
NONLOCAL ELLIPTIC PROBLEMS

MOHAMMED MASSAR

Abstract. This article concerns the existence and multiplicity solutions for a
class of p-Kirchhoff type equations with Neumann boundary conditions. Our

technical approach is based on variational methods.

1. Introduction

In this work, we study the existence and multiplicity of solutions for the nonlocal
elliptic problem under Neumann boundary condition:[

M
(∫

Ω

(|∇u|p + a(x)|u|p)dx
)]p−1(

−∆pu+ a(x)|u|p−2u
)

= λf(x, u) in Ω

∂u

∂ν
= 0 on ∂Ω,

(1.1)
where p > N , Ω is a nonempty bounded open subset of RN with a boundary of
class C1, ∂u

∂ν is the outer unit normal derivative, a ∈ L∞(Ω), with ess infΩ a ≥ 0,
a 6= 0, λ ∈ (0,∞), f : Ω×R→ R and M : R+ → R+ are two functions that satisfy
conditions which will be stated later.

The problem (1.1)) is related to the stationary problem of a model introduced by
Kirchhoff [9]. More precisely, Kirchhoff introduced a model given by the equation

ρ
∂2u

∂t2
−
(ρ0

h
+

E

2L

∫ L

0

|∂u
∂x
|2dx

)∂2u

∂x2
= 0, (1.2)

which extends the classical D’Alembert’s wave equation by considering the effects
of the changes in the length of the strings during the vibrations. Latter (1.2) was
developed to form

utt −M
(∫

Ω

|∇u|2dx
)

∆u = f(x, u) in Ω. (1.3)

After that, many authors studied the following nonlocal elliptic boundary value
problem

−M
(∫

Ω

|∇u|2dx
)

∆u = f(x, u) in Ω, u = 0 on ∂Ω. (1.4)
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Problems like (1.4) can be used for modeling several physical and biological systems
where u describes a process which depends on the average of it self, such as the
population density , see [1]. Many interesting results for problems of Kirchhoff
type were obtained and we refer to [1, 2, 3, 7, 8, 10] and references therein for an
overview on these subjects.

The main purpose of the present paper is to establish the existence of at least one
solution and, as a consequence, existence results of two and three solutions for the
nonlocal problem (1.1), by adopting the framework of Bonanno and Sciammetta
[4].

2. Preliminaries and basic notation

Our main tools are two consequences of a local minimum theorem [5, Theorem
3.1] which are recalled below. Given X a set and two functionals Φ,Ψ : X → R,
put

β(r1, r2) = inf
v∈Φ−1((r1,r2))

supu∈Φ−1((r1,r2)) Ψ(u)−Ψ(v)
r2 − Φ(v)

, (2.1)

ρ2(r1, r2) = sup
v∈Φ−1((r1,r2))

Ψ(v)− supu∈Φ−1((−∞,r1]) Ψ(u)
Φ(v)− r1

, (2.2)

for all r1, r2 ∈ R, with r1 < r2, and

ρ(r) = sup
v∈Φ−1((r,+∞))

Ψ(v)− supu∈Φ−1((−∞,r]) Ψ(u)
Φ(v)− r

, (2.3)

for all r ∈ R.

Theorem 2.1 ([5, Theorem 5.1]). Let X be a reflexive real Banach space, Φ : X →
R be a sequentially weakly lower semicontinuous, coercive and continuously Gâteaux
differentiable function whose Gâteaux derivative admits a continuous inverse on
X∗,Ψ : X → R be a continuously Gâteaux differentiable function whose Gâteaux
derivative is compact. Put Iλ = Φ− λΨ and assume that there are r1, r2 ∈ R, with
r1 < r2, such that

β(r1, r2) < ρ2(r1, r2), (2.4)

where β and ρ2 are given by (2.1) and (2.2). Then, for each λ ∈
(

1
ρ2(r1,r2) ,

1
β(r1,r2)

)
there is u0,λ ∈ Φ−1((r1, r2)) such that Iλ(u0,λ) ≤ Iλ(u) for all u ∈ Φ−1((r1, r2))
and I ′λ(u0,λ) = 0.

Theorem 2.2 ([5, Theorem 5.3]). Let X be a real Banach space, Φ : X → R
be a continuously Gâteaux differentiable function whose Gâteaux derivative admits
a continuous inverse on X∗,Ψ : X → R be a continuously Gâteaux differentiable
function whose Gâteaux derivative is compact. Fix infX Φ < r < supX Φ and
assume that

ρ(r) > 0, (2.5)

where ρ is given by (2.3) and for each λ > 1/ρ(r) the function Iλ = Φ − λΨ is
coercive.

Then, for each λ > 1/ρ(r) there is u0,λ ∈ Φ−1((r,+∞)) such that Iλ(u0,λ) ≤
Iλ(u) for all u ∈ Φ−1((r,+∞)) and I ′λ(u0,λ) = 0.
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Theorems 2.1 and 2.2 are consequences of a local minimum theorem [5, Theorem
3.1] which is a more general version of the Ricceri Variational Principle (see [14]).

Let X be the Sobolev space W 1,p(Ω) endowed with the norm

‖u‖ :=
(∫

Ω

(|∇u|p + a(x)|u|p)dx
)1/p

.

Let

k := sup
u∈X\{0}

maxx∈Ω |u(x)|
‖u‖

. (2.6)

Since p > N , X is compactly embedded in C0(Ω), so that k <∞. We have

|u(x)| ≤ k‖u‖ for all x ∈ Ω, u ∈ X. (2.7)

Therefore, taking u ≡ 1 in (2.7),

kp‖a‖1 ≥ 1, where ‖a‖1 =
∫

Ω

|a(x)|dx.

We assume that f : Ω × R → R is L1-Carathéodory; that is, x 7→ f(x, t) is
measurable for every t ∈ R, t 7→ f(x, t) is continuous for almost every x ∈ Ω and
for all s > 0 there is ls ∈ L1(Ω) such that

sup
|t|≤s
|f(x, t)| ≤ ls(x) for a.e. x ∈ Ω,

and M : R+ → R+ is a nondecreasing continuous function with the following
condition:

(M0) m0 := inft≥0M(t) > 0.
We say that u ∈ X is a weak solution of problem (1.1) if

[M (‖u‖p)]p−1
∫

Ω

(
|∇u|p−2∇u∇v + a(x)|u|p−2uv

)
dx− λ

∫
Ω

f(x, u)vdx = 0,

for all v ∈ X.
We introduce the functionals Φ,Ψ : X → R, defined by

Φ(u) =
1
p
M̂ (‖u‖p) , Ψ(u) =

∫
Ω

F (x, u)dx, (2.8)

for all u ∈ X, where

M̂(t) =
∫ t

0

[M(s)]p−1ds for all t ≥ 0,

F (x, ξ) =
∫ ξ

0

f(x, s)ds for all (x, ξ) ∈ Ω× R.

It is well known that Φ and Ψ are well defined and continuously Gâteaux differen-
tiable whose Gâteaux derivatives at point u ∈ X are given by

〈Φ′(u), v〉 = [M (‖u‖p)]p−1
∫

Ω

(
|∇u|p−2∇u∇v + a(x)|u|p−2uv

)
dx

〈Ψ′(u), v〉 =
∫

Ω

f(x, u)vdx,

for all v ∈ X. Moreover, Ψ′ is compact.

Proposition 2.3. Assume that (M0) holds. Then
(i) Φ is sequentially weakly lower semicontinuous;
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(ii) Φ is coercive;
(iii) Φ′ : X → X∗ is strictly monotone;
(iv) Φ′ is of type (S+), i.e. if un ⇀ u in X and

limn→+∞〈Φ′(un)− Φ′(u), un − u〉 = 0,

then un → u in X;
(v) Φ′ admits a continuous inverse on X∗.

Proof. (i) Let un ⇀ u weakly in X. By the weakly lower semicontinuity of norm,
it follows that

‖u‖ ≤ lim inf
n→+∞

‖un‖.

In view of the continuity and monotonicity of M̂ , we deduce that

M̂ (‖u‖p) ≤ M̂
(

lim inf
n→+∞

‖un‖p
)
≤ lim inf

n→+∞
M̂ (‖un‖p) ,

and hence Φ is sequentially weakly lower semicontinuous.
(ii) Thanks to (M0), we have

Φ(u) =
1
p
M̂ (‖u‖p) ≥ mp−1

0

p
‖u‖p. (2.9)

So, Φ is coercive.
(iii) Consider the functional T : X → R, defined by

T (u) =
∫

Ω

(|∇u|p + a(x)|u|p) dx for all u ∈ X,

whose Gâteaux derivative at point u ∈ X is given by

〈T ′(u), v〉 = p

∫
Ω

(
|∇u|p−2∇u∇v + a(x)|u|p−2uv

)
dx, for all v ∈ X,

Taking into account [15, (2.2)] for p > 1 there exists a positive constant Cp such
that

〈|x|p−2x− |y|p−2y, x− y〉 ≥

{
Cp|x− y|p if p ≥ 2

Cp
|x−y|2

(|x|+|y|)p−2 , (x, y) 6= (0, 0) if 1 < p < 2,
(2.10)

for all x, y ∈ RN . Therefore,

〈T ′(u)− T ′(v), u− v〉 ≥

{
Cp
∫

Ω
(|∇u−∇v|p + a(x)|u− v|p) dx if p ≥ 2

Cp
∫

Ω

(
|∇u−∇v|2

(|∇u|+|∇v|)2−p + a(x)|u−v|2
(|u|+|v|)2−p

)
dx if 1 < p < 2

> 0,

for all u 6= v ∈ X, which means that T ′ is strictly monotone. So, by [16, Prop.
25.10], T is strictly convex. Moreover, since M is nondecreasing, M̂ is convex in
[0,+∞[. Thus, for every u, v ∈ X with u 6= v, and every s, t ∈ (0, 1) with s+ t = 1,
one has

M̂(T (su+ tv)) < M̂(sT (u) + tT (v)) ≤ sM̂(T (u)) + tM̂(T (v)).

This shows Φ is strictly convex, and, as already said, that Φ′ is strictly monotone.
(iv) From (iii), if un ⇀ u in X and lim supn→+∞〈Φ′(un) − Φ′(u), un − u〉 = 0,

then
lim

n→+∞
〈Φ′(un)− Φ′(u), un − u〉 = 0,
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and so,
lim

n→+∞
〈Φ′(un), un − u〉 = 0, (2.11)

that is,

lim
n→+∞

[M (‖un‖p)]p−1

∫
Ω

|∇un|p−2∇un∇(un − u) + a(x)|un|p−2un(un − u)dx = 0.

(2.12)
Since (un) is bounded in X and M is continuous, up to subsequence, there is t0 ≥ 0
such that

M (‖un‖p)→M (tp0) ≥ m0, as n→ +∞.
This and (2.12) imply

lim
n→+∞

∫
Ω

|∇un|p−2∇un∇(un − u) + a(x)|un|p−2un(un − u)dx = 0. (2.13)

In a same way,

lim
n→+∞

∫
Ω

|∇u|p−2∇u∇(un − u) + a(x)|u|p−2u(un − u)dx = 0. (2.14)

Now, by using again inequality (2.10), we obtain by (2.13) and (2.14),

on(1) =
∫

Ω

(
|∇un|p−2∇un − |∇u|p−2∇u

)
∇(un − u)dx

+
∫

Ω

a(x)
(
|un|p−2un − |u|p−2u

)
(un − u)dx

≥

{
Cp
∫

Ω
(|∇un −∇u|p + a(x)|un − u|p) dx if p ≥ 2

Cp
∫

Ω

(
|∇un−∇u|2

(|∇un|+|∇u|)2−p + a(x)|un−u|2
(|un|+|u|)2−p

)
dx if 1 < p < 2.

(2.15)

If p ≥ 2, we have

lim
n→+∞

∫
Ω

(|∇un −∇u|p + a(x)|un − u|p) dx = 0.

If 1 < p < 2, by Hölder’s inequality, it follows that By applying Hölder’s inequality,
we obtain∫

Ω

|∇un −∇u|pdx ≤
(∫

Ω

|∇un −∇u|2

(|∇un|+ |∇u|)2−p dx
)p/2(∫

Ω

(|∇un|+ |∇u|)pdx
) 2−p

2

≤
(∫

Ω

|∇un −∇u|2

(|∇un|+ |∇u|)2−p dx
)p/2

(‖un‖+ ‖u‖)
2−p
2 p

≤ C
(∫

Ω

|∇un −∇u|2

(|∇un|+ |∇u|)2−p dx
)p/2

.

(2.16)
and∫

Ω

a(x)|un − u|pdx ≤
(∫

Ω

a(x)|un − u|2

(|un|+ |u|)2−p dx
)p/2(∫

Ω

a(x) (|un|+ |u|)p dx
) 2−p

2

≤
(∫

Ω

a(x)|un − u|2

(|un|+ |u|)2−p dx
)p/2

(‖un‖+ ‖u‖)
2−p
2 p

≤ C
(∫

Ω

a(x)|un − u|2

(|un|+ |u|)2−p dx
)p/2

.

(2.17)
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From (2.15)-(2.17), it follows that

‖un − u‖2 =
(∫

Ω

(|∇un −∇u|p + a(x)|un − u|p) dx
)2/p

≤ C ′
[( ∫

Ω

|∇un −∇u|pdx
)2/p

+
(∫

Ω

a(x)|un − u|pdx
)2/p]

≤ C ′C2/p

∫
Ω

( |∇un −∇u|2

(|∇un|+ |∇u|)2−p +
a(x)|un − u|2

(|un|+ |u|)2−p

)
dx

≤ on(1).

Therefore, in both cases we have

lim
n→+∞

‖un − u‖ = 0,

and this completes the proof of (iv).
(v) Since Φ′ is a strictly monotone operator in X, Φ′ is an injection. For u ∈ X

with ‖u‖ > 1, we have

〈Φ′(u), u〉
‖u‖

=
[M(‖u‖p)]p−1‖u‖p

‖u‖
≥ mp−1

0 ‖u‖p−1,

therefore, Φ′ is coercive. Clearly Φ′ is also demicontinuous. On account of the well-
known Minty-Browder theorem [16, Theorem 26A], the operator Φ′ is a surjection,
and hence the inverse (Φ′)−1 : X∗ → X of Φ′ exists. It suffices then to show the
continuity of (Φ′)−1. Let (gn) be a sequence of X∗ such that gn → g in X∗. Let
un = (Φ′)−1(gn), u = (Φ′)−1(g), then Φ′(un) = gn, Φ′(u) = g. By the coercivity of
Φ′, we deduces that (un) is bounded in X, up to subsequence, we can assume that
un ⇀ u. Since gn → g,

lim
n→+∞

〈Φ′(un)− Φ′(u), un − u〉 = lim
n→+∞

〈gn − g, un − u〉 = 0.

Since Φ′ is of type (S+), un → u, so (Φ′)−1 is continuous. �

3. Main results

In this section we present our main results. To be precise, we establish an
existence result of at least one solution, Theorem 3.1, which is based on Theorem
2.1, and we point out some consequences, Theorems 3.2, 3.3 and 3.4. Finally, we
present an other existence result of at least one solution, Theorem 3.6, which is
based in turn on Theorem 2.2.

Given two nonnegative constants c, d with c 6= k‖a‖1/pd, put

γ(c) :=

∫
Ω

max|ξ|≤σ(c) F (x, ξ)dx−
∫

Ω
F (x, d)dx

M̂( cp

kp )− M̂(dp‖a‖1)
,

where

σ(c) := k
( 1
mp−1

0

M̂
( cp
kp
))1/p

.

Theorem 3.1. Assume that there exist three constants c1, c2, d with 0 ≤ c1 <
k‖a‖1/pd < c2, such that

γ(c2) < γ(c1).
Then, for each λ ∈

(
1

pγ(c1) ,
1

pγ(c2)

)
, problem (1.1) admits at least one nontrivial

weak solution u such that c1
k < ‖u‖ < c2

k .
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Proof. Let Φ, Ψ be the functionals defined in Section 2. It is well known that they
satisfy all regularity assumptions requested in Theorem 2.1 and that the critical
points of the functional Φ − λΨ in X are exactly the weak solutions of problem
(1.1). So, our aim is to verify condition (2.4) of Theorem 2.1. To this end, put

r1 =
1
p
M̂
( cp1
kp

)
, r2 =

1
p
M̂
( cp2
kp

)
, u0(x) = d for all x ∈ Ω.

Clearly u0 ∈ X,

Φ(u0) =
1
p
M̂(‖u0‖p) =

1
p
M̂(‖a‖1dp),

and

Ψ(u0) =
∫

Ω

F (x, u0)dx =
∫

Ω

F (x, d)dx. (3.1)

It follows from c1 < k‖a‖1/pd < c2 and the strict monotonicity of M̂ that

M̂
( cp1
kp

)
< M̂(‖a‖1dp) < M̂

( cp2
kp

)
,

and so
r1 < Φ(u0) < r2. (3.2)

Let u ∈ X such that u ∈ Φ−1((−∞, r2)). By (2.9), one has

mp−1
0

p
‖u‖p ≤ Φ(u) < r2.

Therefore,

‖u‖ <
( pr2

mp−1
0

)1/p

This together with (2.7), yields

|u(x)| ≤ k‖u‖ < k
( pr2

mp−1
0

)1/p

= σ(c2) for all x ∈ Ω. (3.3)

So

Ψ(u) =
∫

Ω

F (x, u)dx ≤
∫

Ω

max
|ξ|≤σ(c2)

F (x, ξ)dx,

for all u ∈ X such that u ∈ Φ−1((−∞, r2)). Thus

sup
u∈Φ−1((−∞,r2))

Ψ(u) ≤
∫

Ω

max
|ξ|≤σ(c2)

F (x, ξ)dx. (3.4)

On the other hand, arguing as before we obtain

sup
u∈Φ−1((−∞,r1))

Ψ(u) ≤
∫

Ω

max
|ξ|≤σ(c1)

F (x, ξ)dx. (3.5)

In view of (3.1)-(3.2) and (3.4)-(3.5), one has

β(r1, r2) ≤
supu∈Φ−1((−∞,r2)) Ψ(u)−Ψ(u0)

r2 − Φ(u0)

≤ p
∫

Ω
max|ξ|≤σ(c2) F (x, ξ)dx−

∫
Ω
F (x, d)dx

M̂( c
p
2
kp )− M̂(‖a‖1dp)

= pγ(c2)
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and

ρ2(r1, r2) ≥
Ψ(u0)− supu∈Φ−1((−∞,r1]) Ψ(u)

Φ(u0)− r1

≥ p
∫

Ω
max|ξ|≤σ(c1) F (x, ξ)dx−

∫
Ω
F (x, d)dx

M̂( c
p
1
kp )− M̂(‖a‖1dp)

= pγ(c1).

So, by our assumption it follows that

β(r1, r2) < ρ2(r1, r2).

Hence, from Theorem 2.1 for each λ ∈
(

1
pγ(c1) ,

1
pγ(c2)

)
⊂
(

1
ρ2(r1,r2) ,

1
β(r1,r2)

)
, Iλ :=

Φ− λΨ admits at least one critical point u such that

M̂
( cp1
kp
)
< M̂

(
‖u‖p

)
< M̂

(
‖u‖p

)
.

Taking in to account that the function M̂ is increasing, it follows that
c1
k
< ‖u‖ < c2

k
,

and the proof of Theorem 3.1 is achieved. �

Now we point out the following consequence of Theorem 3.1.

Theorem 3.2. Assume that there exist two positive constants c, d, with k‖a‖1/pd <
c, such that ∫

Ω
max|ξ|≤σ(c) F (x, ξ)dx

M̂
(
cp

kp

) <

∫
Ω
F (x, d)dx

M̂(‖a‖1dp)
. (3.6)

Then, for each

λ ∈
( M̂(‖a‖1dp)
p
∫

Ω
F (x, d)dx

,
M̂
(
cp

kp

)
p
∫

Ω
max|ξ|≤σ(c) F (x, ξ)dx

)
,

problem (1.1) admits at least one nontrivial weak solution u such that |u(x)| < c
for all x ∈ Ω.

Proof. Our aim is to apply Theorem 3.1. To this end we pick c1 = 0 and c2 = c.
From (3.6), one has

γ(c) =

∫
Ω

max|ξ|≤σ(c) F (x, ξ)dx−
∫

Ω
F (x, d)dx

M̂( cp

kp )− M̂(‖a‖1dp)

<

∫
Ω

max|ξ|≤σ(c) F (x, ξ)dx− cM(‖a‖1dp)cM( cp

kp )

∫
Ω

max|ξ|≤σ(c) F (x, ξ)dx

M̂( cp

kp )− M̂(‖a‖1dp)

=

∫
Ω

max|ξ|≤σ(c) F (x, ξ)dx

M̂( cp

kp )

<

∫
Ω
F (x, d)dx

M̂(‖a‖1dp)
= γ(0).

Hence, Theorem (3.1) ensures the existence of weak solution u of problem (1.1),
such that ‖u‖ < c

k , and clearly by (2.7), |u(x)| < c for all x ∈ Ω. �
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Now, we point out a previous result when the nonlinear term has separable
variables. To be precise, let α ∈ L1(Ω) such that α(x) ≥ 0 a.e. x ∈ Ω, α 6= 0, and
let g : R → R be a continuous function. Consider the Neumann boundary-value
problem[

M
(∫

Ω

(
|∇u|p + a(x)|u|p

)
dx
)]p−1(

−∆pu+ a(x)|u|p−2u
)

= λα(x)g(u) in Ω

∂u

∂ν
= 0 on ∂Ω.

(3.7)
Let

G(ξ) :=
∫ ξ

0

g(t)dt for all ξ ∈ R.

Theorem 3.3. Assume that g is nonnegative and there exist two positive constants
c, d, with k‖a‖1/pd < c, such that

G(σ(c))

M̂( cp

kp )
<

G(d)

M̂(‖a‖1dp)
. (3.8)

Then, for each λ ∈
(

1
p‖α‖1

cM(‖a‖1dp)
G(d) , 1

p‖α‖1
cM( cp

kp )

G(σ(c))

)
, problem (3.7) admits at least

one positive weak solution u such that u(x) < c for all x ∈ Ω.

Proof. Put f(x, t) = α(x)g(t) for all (x, t) ∈ Ω × R, thus F (x, ξ) = α(x)G(ξ)
for all (x, ξ) ∈ Ω × R. Therefore taking into account that G is nondecreasing,
Theorem 3.2 ensures the existence of a nontrivial weak solution u. We claim that
u is nonnegative. In fact, let u− := max{−u, 0} and setting

Ω− = {x ∈ Ω : u(x) < 0}.

So, taking into account that u is a weak solution and u− ∈ X, we have

[M(‖u‖p)]p−1

∫
Ω−

(|∇u|p + a(x)|u|p)dx = λ

∫
Ω−

f(x, u)udx ≤ 0.

Therefore, ∫
Ω−

(|∇u|p + a(x)|u|p) dx = 0.

It follows that Ω− = ∅, and hence u ≥ 0 in Ω. By the strong maximum principle
(see, for instance, [12, Theorem 11.1]) the weak solution u, being nontrivial, is
positive and the conclusion is achieved. �

Theorem 3.4. Assume that g is nonnegative such that

lim
t→0+

g(t)
tp−1

= +∞, (3.9)

and put

λ∗ =
1

p‖α‖1
sup
c>0

M̂( c
p

kp )
G(σ(c))

.

Then, for each λ ∈ (0, λ∗), problem (3.7) admits at least one positive weak solution.
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Proof. Fix λ ∈ (0, λ∗). Then, there exists c > 0 such that λ < 1
p‖α‖1

cM( cp

kp )

G(σ(c)) . By
(3.9), one has

lim
t→0+

g(t)
tp−1[M(tp‖a‖1)]p−1

= +∞,

and hence, there exists 0 < d < c

k‖a‖1/p
1

such that

‖a‖1
λ‖α‖1

<
g(t)

tp−1[M(tp‖a‖1)]p−1
for all t ∈ (0, d).

Thus
‖a‖1
λ‖α‖1

∫ d

0

tp−1 [M (tp‖a‖1)]p−1
dt <

∫ d

0

g(t)dt.

Using the change of variables s = ‖a‖1tp, we get

1
λp‖α‖1

∫ ‖a‖1dp

0

[M(s)]p−1
ds < G(d),

that is,
1

p‖α‖1
M̂(‖a‖1dp)

G(d)
< λ.

Hence, Theorem 3.3 ensures the conclusion. �

Remark 3.5. Let g : R→ R such (3.9) holds (that is, without any assumption of
sign). By (3.9), there is δ > 0 such that g(t) > 0 for all t ∈ (0, δ). Then Put

λ0 :=
1

p‖α‖1
sup
c∈(0,δ)

M̂
(
cp

kp

)
G(σ(c))

.

Clearly λ0 ≤ λ∗, if g is nonnegative. Now, fixed λ ∈ (0, λ0) and arguing as in the
proof of Theorem 3.4, there are c ∈ (0, δ) and 0 < d < c

k‖a‖1/p
1

such that

1
p‖α‖1

M̂(‖a‖1dp)
G(d)

< λ <
1

p‖α‖1
M̂
(
cp

kp

)
G(σ(c))

.

Hence, Theorem 3.3 ensures that, for each λ ∈ (0, λ0), problem (3.7) admits at
least one positive weak solution u(x) < δ for all x ∈ Ω.

Finally, we also give an application of Theorem 2.2 which we will use in next
section to obtain multiple solutions.

Theorem 3.6. Assume that there exist two constants c, d, with 0 < c < k‖a‖1/p1 d,
such that ∫

Ω

max
|ξ|≤σ(c)

F (x, ξ)dx <
∫

Ω

F (x, d)dx, (3.10)

lim sup
|ξ|→+∞

F (x, ξ)
|ξ|p

≤ 0 uniformly in x. (3.11)

Then, for each λ > λ, where

λ =
M̂
(
cp

kp

)
− M̂(‖a‖1d

p
)

p
(∫

Ω
max|ξ|≤σ(c) F (x, ξ)dx−

∫
Ω
F (x, d)dx

) ,
problem (1.1) admits at least one nontrivial weak solution u such that ‖u‖ > c/k.
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Proof. The functionals Φ and Ψ given by (2.8) satisfy all regularity assumptions
requested in Theorem 2.2. By (3.11), for every ε > 0 one has

F (x, ξ) ≤ ε|ξ|p + lε(x) for all (x, ξ) ∈ Ω× R,

where lε ∈ L1(Ω). This implies that∫
Ω

F (x, u)dx ≤ εC1‖u‖p +
∫

Ω

lε(x)dx for all u ∈ X,

where C1 is a Sobolev constant. Therefore,

Iλ(u) = Φ(u)− λΨ(u) ≥
(mp−1

0

p
− C1ε

)
‖u‖p −

∫
Ω

lε(x)dx.

So, choosing ε small enough we deduce that Iλ is coercive. To apply Theorem 2.2,
it suffices to verify condition (2.5). Indeed, put

r =
1
p
M̂
( cp
kp

)
, u0(x) = d for all x ∈ Ω.

Arguing as in the proof of Theorem 3.1, we obtain

ρ(r) ≥ p
∫

Ω
max|ξ|≤σ(c) F (x, ξ)dx−

∫
Ω
F (x, d)dx

M̂( c
p

kp )− M̂
(
‖a‖1d

p) .

So, from our assumption it follows that ρ(r) > 0. Hence, in view of Theorem 2.2
for each λ > λ, Iλ admits at least one local minimum u such that

M̂
( cp
kp

)
< M̂

(
‖u‖p

)
.

Therefore,
c

k
< ‖u‖,

and our conclusion is achieved. �

4. Applications

The main aim of this section is to present multiplicity results. First, as a con-
sequence of Theorems 3.2, and 3.6 the following theorem of the existence of three
solutions is obtained and its consequence for the nonlinearity with separable vari-
ables is presented.

Theorem 4.1. Assume that (3.11) holds. Moreover, assume that there exist four
positive constants c, d, c, d, with k‖a‖1/p1 d < c ≤ c < k‖a‖1/p1 d, such that (3.6),
(3.10) and∫

Ω
max|ξ|≤σ(c) F (x, ξ)dx

M̂
(
cp

kp

) <

∫
Ω

max|ξ|≤σ(c) F (x, ξ)dx−
∫

Ω
F (x, d)dx

M̂
(
cp

kp

)
− M̂

(
‖a‖1d

p) (4.1)

are satisfied. Then, for each

λ ∈ Λ :=
(

max
{
λ,

M̂(‖a‖1dp)
p
∫

Ω
F (x, d)dx

}
,

M̂
(
cp

kp

)
p
∫

Ω
max|ξ|≤σ(c) F (x, ξ)dx

)
,

with λ is given in Theorem 3.6, problem (1.1) admits at least three weak solutions.
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Proof. By assumptions, we see that Λ 6= ∅. Fix λ ∈ Λ. Theorem 3.2 ensures a
nontrivial weak solution u1 such that ‖u1‖ < c

k which is a local minimum for Iλ, as
well as Theorem 3.6 guarantees a nontrivial weak solution u2 such that ‖u2‖ > c

k
which is a local minimum for Iλ. Hence Iλ has two different local minimum points.
By standard arguments, we see that Iλ satisfies the Palais-Smale condition. Hence,
the theorem given by Pucci and Serrin [11, Corollary 1] ensures the third weak
solution and the proof is achieved. �

Theorem 4.2. Assume that g is a nonnegative function such that

lim sup
ξ→0+

G(ξ)

M̂
(
‖a‖1ξp

) = +∞, (4.2)

lim sup
ξ→+∞

G(ξ)
ξp

= 0. (4.3)

Further, assume that there exist two positive constants c, d, with c < k (‖a‖)1/p
d,

such that
G(σ(c))

M̂
(
cp

kp

) < G(d)

M̂
(
‖a‖1d

p) . (4.4)

Then, for each λ ∈
(

1
p‖α‖1

cM(‖a‖1dp
)

G(d)
, 1
p‖α‖1

cM( cp

kp )
G(σ(c))

)
, problem (3.7) admits at least

three nonnegative weak solutions.

Proof. Put f(x, t) = α(x)g(t) for all (x, t) ∈ Ω×R, then F (x, ξ) = α(x)G(ξ) for all
(x, ξ) ∈ Ω × R. By (4.3) and taking into account that g is nonnegative, it is easy
to verify condition (3.11). Choosing c = c, condition (4.2) ensures the existence of
positive constant d, with d < c

k‖a‖1/p
1

such that

G(σ(c))

M̂
(
cp

kp

) < G(d)

M̂
(
‖a‖1d

p) < G(d)

M̂(‖a‖1dp)
. (4.5)

This implies (3.6). Since cp

kp < ‖a‖1d
p

and the function M̂ is increasing,

M̂
( cp
kp

)
< M̂

(
‖a‖1d

p)
.

Therefore, from (4.4), we deduce G(σ(c)) < G(d), and hence (3.10) follows. Using
again (4.4), one has∫

Ω
max|ξ|≤σ(c) F (x, ξ)dx−

∫
Ω
F (x, d)dx

M̂
(
cp

kp

)
− M̂

(
‖a‖1d

p) = ‖α‖1
G(σ(c))−G(d))

M̂
(
cp

kp

)
− M̂

(
‖a‖1d

p)
> ‖α‖1

G(σ(c))
(
1−

cM(‖a‖1dp
)

cM( cp

kp

) )
M̂
(
cp

kp

)
− M̂

(
‖a‖1d

p)
= ‖α‖1

G(σ(c))

M̂
(
cp

kp

)
=

∫
Ω

max|ξ|≤σ(c) F (x, ξ)dx

M̂
(
cp

kp

)
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=

∫
Ω

max|ξ|≤σ(c) F (x, ξ)dx

M̂
(
cp

kp

) ,

so, (4.1) holds. Also, by (4.5) one has

λ =
M̂
(
cp

kp

)
− M̂

(
‖a‖1d

p)
p
(∫

Ω
max|ξ|≤σ(c) F (x, ξ)dx−

∫
Ω
F (x, d)dx

)
<

1
p‖α‖1

M̂
(
‖a‖1d

p)
G(d)

.

Therefore,

max
{
λ,
M̂(‖a‖1dp)
p‖α‖1G(d)

}
<

1
p‖α‖1

M̂
(
‖a‖1d

p)
G(d)

,

thus
(

1
p‖α‖1

cM(‖a‖1dp
)

G(d)
, 1
p‖α‖1

cM( cp

kp )
G(σ(c))

)
⊂ Λ, and hence, Theorem 4.1 ensures three

nonnegative weak solutions. �

Remark 4.3. If g(0) 6= 0, Theorem 4.2 ensures three positive weak solutions (see
proof of Theorem 3.3).

Remark 4.4. In applying Theorem 3.4, it is enough to known an explicit upper
bound for constant k defined in (2.6)). If Ω is convex, we have the following estimate
(see [6, Remark 1])

k ≤ 2
p−1

p max
{ 1

‖a‖1/p1

,
diam(Ω)
N1/p

( p− 1
p−N

meas(Ω)
) p−1

p ‖a‖∞
‖a‖1

}
. (4.6)

Example. Let b0, b1 > 0. Due to Theorem 3.4, for each

λ ∈
(

0,
1
2

b0 + b1
2

1
3

(
2 + b1

b0

)3/2 +
(
2 + b1

b0

)1/2),
the Neumann problem(

b0 + b1

∫ 1

0

(|∇u|2 + |u|2)dx
)

(−u′′ + u) = λ
(
u2 + 1

)
in (0, 1)

u′(0) = u′(1),
(4.7)

admits at least one positive weak solution. In fact, set M(t) = b0 + b1t for all t ≥ 0,
then M̂(t) = b0t+ b1

2 t
2 for all t ≥ 0 and (M0) holds. Observe that

lim
u→0+

g(u)
u

= lim
u→0+

u2 + 1
u

= +∞.

Moreover, one has

σ(k) = k
( 1
b0
M̂(1)

)1/2

= k
(

1 +
b1
2b0

)1/2

Therefore,

λ∗ =
1

p‖α‖1
sup
c>0

M̂
(
cp

kp

)
G(σ(c))

≥ 1
p‖α‖1

M̂ (1)
G(σ(k))
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=
1
2

b0 + b1
2

G
(
k
(
1 + b1

2b0

)1/2)
Taking into account that estimate (4.6) implies k ≤

√
2, we deduce that

λ∗ ≥ 1
2

b0 + b1
2

G
((

2 + b1
b0

)1/2) =
1
2

b0 + b1
2

1
3

(
2 + b1

b0

)3/2 +
(
2 + b1

b0

)1/2 ,
and Theorem 3.4 ensures the conclusion.
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