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GROWTH OF SOLUTIONS TO HIGHER-ORDER LINEAR
DIFFERENTIAL EQUATIONS WITH ENTIRE COEFFICIENTS

HABIB HABIB, BENHARRAT BELAIDI

ABSTRACT. In this article, we discuss the order and hyper-order of the linear
differential equation

k—1
F®) 4 37 (Bjeb* + Dyedi®) fU) 4 (A1e™? 4 Aze®2%)f =0,

j=1
where A;(z), Bj(z), D;(z) are entire functions (# 0) and a1, a2, d; are complex
numbers (# 0), and b; are real numbers. Under certain conditions, we prove
that every solution f # 0 of the above equation is of infinite order. Then,
we obtain an estimate of the hyper-order. Finally, we give an estimate of the
exponent of convergence for distinct zeros of the functions £ —¢(j=0,1,2),
where ¢ is an entire function (#Z 0) and of order o () < 1, while the solution f
of the differential equation is of infinite order. Our results extend the previous
results due to Chen, Peng and Chen and others.

1. INTRODUCTION AND STATEMENT OF RESULTS

Throughout this paper, we assume that the reader is familiar with the funda-
mental results and the standard notations of the Nevanlinna’s value distribution
theory (see [13} 19]). Let o(f) denote the order of growth of an entire function f
and the hyper-order o3(f) of f is defined by (see [19])

loglog T log log log M
o2(f) = lim sup M = lim sup ogloglog M(r, f)
r—-+00 log r oo log ”

)

where T'(r, f) is the Nevanlinna characteristic function of f and
M(r. ) = max|(2).
To give some estimates of fixed points, we recall the following definition.

Definition 1.1 (|3, [I5]). Let f be a meromorphic function. Then the exponent of
convergence of the sequence of distinct fixed points of f(z) is defined by

log N (r, +-
7(f) = M(f — 2) = limsup M,
r— 400 logr
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where N(r,1/f) is the counting function of distinct zeros of f(z) in {z : |z| < r}.
We also define o )
— IOgN T,
X(f — ¢) = limsup M
r— o0 logr
for any meromorphic function p(z).

For the second-order linear differential equation
f"+e ?f +B()f=0, (1.1)
where B(z) is an entire function, it is well-known that each solution f of equation
is an entire function, and that if f; and fy are two linearly independent
solutions of , then by [6], there is at least one of fi, fo of infinite order.
Hence, “most” solutions of will have infinite order. But equation with
B(z) = —(1 + e~ %) possesses a solution f(z) = e* of finite order.

A natural question arises: What conditions on B(z) will guarantee that every
solution f # 0 of has infinite order? Many authors, Frei [7], Ozawa [16],
Amemiya-Ozawa [I] and Gundersen [9], Langley [14] have studied this problem.
They proved that when B(z) is a nonconstant polynomial or B(z) is a transcen-
dental entire function with order o(B) # 1, then every solution f # 0 of has
infinite order.

In 2002, Chen [] considered the question: What conditions on B(z) when
o(B) = 1 will guarantee that every nontrivial solution of has infinite order?
He proved the following result, which improved results of Frei, Amemiya-Ozawa,
Ozawa, Langley and Gundersen.

Theorem 1.2 ([]). Let Aj(z) (#0) (j =0,1) be entire functions with max{c(A;)
(j =0,1)} < 1. and let a,b be complex constants that satisfy ab # 0 and a # b.
Then every solution f # 0 of the differential equation

f/l + Al(z)eaZf/ + AO(Z)ebzf =0
is of infinite order.

In [I7], Peng and Chen investigated the order and hyper-order of solutions of
some second order linear differential equations and have proved the following result.

Theorem 1.3 ([I7]). Let A;(z) (£ 0) (j = 1,2) be entire functions with o(A;) < 1,
a1, ag be complex numbers such that ajas # 0, a1 # as (suppose that |ai| < |ag|).
If argay # 7 or ay < —1, then every solution f(# 0) of the differential equation

f// + e—zf/ + (Alealz + A26a22)f — 0
has infinite order and oo(f) = 1.

Recently in [12], the authors extend and improve the results of Theorem to
some higher order linear differential equations as follows.

Theorem 1.4 ([12]). Let A;(z) (#0) (j =1,2), Bi(2) (#¥0) (Il =1,...,k—1),
Dy, (m=0,...,k—1) be entire functions with max{c(A;),c(B;),0(Dm)} <1, b
(I=1,...,k—1) be complex constants such that
(i) argb; = argay and by =cia; (0< ¢ <1) (1€ 1) and
(ii) b, is a real constant such that by < 0 (I € L), where I # 0, I, # 0,
LhnNnly=0, UL, ={1,2,...,k — 1}, and a1, ay are complex numbers
such that a1as # 0, a1 # az (suppose that |a1| < |asg]).
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If argay # 7 or ay is a real number such that ay < l%c, where ¢ = max{c; : l € I}
and b =min{b; : | € Iy}, then every solution f % 0 of the differential equation

FO+(Dy—14B1 1) fE e (D14 B1e"?) '+ (Dot Are™ "+ Aze>) f = 0
satisfies o(f) = +o00 and o2(f) = 1.

In this paper, we continue the research in this type of problems, the main purpose
of this paper is to extend and improve the results of Theorems to some higher
order linear differential equations. In fact we will prove the following results.

Theorem 1.5. Let k > 2 be an integer, A;j(z) (£ 0) (j = 1,2) and B;j(z) (£ 0),
Dj(z) (#0) (j=1,...,k—1) be entire functions with

max{o(4;)(j =1,2),0(B;)(j=1,....k—1),0(D;)(j =1,....,k—1)} <1,

a1, az be complex numbers such that aias # 0,a1 # az2,d; #0 (j =1,...,k—1)
be complex numbers and b; (j = 1,...,k — 1) be real numbers such that b; < 0.
Suppose that there exists oy, B; (j=1,...,k—1) where 0 < a; <1,0< §; <1
and d;j = ajar + Bjas. Set « = max{e; : j=1,...,k—1}, 8 = max{f; : j =
1,...,k—1} andb=min{b; : j=1,..., k—1}. If

(1) argay # 7 and argay # argasg; or

(2) argay # 7w, argay = argag and (i) |az| > 1'“_% or (i) |az| < (1 — a)|ay|; or

(3) a1 <0 and argay # argas; or

4) (1)) 1—PBlaz—b<a; <0, as < ﬁ or (i) ay < ‘?_Zb and ag < 0,

then every solution f(Z£ 0) of the differential equation

k-1
F® 43 (Bjeh* + Dje®%) fU) 4 (Are™ 4 Age™?)f =0 (1.2)
j=1
satisfies o(f) = +oo0 and o2(f) = 1.

Set
I = {2a1,2a9,a1 + ag,a1,as,a1 + b, as + bj,a1 +di,ae+d; (i=1,...,k—1)},
I, = {2a1,2as,a1 + ag,a; + by,as + by,a1 + dy,as + di },
I3 = {3&1,3a2,2a1 + ag, a1 + 2as,2a1,2a2,a1 + az,a1 + by, a2 + by, a1 + dy,
az + di, 2a1 + b;, 2az + by, 2a1 + d;, 2a2 + di, a1 + az + by, a1 + az + d;,
ay + by +bi,az + by + b, a1 +di +diyaz +dy + di a1 + by + di,
ap+ by +di(i=1,....k—1),a1 +dy +bi,as +dy +b; (i:2,...,k:—1)}.

Theorem 1.6. Let A;(z) (j =1,2), B;j(2), Dj(z) (j =1,...,k—1), a1, az, b;, d;,
aj, B (J=1,...,k—1), a, B and b satisfy the additional hypotheses of Theorem
[1.3 If (£ 0) is an entire function of order o(p) < 1, then every solution f( 0)

of equation satisfies
AMf — @) = +oo.
Furthermore, we have
(1) If (2a1) ¢ I1 \ {2a1} or (2a2) ¢ I1 \ {2az2}, then

Af" = ¢) = +o0.
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(2) If (i) (2a1) ¢ 12\ {2a1} or (2a2) ¢ I\ {2a2} and (i) (3ay) ¢ I3\ {3a1} or
(3a2) ¢ I3\ {3az}, then

Af" =) = +oo.
Now set

J1 = {2a172a2,a1 +ag,a1 + b,a2 +bi,a1 +di, a0+ d; (i = 172)}7

o = {3a1, 3a2,2a1 + az, ay + 2az, 2a; + by, 243 + b;, 2a1 + di,

2ao + di, a1 +az + bi, a1 + az +di, a1 4 by 4 by, a0 + by + by, a1
+dy +diyas+dy +dia1 + by +di,as+ b1 +d; (1=1,2,3),
@+ dy -+ biag +dy + by (= 2,3) .
From Theorem we obtain the following corollary.
Corollary 1.7. Let Aj(z) (j =1,2), Bj(2), D;(2) (j =1,...,k—1), a1, az, b;, d;,

aj, B (j=1,...,k—1), a, B and b satisfy the additional hypotheses of Theorem
. If f(£0) is any solution of (1.2)), then f has infinitely many fixed points and

satisfies
T(f) = oc.
Furthermore, we have
(1) If (2a1) ¢ J1\{2a1} or (2a2) ¢ J1\{2az2}, then f' has infinitely many fized
points and satisfies
7(f') = oo.
(2) If (i) (2a1) ¢ I2\{2a1} or (2aq) ¢ I3\ {2a2} and (ii) (3a1) & J2\ {3a1} or
(3az) ¢ Jo \ {3az2}, then f" has infinitely many fived points and satisfies

7(f") = oc.

2. PRELIMINARY LEMMAS

We define the linear measure of a set E C [0, +o00) by m(E) = 0+°° xe(t)dt and

the logarithmic measure of a set F' C (1,+00) by Im(F) = f1+oo XFt(t) dt, where x g
is the characteristic function of a set H.

Lemma 2.1 ([I0]). Let f be a transcendental meromorphic function with o(f) =
o < +00. Lete > 0 be a given constant, and let k, j be integers satisfying k > j > 0.
Then, there exists a set By C [—g, 37”) with linear measure zero, such that, if
¢ € [-Z,35)\ Ei, then there is a constant Ry = Ro(1)) > 1, such that for all z
satisfying arg z = 1 and |z| > Ry, we have

f(k)(z) k—j)(c—1+¢
Lemma 2.2 ([]). Suppose that P(z) = (a+i6)z" + ... (o, are real numbers,
la|+16] # 0) is a polynomial with degree n > 1, that A(z) (£ 0) is an entire function
with o(A) < n. Set g(z) = A(2)el’®), z = re'?, §(P,0) = acosnb — Bsinn. Then
for any given € > 0, there is a set E2 C [0,27) that has linear measure zero, such
that for any 0 € [0,27) \ (E; U E3), there is R > 0, such that for |z| = r > R, we
have
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(i) If 6(P,0) > 0, then

exp{(1 — &)3(P,0)r"} < |g(re?)| < exp{(1 +¢)§(P,0)r"}. (2.2)
(ii) If 6(P,0) < 0, then
exp{(1 4+ &)3(P,0)r"} < |g(re'?)| < exp{(1 — €)d(P,0)r"}, (2.3)

where B3 = {6 € [0,27) : 6(P,0) = 0} is a finite set.

Lemma 2.3 ([I7]). Suppose that n > 1 is a natural number. Let Pj(z) = ajnz™ +

. (j = 1,2) be nonconstant polynomials, where ajq (¢ = 1,...,n) are complex
numbers and ainas, # 0. Set z = re', aj, = |aj,|e'%, 0; € [-Z,3%), §(P;,0) =
|ajn| cos(0; + nb), then there is a set Ey C [—4=,3%) that has linear measure zero

such that if 01 # 02, then there exists a ray argz =0, 0 € (—5-,5-) \ (E4 U E5),
satisfying

0(P1,0) >0, 6(P,0)<0 (2.4)
or

§(P1,0) <0, 4&(P,0)>0, (2.5)
where E5 = {0 € [—5=, 3%) : §(P;,0) = 0} is a finite set, which has linear measure
zero.

Remark 2.4 ([I7]). In Lemma if 0 € (=X, %)\ (E4U Ej5) is replaced by

T 2n02n
0 € (£,35)\ (B4 U E5), then we obtain the same result.
Lemma 2.5 ([5]). Suppose that k > 2 and By, Bi,...,Br_1 are entire functions
of finite order and let 0 = max{c(Bj):j=0,...,k—1}. Then every solution f of
the differential equation

f(k) + Bk,lf(kil) 4+ 4+ B f+Byf=0 (2.6)
satisfies oo(f) < 0.
Lemma 2.6 ([I0]). Let f(z) be a transcendental meromorphic function, and let
a > 1 be a given constant. Then there exist a set Eg C (1, 00) with finite logarithmic

measure and a constant B > 0 that depends only on a and i,j (0 < i < j < k),
such that for all z satisfying |z| = r ¢ [0,1] U Eg, we have

|f(j)(z) T(ar, f)
fO(2)
Lemma 2.7 ([II]). Let ¢ : [0,4+00) — R and ¢ : [0,4+00) — R be monotone
non-decreasing functions such that p(r) < 1(r) for all r ¢ E; U 0,1], where E7 C

(1,+00) is a set of finite logarithmic measure. Let v > 1 be a given constant. Then
there exists an 1 = 11(7v) > 0 such that p(r) < p(vyr) for all r > ry.

Lemma 2.8 ([2]). Let Ay, As,...,Ar—1, F # 0 be finite order meromorphic func-
tions. If f(z) is an infinite order meromorphic solution of the equation

FO 4 Ay f* D 4 A f 4+ Aof = F, (2.8)
then f satisfies \(f) = M(f) = o(f) = oc.

The following lemma, due to Gross [8], is important in the factorization and
uniqueness theory of meromorphic functions, playing an important role in this
paper as well.

| < B{ (log® r) log T(cur, f)}~°. (2.7)
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Lemma 2.9 ([819]). Suppose that f1(z), f2(2), ..., fn(2)(n > 2) are meromorphic
functions and ¢1(2),92(2),...,9n(2) are entire functions satisfying the following
conditions:

(i) 37y fi(2)es ) = 0;

(ii) gj(2) — gx(2) are not constants for 1 < j <k < n;

(iii) For 1 <j<n,1<h<k<n, T(r,f;) = o{T(r,e9 =91 (1 — oo,

r ¢ Eg), where Es is a set with finite linear measure.

Then fi(z) =0 (j=1,...,n).
Lemma 2.10 ([I8]). Suppose that f1(z), f2(2),..., fu(2)(n > 2) are meromorphic

functions and ¢1(2),92(2),...,9n(2) are entire functions satisfying the following
conditions:

(1) 327y fi(2)e ™) = fupns

(i) If1 <j<n+1,1 <k <n, the order of f; is less than the order of edr (%),
Ifn>2,1<j<n+1,1<h<k<n, and the order of f; is less than the
order of eIh 9k,

Then fi(z) =0 (j =1,2,...,n+1).
3. PROOF oF THEOREM [L.5]

First step. Assume that f(# 0) is a solution of equation (|1.2). We prove that
o(f) = +oo. Suppose that o(f) = o < +00. We rewrite (1.2) as

0N £
N > (Bjeh® + Dje%al+ﬂja2‘>2)7 + Are®® 4 Age®* = 0. (3.1)
j=1

Set
v=max{c(B;) (j=1,....k—1)} < 1.
Then, for any given ¢ (0 < & < 1 —«) and for sufficiently large r, we have

|Bj(2)| <exp{r’*} (j=1,...,k—1). (3.2)
By Lemma for any given € (0 < & < 1— 1), there exists a set By C [-%,2F)
of linear measure zero, such that if § € [—Z,3%)\ Ey, then there is a constant
Ry = Ry(0) > 1, such that for all z satisfying arg z = 0 and |z| = r > Ry, we have

F9(2) j(o—1+e) (5
| | <072 (G =1,...,k). (3.3)

f(2)

Let z = re'?, a; = |a1|e’, ay = |az]e’®, 61,0, € [-F,2F). We know that

0(ajarz,8) = a;d(arz,0), 6(Ba22,0) = Bjd(agz,0) (j=1,...,k—1) and a < 1,
b <1
Case 1. Assume that argay # 7 and argay # argas, which is 6 # 7w and 0y # 05.
By Lemma [2.2] and Lemma [2.3] for any given &,

11—« 1-7 )
2(14+a)’ 20+ 8)"
there is a ray argz = 0 such that 0 € (=3,%) \ (£ U E4 U E5) (where E4 and
E5 are defined as in Lemma E; U E, U Ej5 is of the linear measure zero), and
satisfying

0<e<min{l -~

d(a12,0) > 0, d(azz,0) <0
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or
0(a12,0) <0, 6(azz,0) > 0.
(a) When 6(ay12,0) > 0, §(azz,0) < 0, for sufficiently large r, we obtain by Lemma

2.2

|A1e®?| > exp{(1 —€)d(a1z,0)r}, (3.4)
|A2e%%| < exp{(1 —€)d(azz,0)r} < 1, (3.5)
|Dje % < exp{(1+ ¢)a;d(arz,0)r} 26
<exp{(1+¢e)ad(arz,0)r} (=1,....k—1), (3:6)
lefi927| < exp{(1 — £)B;6(azz,0)r} <1 (j =1,...,k—1). (3.7)
By (3.6) and (3.7)), we obtain
‘Dje(ajm-&-ﬁjaz)z‘ _ ‘DjeajalzueﬁjaZZl < exp{(1 +e)ad(arz, 0)r}, (3.8)
where j =1,...,k—1. For 0 € (=3, %), by (3.2 ., we have
[Byets?| = By 7] < exp{r+*}eb 0 < exp{r7+<} (39)
because b; < 0 and cosf® >0 (j =1,...,k—1). By (3.1), we obtain
kol , £
e < L0+ 3 (1B + pyetser o) 22 e, a1o)
j=1
Substituting (3.3)) -(3.5)), (3.8) and (3.9) in (3.10]), we have
exp{(1 —¢)d(a1z,0)r} <|A1e™?|
(3.11)

< Myr™2 exp{r "t} exp{(1 + )ad (a1 2, 0)r},

where M7 > 0 and My > 0 are some constants. By 0 < € < 70; and (| -, we
obtain
l-a M. Te
eXp{Té(alz,G)r} < Myr*2 exp{r?™°}. (3.12)
By d(a1z,6) > 0 and v+ ¢ < 1 we know that (3.12)) is a contradiction.
(b) When 6(a12,0) <0, d(azz,0) > 0, for sufficiently large r, we obtain

|A2e??| > exp{(1 —€)d(azz,0)r}, (3.13)
|A1e®?| < exp{(1 —¢€)d(ar1z,0)r} < 1, (3.14)
|Dje*4 | <exp{(l —¢e)a;jd(arz,0)r} <1 (j=1,...,k—1), (3.15)
lefio2%| < exp{(1 +¢)B;0(azz, O)r} (3.16)
<exp{(1+¢)Bd(azz,0)r} (=1,....,k—1).
By and , we have
|Djel@ia+0ia2)z| — | Dje®i®17| P22 < exp{(1 + ¢)B6(aaz, O)r}, (3.17)
where j=1,...,k—1. By , we obtain
(k) k1 @
[Ares*| < | 7|+ (1Byets*| + |Djeleserthion: \)|7\ +Are™e]. (3.18)

j=1
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Substituting (3:3), B9), (3-13), B-14) and (B-17) in (B-18), we have

exp{(1 —€)d(agz, O)r} < |Age®??|

3.19
< Myr™2 exp{r"*e Y exp{(1 + €) 36 (azz, 0)r}. (3.19)

ByO<e< (H% and ( -, we obtain
exp {%ﬁé(agz, 0)r} < Myr™> exp{r’*}. (3.20)

By d(az2z,0) > 0 and v+ ¢ < 1 we know that (3.20]) is a contradiction.
Case 2. Assume that arga; # 7, arga; = argasg, which is 6; # m, 0; = 65. By
Lemma for any given ¢

(1 — a)fas| — |as| (1—ﬁ)la2\—|a1|}
2[(1 + )]s | + |az] " 2[(1 + B)laz| + las]

there is a ray arg z = 6 such that 6 € (-3, 5) \ (E1 U Ey U E5) and 6(a2,0) > 0
Since 61 = 05, then d(azz,0) > 0.

(i) |az| > 1"11['3 For sufficiently large r, we have (3.6), ) hold and
|A1e®®| < exp{(1 +¢€)d(arz,0)r}. (3.21)
By (3.6) and (3.16)), we obtain
|Dje(a1“1+51“2 ?| <exp{(1+e)ad(aiz,0)r}exp{(1l+¢)Bd(azz,0)r}, (3.22)
where j = 1,...,k— 1. Substituting (3.3), (3.9), 3-13), (3-21) and (3:22) in (3.18),

we have
exp{(1 —¢)d(azz,8)r}
< |Ape|
< kexp{r"*}exp{(1 + e)ad(a12,0)r} exp{(1 + )88 (azz, O)r}rk@=1+2) (3.23)
+exp{(1 +¢)d(arz,0)r}
< MMz exp{r7 e} exp{(1 + €)d(a1 2, 0)r} exp{(1 + )85 (azz, O)r}.
From , we obtain

0<e<min{l—~,

exp{mr} < MyrM2 exp{r7te}, (3.24)
where
m = (1—-¢)d(asz,8) — (1+¢)d(arz,6) — (1 +¢)B6(azz,b).
Since
(1= B)laz| — |a]
2[(1+ B)laz| + |a1]]’

O<e<

01 = 02 and cos(6; + 0) > 0, we have
m=[1-0—e(l+p0))d(azz,0) — (1+¢)d(arz,0)
=[1-08—e(l1+ 0)]|az|cos(f +8) — (1 + &)|a1| cos(f; + 6)
={[1 -0 —e(1+0)]|az| — (1 +¢&)|a1|} cos(f; + 6)
= {1 = B)laz| — las| — e[(1 + B)laz| + [a1|]} cos(61 + 0)
o (1= B)laz| — |ay]

5 cos(01 4 6) > 0.

Since 11 > 0 and v + & < 1, we know that (3.24)) is a contradiction.
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(ii) Jaz| < (1—a)]a]. For sufficiently large r, we have (3.4), (3.6]), (3.16)) and (3.22))

hold; then we obtain
|Aze®??| < exp{(1 + ¢)d(azz, 8)r}. (3.25)
Substituting , , , and in , we have
exp{(1 —€)d(a1z,0)r}
< [Are™?|
< kexp{r"™} exp{(1 + &)ad(a12,0)r} exp{(1 + ¢) B8 (azz, )r}rF@=1Fe) (3 96)
+ exp{(1 + ¢)d(azz, 0)r}
< Myr™M2 exp{r7™} exp{(1 + €)ad(a1 2, 0)r} exp{(1 + €)d(azz, O)r}.
From the above inequality we obtain
exp{nar} < Myr™2 exp{r’ T}, (3.27)
where
n = (1—¢)d(a12,0) — (1 +e)ad(ar1z,0) — (1 4+ €)d(azz,0).

Since 0 < € < %, 61 = 65 and cos(6; + 6) > 0, then we obtain

e = {(1 = a)lar] — |ag| — €[(1 + a)[ar| + |az[]} cos(61 +0)
1— _
> ( a)|;1| 22| cos(fy +6) > 0.
By 2 > 0 and v + ¢ < 1 we know that (3.27) is a contradiction.
Case 3. Assume that a; < 0 and arg a; # argas, which is §; = 7 and 0 # 7. By
Lemma for the above ¢, there is a ray arg z = 6 such that § € (=%, 5)\(E1UELU
Es) and d(azz,6) > 0. Because cosf > 0, §(a12,0) = |a1|cos(61+6) = —|a| cosf <
0. Using the same reasoning as in Case 1 (b), we can get a contradiction.
Case 4. Assume that (i) (1 — f)az —b < a; <0 and as < ﬁ or (i) a; < %2£b
and as < 0, which is §; = 6, = 7. By Lemma [2.2] for any given ¢ satisfying
(1 —a)lar] —faz[ +b (1 = B)lag| — Jai +b}
2[(1+ a)ar| + lazf] 7 2[(1 + B)laz| + |aa]]
there is a ray argz = 6 such that 6 € (%,2F) \ (E, U E4 U Ej3), then cos6 < 0,
0(a1z,0) = |ay|cos(fy + 6) = —|ay|cosf > 0 and
d(azz,0) = |az|cos(f2 + 0) = —|az| cosd > 0.

(1) 1—=Plag—b<a <0andag < ﬁ. For sufficiently large r, we obtain (3.6)),
(313), (3.16), (3-21) and (3-22) hold. For 6 € (5, 2%), by (3.2) we have

|Bjebjz| _ |Bj||ebjz| < exp{r'y—i-a}ebjrcosO < eXp{T,'y—i-a}ebrcosé (328)
because b < b; < 0 and cosé < 0 (j = 1,...,k —1). Substituting (3.3), (3.13),
@B21), (3:22) and (3.28) in (3.18), we obtain

exp{(1 —¢)d(azz,0)r}

0<e<min{l -7,

< ‘A2€a2z‘
< MyrM2ebreost oxp (e L exp{(1 4 €)d(a1 2, 0)r} exp{(1 + €)3d(agz, O)r}.
(3.29)
From ([3.29) we have

exp{nsr} < Myr™2 exp{r’*c}, (3.30)
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where
N3 = (1 —€)d(azz,0) — (1 +¢e)d(ar2,0) — (1 + €)Bd(azz,0) — beos .
Since (1 — B)az — b < a1, az = —|az| and a; = —|ay|, then we obtain (1 — (§)|as| —

lai| +b > 0. We can see that 0 < (1 — f)]az| — |a1] +b < (1 — B)|az| — |a1| <
2[(1 + B)|az| + |a1]]. Therefore,

(1—B)laz| —fa1]| +b
2[(1+ B)|az| + |a1]]

01 = 05 = w and cosf < 0, we obtain

0< < 1.

(1—p)|az|—|a1|+b

B[+ D)zl Harll

n3=[1—pF—e(1+06)]d(agz,0) — (1+¢)d(a1z,0) —bcosb

=—[1-08—-—e(1+P)]|az|cosf+ (1+¢)|a1| cos® —bcosb

= (—cosO){[1 = B — e(1+ B)][az| — (1 +€)|as| + b}

= (—cos O){(1 — B)lag| — lar| + b —e[(1 + f)|az| + [as[]}
-1

> 7[(1 — B)|az| — |ai| + b] cos > 0.

From n3 > 0 and v 4+ ¢ < 1 we know that (3.30) is a contradiction.
(ii) a1 < 'f"fof’ and ay < 0. For sufficiently large r, we obtain (3.4), (3.6), (3.16),

(3.22), and (3.25) hold. Substituting (3.3), (3.4), (3.22), (3.25) and (3.28) in (3.10),

we obtain
exp{(1 —¢)d(a1z,0)r} < |A1e™?|
< Myr2e <5 exp{r7*°} exp{(1 + £)ad(a12,0)r} (3.31)
x exp{(1 + €)d(azz, 0)r}.

From this inequality we have

From 0 <e<

exp{nar} < Myr™2 exp{r’ T}, (3.32)
where
ne=(1—-¢)d(a1z,0) — (1 +e)ad(arz,0) — (1 +€)d(azz,8) — bcosb.
Since a; < ‘?fab,ag = —|az| and a; = —|aq|, then we obtain (1—a)|ai|—|az|+b > 0.

We can see that 0 < (1 —a)|a1| — |az]| +b < (1 —a)|ar| —|az| < 2[(1+ a)|a1| + |az]].
Therefore,

(1 - a|ar| — |ag| +b
2[(1+ a)las| + |az|]

0< <1

From

(I —a)|ar| —Jaz| + b
2[(1 + a)lar| + [azf] ’
01 = 0 = w and cos 6 < 0, we obtain

e = (= cosO){(1 — a)ar] = faz| + b —£[(1 + a)|ar| + [az]}

O<e<

—1
> 7[(1 — a)|ar| — |az| + b] cos 6 > 0.

By 14 > 0 and 7 4+ e < 1 we know that (3.32) is a contradiction. Concluding the
above proof, we obtain o(f) = +oo.

Second step. We prove that oo(f) = 1. By
max{o(B;e%* + Dje¥®) (j =1,...,k — 1),0(A1e™* + Aze™?)} =1
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and Lemma [2.5] we obtain o2(f) < 1. By Lemma we know that there exists a
set Eg C (1,400) with finite logarithmic measure and a constant C' > 0, such that
for all z satisfying |z| = r ¢ [0,1] U Eg, we obtain

| f9(z2)
f(z)
Case 1. arga; # w and arga; # arg as. In first step, we have proved that there is
aray argz = 6 where § € (=7, %)\ (E1 U Ey U E5), satistying

§(a1z,0) >0, 0(azz,0) <0 or d(ar1z,0) <0, d(azz,6)>0.
(a) When 6(ayz,0) > 0, 6(azz,0) < 0, for sufficiently large r, we obtain (3.4)—(3.8)
hold. Substituting (3.4)), (3.5)), (3.8), (3.9) and (3.33)) in (3.10)), we obtain that for
all z = re'? satisfying |2| =7 ¢ [0,1] U Eg, 0 € (=%, %)\ (E1U E4 U E5),
exp{(1 —€)d(a1z,0)r} < |A1e?|

< M exp{r"™}exp{(1 + ¢)ad (a1 z, 0)r}[T(2r, f)]k“7

| <o HPT (G=1,...,k). (3.33)

(3.34)
where M > 0 is a constant. From (3.34)) and 0 < € < ﬁ, we obtain
1—
exp {Taé(alz, 0)r} < Mexp{rt}[T(2r, f)]F+". (3.35)

Since d(a1z,60) > 0 and v + € < 1, then by using Lemma and ([3.35)), we obtain
oa(f) > 1. Hence oo(f) = 1.

(b) When 6(a;z,0) < 0,0(azz,6) > 0, for sufficiently large r, we obtain (3.13)—
(3.17) hold. By using the a same reasoning as above, we can get o2(f) = 1.

Case 2. argay # m, arga; = argag. In the first step, we have proved that there
is a ray arg z = 6 where § € (=3, 3) \ (E1 U Ey U Es), satisfying d(a12,60) > 0 and
0(agz,0) > 0.
(i) |az] > 1'“_12 For sufficiently large r, we have (3.6), (3.13), (3.16), (3:21) and
hold. Substituting (3.9), (3-13), (3-21), (3:22) and (3.33) in (3.18)), we obtain
that for all z = re'? satisfying |2| =7 ¢ [0,1] U Es, 0 € (=Z,%) \ (E1 U E4 U E5),

exp{(1 —¢)d(azz,0)r} < |Aze*??|
< Mexp{r"™}exp{(1 + €)d(a;2,0)r} (3.36)
x exp{(1 + )86 (azz, 0)r}[T(2r, f)]F L.
From this inequality, we obtain
exp{mr} < M exp{r?T}[T(2r, f)]*, (3.37)

where

m = (1 —€)d(azz,0) — (1+¢)d(ar2,0) — (1 +¢)B6(azz,0).
Since ; > 0 and v + ¢ < 1, then by using Lemma and (3.37), we obtain
oa(f) > 1. Hence oo(f) = 1.
(i) Jaz| < (1 — a)|aq|. For sufficiently large r, we have (3.4), (3.6), (3.16),
and hold. By using the same reasoning as above, we can get oo (f) = 1.
Case 3. a1 < 0 and arga; # argas. In the first step, we have proved that there
is a ray argz = 0 where 6 € (=%, 5) \ (E1 U E4 U Es), satisfying d(azz,6) > 0 and
0(a1z,0) < 0. Using the same reasoning as in second step (Case 1 (b)), we can get

Jg(f) = ].
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Case 4. (i) (1—ﬁ)a2—b<a1<0anda2<$or (ii) a; < 2tb and gy < 0.

-«
T 3T

In the first step, we have proved that there is a ray argz = 6, where 0 € (3,5 ) \
(E1 U E4 U Es), satisfying §(az2,60) > 0 and §(a12,0) > 0.
(i) (1 =Plag —b<a; <0and as < ﬁ. For sufficiently large r, we obtain (3.6)),
3.13), (3.16), (3-21) and (3.22) hold. Substituting (3.13), (3-21), (3-22), (3-28) and
3.33) in (3.18)), we obtain that for all z = re'? satisfying |z| = r ¢ [0,1] U Eg,
0 e (%, 3771') \ (El U FEy UE‘5)7
exp{ (1 — €)d(azz,0)r} < |Aze%??|
< M exp{r* ) exp{(1 +€)d(ar2,0)r}  (3.38)

x exp{(1 + )88 (azz, O)r}[T(2r, f)]**.
From this inequality we obtain

exp{nsr} < M exp{r"T}[T(2r, f)]kH, (3.39)

where
n3 = (1 —¢)d(azz,0) — (1 4+¢)d(a12,0) — (1 +€)Bd(azz,0) — beos .

Since n3 > 0 and v + ¢ < 1, then by using Lemma and (3.39), we obtain
oa(f) > 1. Hence oo(f) = 1.

(ii) a1 < 'f"_tlb and ay < 0. For sufficiently large r, we obtain , , ,
and hold. By using the same reasoning as above, we can get oo(f) = 1.
Concluding the above proof, we obtain that every solution f(# 0) of satisfies
o2(f) = 1. The proof of Theorem is complete.

4. PROOF OF THEOREM

Set Ry(z) = A1e™? + Aze®? and R;(z) = Bie®* + Die* (i = 1,...,k —1).
Assume f(# 0) is a solution of (1.2). Then o(f) = +oco by Theorem Set
go(2) = f(2) — ¢(z). Then we have o(gg) = o(f) = co. Substituting f = go + ¢
into , we obtain

9" + Ri_1g8 ™ + -+ Ragll + Rugh + Rogo

(4.1)
= —[p™ + Ri_10* 7 4+ 4 Rog” + Rig’ + Rogl.
We can rewrite (4.1)) in the form
987 + hos—198 4+ ho2gl + hoigh + hopgo = ho, (4.2)

where
ho = —[™ + Ri_10* 71 4+ 4+ Rog” + Rig’ + Rogl.
We prove that hg #Z 0. In fact, if hg = 0, then

") + Re10® ™+ 4+ Rag” + Ri¢' + Rop = 0.

Hence, ¢ # 0 is a solution of (1.2) with o(¢) = 400 by Theorem which is a
contradiction. Hence, hg # 0 is proved. By Lemma [2.8] and ({4.2)) we know that

AMgo) = AMf = ¢) = o(go) = o(f) = 0.
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Now we prove that A(f' — ¢) = oo. Set g1(2) = f/(2) — ¢(2). Then we have
o(g1) = o(f') = o(f) = co. Differentiating both sides of equation (|1.2)), we obtain

FED 4 R f O 4 (Rl + Riea) U7 o (Rig + Rie) 77
+oo+ (R + Ro) " + (Ry+ Ry) f" + (R, + Ro)f + Ryf = 0.

By (1.2), we have

f:_Rio[f(k)+Rk71f(k_1)+---+R2fﬁ+R1f’]~ (4.4)

Substituting (4.4) into (4.3]), we have
/

f(k+1)+<Rk—1_%g>f() (Rk 1+ Ri—2 — Ri— 12{))]0(]C 2

R) R
N (k—2) / _ p oY n
+( o+ Ri_s — Ry QRO)f n +<R3+R2 RgRO)f (4.5)

(4.3)

R
+<R’2+R1 )f”+(R’+R0—R1 )f_o
We can write equation (4.5)) in the form
FERD by e f® by o f D 4 o f” oo f Fhaof =0, (4.6)

where
R/
R'+1+R RH_lRO (i=0,1,...,k—2),
/
hij—1 = Rk_1 — =2.
) RO

Substituting fU+) = gij) + W) (j=0,...,k) into (&.6)), we obtain

0 + by g h1,k—29§k_2) oA higg) +hiag) +hiogr = hi,  (4.7)
where

b= —[p®™ + hy ko10® ™D £ by 00® D b Ry 00" + By 4 hiow)

We can get
Ni(z) .
i = = 71a"'7 -1 9 4.
M) = o (=01 k1) (4.8)
where

No = R\ Ry + R} — R Ry, (4.9)
N; :R;+1R0+RiR0—Ri+1R6 (i=1,2,....k—2), (4.10)
Nk71 = kalR[) — R6 (41].)

Now we prove that hy #Z 0. In fact, if hy = 0, then % = 0. Hence, by (4.8)) we
obtain

(k) (k—1) (k—2)
<)07]:50 + 14 Ni_1 + Ld

o o
Nk_2+"'+?NQ+;N1+N0:0~ (4.12)
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i)

Obviously, e (j = 1,...,k) are meromorphic functions with U(A) < 1. By
@ =
(4.9)—(4.11) we can rewrite (4.12)) in the form
AT*ME 4 AZe*27 4 Y fiet =0, (4.13)
el

where I = I1 \ {2a1,2a2} and f\ (A € I]) are meromorphic functions with order
less than 1.

(1) If (2a1) ¢ I \ {2a1}, then we write (4.13]) in the form
Aferm® 4 Z giae =0,
€Ty

where I'y C I \ {2a1}, g1, (A € T'1) are meromorphic functions with order less
than 1 and 2a;, A (A € T';) are distinct numbers. By Lemmas and we
obtain A; = 0, which is a contradiction.

(2) If (2a2) ¢ I \ {2a2}, then we write (4.13)) in the form
A3e?e2® 4 Z g2reM =0,
xel's

where T’y C I7 \ {2a2}, g2.x (A € T'2) are meromorphic functions with order less
than 1 and 2a2, A (A € T'3) are distinct numbers. By Lemmas and we
obtain A; = 0, which is a contradiction. Hence, hy # 0 is proved. By Lemma [2.8

and we know that A(g1) = A(f — ¢) = 0(g1) = o(f) = o0.
Now we prove that A(f” — ¢) = co. Set ga2(2) = f”(2) — p(2). Then we have

0(g2) = o(f") = o(f) = co. Differentiating both sides of equation (4.3)), we have
PO+ By fOD 4 (2R)_y + Rio) [ + (R, + 2B)_y + Ris) [V
+ (R _y + 2R} 5+ Rea) f*? 4+ + (R + 2Ry + Ru) [
+ (R + 2Ry + Ro)f" + (R + 2Ry) f' + Ry f = 0.

(4.14)
By (4.4) and (4.14)), we have
R//
PO R fOD (2Rl 4 R — 32 ) £
R//
+ (R;c/—l + 2R}y + Rk—3 — Ry Fo)f(k_l) ..
0 (4.15)

7 /!
+ (RY + 2R, + Ry — m%)f(“) + (RY + 2R, + Ry — 33%)#'
R?/ R// 0
+ (RS + 2R, + Ro— Ro 22 ) /" + (Ri + 2Ry — R 22 ) £/ = 0.
0 0
Now we prove that R} + Ry — Rl% # 0. Suppose that R} + Rg — Rl% =0, then
we have
ATPME 4 AZe*27 4 Y fiet =0, (4.16)
el
where I} = Iy \ {2a1,2a2} and fy (A € I}) are meromorphic functions with order
less than 1. By using the same reasoning as above, we can get a contradiction.

Hence, R} + Ry — Rl% # 0 is proved. Set
Y(2) = RiRy + R2 — R1 R}y, and ¢(z) = R{Ro + 2R,Ry — R Ry). (4.17)
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By ([4.5) and (4.17)), we obtain

f’M{f(k+1)+(Rk—1}R;O)fk)+<R’ 1+ Ri—o— Rp—1— )f(k 1
(Rk o+ Rip_g — Ry =2 )f<k 24 .. (R’2+R1—R2%‘2>f”}.

(4.18)

Substituting (4.17) and (4.18) into (4.15), we obtain

R R!
f(k+2) + [Ry_y — g]f(k+l) + |:2ka1 + Rp_o — -0 _ ?(Rk—l — —O)}f(k)

Ry ¢
Ry ¢ Ro\T pe-1)
+|: 1+2Rk 2+Rk 3_Rk 1R0 J( 1+Rk 2_Rk 1R0):|f

R// d) R/
. " / _ 0o _ ¥ / "
+ +[R3+2R2+R1 RSRO 1/1( 3+R2 R3R0)]f
Ry R
[R”+2R’+RO—R2——§(R;+R1 ")}f”_o
(4.19)
We can write (4.19)) in the form

FEFD fhg e fOMD by o f R o oo f ) by f 4 oo f” =0, (4.20)

where
R//
h - RH_;'_Q + 2R7,+1 + R R1+2 R
0
P(2) ( Ry
w( )(R+2+Rz+1 Rz+2R70> (2_0717"'7k_3)7
Ry #(2) R
hoko = 2R, Rj_o — =2 — Ry 0
2,k—2 h—1 T L2 Ro 1/1(2)( k—1 — Ro)
9(2)
hor—1=Rr_1— .
2,k—1 k—1 W(z)
Substituting fU+2) = (j) + ¢ (j=0,...,k) in {#.20) we have
98" + o198+ ha—2g8" TP 4+ hogh + haoga = ha, (4.21)
where

hy = *[SD(k) + hz,k—lw(kfl) + hz,k-z@(kfz) +-+ h2,290” + h2,190' + ha,0p].
We obtain
hoyi = = (i=0,1,...,k—1), (4.22)

where
Lo(z) = RYR} Ry + RYR2 — RYR\R) + 2R}’ Ry + 3R, R2 — 2R R, R}, + R}
—3R1RyRy — RoR, R} — RoR Ry — RLR! Ry — 2R, R\ Ry + RyR1 R}

— R!RiRy + R2R!! + RyR'R} + 2R, R}’
(4.23)
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Li = R/ >R\ Ry + R\, R — R, Ri Ry + 2R} R Ro + 2R, R} — 2R\ Ri R,
+ RiR|Ry + R;R2 — R;R\ R} — Ri1 2R\ Ry — Ri1oRyRo — R, R/ Ry
— 2R} ,RyRo + Rl yR1 Ry — Rit1R{Ro — 2R, 1 RyRo + Rit1 R1RY)
+ RioR'R) + 2R saR)> (i=1,2,....k—3),
(4.24)
Ly_o=2R, R|Ry+2R,_,R: 2R}, RiR\+ R,_2R|Ro+ Ryp_oR2
— Ry_oR1R) — RiR} — RyRy — Ry_1R{Ry — 2Ry,_1 R\ Ry (4.25)
+ Ry_1 R R + R{ R} + 2R,
Ly_1 =Ry 1R\Ro+ R,_1R: — R,,_1RiR) — RY/Ry — 2R\ Ry + R R}.  (4.26)
Therefore,

—h 1 (k) (k—1) " /
2 e L4+ DL+ DL+ L), (4.27)
e Yo ® ® @
Now we prove that he # 0. In fact, if he = 0, then _Tf” = 0. Hence, by (4.27) we
obtain

(k) (k—1) " /
Ly L+ LD+ Ly =0 (4.28)
4 ¥ P
Obviously, % (j = 1,...,k) are meromorphic functions with 0’(%) < 1. By
(4.17) and (4.23)—(4.26]), we can rewrite (4.28) in the form
A3ePm7 4 A3z 4 Z fret® =0, (4.29)
AEI

where It = I3\ {3a1,3a2} and fy (A € Ij) are meromorphic functions with order
less than 1.

(1) If (3a1) ¢ I \ {3a1}, then we write (4.29)) in the form

Ai’e?’alz —+ Z gL)\e)\z = O,
xel’y
where Ty C I3\ {3a1}, g1,» (A € T'1) are meromorphic functions with order less

than 1 and 3a;, A (A € T';) are distinct numbers. By Lemmas and we
obtain A; = 0, which is a contradiction.

(2) If (3az2) ¢ Is \ {3az}, then we write (4.29) in the form

Ag€3a2z =+ E 927Ae>\z = 0,
el

where 'y C I3 \ {3az}, g2.x (A € T'3) are meromorphic functions with order less
than 1 and 3ag, A (A € T'z) are distinct numbers. By Lemmas and we
obtain A; = 0, which is a contradiction. Hence, hy #Z 0 is proved. By Lemma [2.8

and ([£.21)), we have A\(g2) = AM(f" —¢) = 0(g2) = o(f) = co. The proof of Theorem
[1.6] is complete.

Proof of Corollary[1.7} Setting ¢(z) = z and using the same reasoning as in the
proof of Theorem we obtain Corollary O
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