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ENERGY DECAY FOR ELASTIC WAVE EQUATIONS WITH
CRITICAL DAMPING

JAQUELINE LUIZA HORBACH, NAOKI NAKABAYASHI

Abstract. We show that the total energy decays at the rate Eu(t) = O(t−2),
as t → +∞, for solutions to the Cauchy problem of a linear system of elastic

wave with a variable damping term. It should be mentioned that the the

critical decay satisfies V (x) ≥ C0(1 + |x|)−1 for C0 > 2b, where b represents
the speed of propagation of the P-wave.

1. Introduction

We consider the Cauchy problem for the linear system of elastic wave equations
with a critical potential type of damping V (x) in R2:

utt(t, x)− a2∆u(t, x)− (b2 − a2)∇(div u(t, x)) + V (x)ut(t, x) = 0,

(t, x) ∈ (0,∞)× R2,
(1.1)

u(0, x) = u0(x), ut(0, x) = u1(x), x ∈ R2, (1.2)

where the vector displacement u = u(t, x) = (u1(x, t), u2(t, x)) and the coefficients a
and b are related to the Lamé coefficients and the satisfy the condition of ellipticity
0 < a2 ≤ b2. The initial data u0 and u1 are compactly supported from the energy
space; that is,

u0 ∈ (H1(R2))2, u1 ∈ (L2(R2))2,

suppui ⊂ B(R0) := {x ∈ R2 : |x| < R0}, (i = 0, 1).

The system of elastic waves satisfies the property of finite speed of propagation
given by coefficient b, which is the speed of propagation of the longitudinal P-wave.
The coefficient a is the speed of propagation of the transverse S-wave (cf. [1]).

The damping coefficient V (x) belongs to C(R2) ∩ L∞(R2) and satisfies
(A1) V (x) ≥ C0

1+|x| , for all x ∈ R2 and for some C0 > 0.

Under these conditions it is standard to prove via semigroups theory (cf. Horbach
[5, Theorem 2.1]) that problem (1.1)-(1.2) has a unique solution

u ∈ C([0,+∞); (H1(R2))2) ∩ C1([0,+∞); (L2(R2))2)
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satisfying

Eu(t) +
∫ t

0

∫
R2
V (x)|ut(s, x)|2 dx ds = Eu(0),

where the total energy is

Eu(t) :=
1
2

∫
R2
{|ut(t, x)|2 + a2|∇u(t, x)|2 + (b2 − a2)(div u(t, x))2}dx. (1.3)

Our main results in this article read as follows.

Theorem 1.1. Let the damping coefficient V (x) satisfy (A1) with C0 > 2b. Then
the solution u(t, x) to problem (1.1)-(1.2) satisfies

Eu(t) = O(t−2) (1.4)

as t→ +∞.

Proposition 1.2. Let V (x) satisfy (A1) and C0 satisfy 0 < C0 ≤ 2b. Then for the
solution u(t, x) to (1.1)-(1.2) one has the following two possibilities:

(I) When 0 < C0 ≤ b it holds that

Eu(t) = O(t−1+δ), t→ +∞ (1.5)

for any δ > 0 satisfying 1− C0
b < δ < 1;

(II) when b < C0 ≤ 2b it holds that

Eu(t) = O(t−
C0
b +δ), as t→ +∞ (1.6)

for any δ > 0.

Remark 1.3. It follows from Proposition 1.2 part (I) that Eu(t) = O(t−
C0
b +ε) for

any small ε > 0 which is the same decay rate as that Proposition 1.2 part (II), if
one re-set δ := 1 − C0

b + ε with any ε ∈ (0, C0/b] ⊂ (0, 1]. This implies that when

0 < C0 ≤ 2b the obtained decay rate is Eu(t) = O(t−
C0
b +δ) with any small δ > 0.

Remark 1.4. When one compares these results with the one for the scalar wave
equations due to [8] the obtained decay rates are (almost) optimal.

To begin we mention the motivation and some related results of this research.
There are a lot of results concerning the energy decay estimates for the scalar-valued
wave equation

wtt(t, x)−∆w(t, x) + V (x)wt(t, x) = 0, (t, x) ∈ (0,∞)× Rn, (1.7)

w(0, x) = w0(x), wt(0, x) = w1(x), x ∈ Rn, (1.8)

where the function V (x) typically satisfies

V (x) =
C0

(1 + |x|)α
, C0 > 0, α ∈ [0,+∞). (1.9)

In connection with problem (1.7)-(1.8) it is easy to proove the decreasing property
of the total energy

Ew(t) :=
1
2

∫
Rn
{|wt(t, x)|2 + |∇w(t, x)|2}dx.

So a natural question arises whether Ew(t) decays or not as t→ +∞. About this
question Mochizuki [11] first gave an answer that when α > 1 (super-critical damp-
ing), the solution w(t, x) to (1.7)-(1.8) is asymptotically free, and the corresponding
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energy satisfies limt→+∞Ew(t) > 0 (non-decay). In this sense, the case α > 1 shows
a hyperbolic aspect of the equation (1.7). On the other hand, Todorova-Yordanov
[14] considered the case when α ∈ [0, 1) (sub-critical damping), and they derived
almost optimal decay estimates of the energy:

Ew(t) = O(tδ−
n−α
2−α−1), as t→ +∞

for any δ > 0. In connection with this, one can observe that the energy Ew(t) has
faster decay rates as α → 1. This sub-critical damping case has a close relation
to the so called diffusion phenomenon of the equation (1.7). Recently, Ikehata-
Todorova-Yordanov [8] announced a work on the critical damping case α = 1, and
roughly speaking, they derived the following results:

Ew(t) = O(tδ−min{C0,n}), as t→ +∞,

for any δ > 0 (indeed, we can choose δ = 0 in part). There exists a threshold
concerning the decay rate from the viewpoint of the dimension n and the damping
coefficient C0.

On the other hand, for the elastic waves it seems that there are not so many
results except for the references [2, 3, 4, 5, 9]. That happens, especially for dis-
sipative terms with variable coefficients. The local energy decay property of the
equation (1.1) without damping (i.e., V (x) ≡ 0) is studied by Kapitonov [9], and
the result is an elastic wave version of that derived by Morawetz [13] to the scalar
wave equations (1.7) with V (x) ≡ 0. For the exterior mixed problem of the elastic
wave equation (1.1) with localized damping coefficient V (x) near spatial infinity
Charão and Ikehata [3] derived the faster decay estimates of the total energy and
L2-norm of solutions basing on a previous research due to Ikehata [6] about the
scalar wave equations. In Charão and Ikehata [4] the equation (1.1) with monotone
nonlinearity and critical damping (α = 1) has been treated based on a method due
to [7], however, the obtained decay rate of the energy seems not to be sharp. Sharp
higher order energy decay estimates have been recently studied by Charão-da Luz
and Ikehata [2] to the elastic wave equations with “structural damping”, but the
method in [2] cannot be applied to the x-dependent variable coefficient case like
(1.1).

The purpose of this paper is to find sharp decay estimates of the energy to
problem (1.1)-(1.2) in the 2-dimensional case, and the strategy for the proof comes
from the previous papers due to Ikehata-Inoue [7] and the two dimensional Ikehata-
Todorova-Yordanov [8] method. Several basic computations of the energy method
have already been prepared by Horbach [5], so basing on this computations due
to [5] we will develop a method introduced in [8] to the scalar wave equations.
Unlike the scalar wave equation, the elastic wave equation is vector valued and
the equation itself has a quite complex form, so the treatment of the elastic wave
equation is not so easy as compared with the scalar wave. The advantage is that
the proof is very elementary in spite of the complexity of the equation.

The proof of Proposition 1.2 part (I) above is already shown in Horbach [5]; so
that we restrict ourselves to prove Theorem 1.1 and Proposition 1.2 part (II) in the
next section.

Open problem. Can one have the estimate Eu(t) = O(t−min{C0
b ,n}) (as t→ +∞)

when n ≥ 3. This will be an estimate, for a higher dimensional elastic wave version,
with the same form as for the scalar wave equations in [8].
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1.1. Notation. We will use the following symbols:

‖u‖2 :=
∫

R2
|u(x)|2dx =

∫
R2

2∑
i=1

|ui(x)|2dx,

‖∇u‖2 :=
2∑
i=1

‖∇ui‖2 =
2∑
i=1

∫
R2
|∇ui(x)|2dx =

2∑
i,j=1

∣∣∣∣∣∣ ∂ui
∂xj

∣∣∣∣∣∣2,
(u, v) =

∫
R2
u(x) · v(x)dx =

∫
R2

2∑
i=1

ui(x)vi(x)dx,

u : ∇v = u1∇v1 + u2∇v2 =
( 2∑
i=1

ui
∂vi
∂x1

,

2∑
i=1

ui
∂vi
∂x2

)
,

div(u : ∇u) = u ·∆u+ |∇u|2,

div(ut : ∇u) = ut ·∆u+
1
2
d

dt
|∇u|2,

div(u div u) = (div u)2 + u · ∇(div u),

div(ut div u) =
1
2
d

dt
(div u)2 + ut · ∇(div u),

where p · q := p1q1 + p2q2 for p = (p1, p2) ∈ R2 and q = (q1, q2) ∈ R2.

2. Proof of the main results

First, we multiply the equation (1.1) by f(t)ut + g(t)u, and integrate over R2

in order to get the following Lemma, where f(t) and g(t) are smooth functions
specified later.

Lemma 2.1. Let u ∈ C([0,+∞); (H1(R2))2) ∩ C1([0,+∞); (L2(R2))2) be the so-
lution to (1.1)-(1.2). Then

d

dt
E(t) + F (t) = 0, t ≥ 0, (2.1)

where

E(t) :=
∫

R2

f(t)
2
{|ut|2 + a2|∇u|2 + (b2 − a2)(div u)2}dx

+ g(t)(u, ut) +
∫

R2

g(t)
2
V (x)|u|2dx−

∫
R2

gt(t)
2
|u|2dx,

(2.2)

and

F (t) :=
1
2

∫
R2
{2f(t)V (x)− 2g(t)− ft(t)}|ut|2dx+

1
2

∫
R2
{gtt(t)− gt(t)V (x)}|u|2dx

+
a2

2

∫
R2

(2g(t)− ft(t))|∇u|2dx+
b2 − a2

2

∫
R2

(2g(t)− ft(t))(div u)2dx.

(2.3)

Proof. For the moment, one can assume that the corresponding solution u(t, x) is
sufficiently smooth and vanishes near infinity to proceed the computations below.
The general case follows from density arguments.

We first multiply (1.1) by f(t)ut to get the equality

f(t)(ut · utt)− a2f(t)(ut ·∆u)− (b2 − a2)f(t)(ut · ∇(div u)) + f(t)V (x)|ut|2 = 0,
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so that

f(t)
2

d

dt
|ut|2 − a2f(t) div(ut : ∇u) +

a2f(t)
2

d

dt
|∇u|2 − (b2 − a2)f(t) div(ut div u)

+
(b2 − a2)f(t)

2
d

dt
(div u)2 + f(t)V (x)|ut|2 = 0.

(2.4)
Next, we multiply (1.1) by g(t)u to obtain

g(t)(u · utt)− a2g(t)(u ·∆u)− (b2 − a2)g(t)(u · ∇(div u)) + g(t)V (x)(u · ut) = 0,

so that

g(t)
d

dt
(u · ut)− g(t)|ut|2 − a2g(t) div(u : ∇u) + a2g(t)|∇u|2

− (b2 − a2)g(t) div(u div u) + (b2 − a2)g(t)(div u)2

+
g(t)

2
V (x)

d

dt
|u|2 = 0.

(2.5)

Thus, by adding (2.4) and (2.5), it follows that{f(t)
2

d

dt
|ut|2 − a2f(t) div(ut : ∇u) +

a2f(t)
2

d

dt
|∇u|2

− (b2 − a2)f(t) div(ut div u) +
(b2 − a2)f(t)

2
d

dt
(div u)2 + f(t)V (x)|ut|2

}
+
{
g(t)

d

dt
(u · ut)− g(t)|ut|2 − a2g(t) div(u : ∇u) + a2g(t)|∇u|2

− (b2 − a2)g(t) div(u div u) + (b2 − a2)g(t) (div u)2 +
g(t)

2
V (x)

d

dt
|u|2
}

= 0.

This implies that

f(t)
2

d

dt

(
|ut|2 + a2|∇u|2 + (b2 − a2)(div u)2

)
+ g(t)

d

dt
(u · ut) +

g(t)
2
V (x)

d

dt
|u|2

− g(t)|ut|2 − a2g(t) div(u : ∇u) + a2g(t)|∇u|2 − (b2 − a2)g(t) div(udiv u)

+ (b2 − a2)g(t)(div u)2 − a2f(t) div(ut : ∇u)− (b2 − a2)f(t) div(ut div u)

+ f(t)V (x)|ut|2 = 0.
(2.6)

If we define the density of energy

e(t, x) :=
f(t)

2

(
|ut|2 + a2|∇u|2 + (b2 − a2)(div u)2

)
+ g(t)(u · ut) +

g(t)
2
V (x)|u|2 − gt(t)

2
|u|2,

(2.7)

then we have

d

dt
e(t, x) =

ft(t)
2

(
|ut|2 + a2|∇u|2 + (b2 − a2)(div u)2

)
+
f(t)

2
d

dt

(
|ut|2 + a2|∇u|2 + (b2 − a2)(div u)2

)
+ g(t)

d

dt
(u · ut) +

gt(t)
2

V (x)|u|2 +
g(t)

2
V (x)

d

dt
|u|2 − gtt(t)

2
|u|2.
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The above identity can be written as

f(t)
2

d

dt

(
|ut|2 + a2|∇u|2 + (b2 − a2)(div u)2

)
+ g(t)

d

dt
(u · ut) +

g(t)
2
V (x)

d

dt
|u|2

=
d

dt
e(t, x)− ft(t)

2

(
|ut|2 + a2|∇u|2 + (b2 − a2)(div u)2

)
− gt(t)

2
V (x)|u|2 +

gtt(t)
2
|u|2.

(2.8)
Thus, by (2.6) and (2.8) we have the identity

d

dt
e(t, x) +

(
f(t)V (x)− g(t)− ft(t)

2

)
|ut|2 +

(gtt(t)
2
− gt(t)

2
V (x)

)
|u|2

+ a2
(
g(t)− ft(t)

2

)
|∇u|2 + (b2 − a2)

(
g(t)− ft(t)

2

)
(div u)2 − a2g(t) div(u : ∇u)

− (b2 − a2)g(t) div(udiv u)− a2f(t) div(ut : ∇u)

− (b2 − a2)f(t) div(ut div u) = 0.
(2.9)

We integrate (2.9) over R2 to obtain the identity

d

dt

∫
R2
e(t, x)dx+

∫
R2

(
f(t)V (x)− g(t)− ft(t)

2

)
|ut|2dx

+
∫

R2

(gtt(t)
2
− gt(t)

2
V (x)

)
|u|2dx+ a2

∫
R2

(
g(t)− ft(t)

2

)
|∇u|2dx

+ (b2 − a2)
∫

R2

(
g(t)− ft(t)

2

)
(div u)2dx− a2

∫
R2
g(t) div(u : ∇u)dx

− (b2 − a2)
∫

R2
g(t) div(udiv u)dx− a2

∫
R2
f(t) div(ut : ∇u)dx

− (b2 − a2)
∫

R2
f(t) div(ut div u)dx = 0.

By applying the Gauss divergence theorem, one notices that∫
R2

div(u : ∇u)dx = 0,
∫

R2
div(udiv u)dx = 0,∫

R2
div(ut : ∇u)dx = 0,

∫
R2

div(ut div u)dx = 0.

Therefore, one has arrived at the desired equality.

d

dt
E(t) + F (t) = 0.

�

Note that when one estimates the functions E(t) and F (t) it is sufficient to
consider the spatial integration over the light cone

Ω(t) = {x ∈ R2 : |x| ≤ R0 + bt}

since the finite speed of propagation property can be applied again to the solutions
of the corresponding problem (1.1)-(1.2).
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Now let us choose the functions f(t) and g(t) in Lemmas 2.2 and 2.3 as follows:
When C0 > 2b we set

f(t) = (1 + t)2, g(t) = (1 + t), (2.10)

when b < C0 ≤ 2b, for an arbitrarily fixed δ > 0 we choose

f(t) = (1 + t)
C0
b −δ, g(t) =

C0 − bδ
2b

(1 + t)
C0
b −1−δ. (2.11)

Then one has the following lemmas.

Lemma 2.2. The smooth functions f(t) and g(t) defined by (2.10) and (2.11)
satisfy the following properties: there exists a large t0 > 0 such that for all t ≥ t0 ≥
0,

(i) 2f(t)V (x)− ft(t)− 2g(t) ≥ 0, x ∈ Ω(t),
(ii) 2g(t)− ft(t) = 0.

Proof. We will check only (i), because (ii) is quite easy. First, we consider the case
(2.10) to check (i) when C0 > 2b. In fact, for x ∈ Ω(t),

2f(t)V (x)− ft(t)− 2g(t) = 2(1 + t)2V (x)− 2(1 + t)− 2(1 + t)

= 2(1 + t){(1 + t)V (x)− 2}

≥ 2(1 + t)
{

(1 + t)
C0

1 + |x|
− 2
}

≥ 2(1 + t)
{

(1 + t)
C0

1 + bt+R0
− 2
}
.

Here, we find that

lim
t→∞

(
(1 + t)

C0

1 + bt+R0
− 2
)

=
C0

b
− 2,

so that there exists t0 > 0 such that for all t ∈ [t0,+∞),

(1 + t)
C0

1 + bt+R0
− 2 ≥ 1

2

(C0

b
− 2
)
.

Thus, we have the inequality

2(1 + t)
{

(1 + t)
C0

1 + bt+R0
− 2
}
≥ (1 + t)

(C0

b
− 2
)
, 0 ≤ t0 ≤ t.

From assumption of (I) of Theorem 1.1, since C0
b −2 > 0, one can check (i) when

C0 > 2b.
On the other hand, when b < C0 ≤ 2b it follows from the definition of (2.11)

that

2f(t)V (x)− ft(t)− 2g(t)

= 2(1 + t)
C0
b −δV (x)−

(C0

b
− δ
)

(1 + t)
C0
b −δ−1 −

(C0

b
− δ
)

(1 + t)
C0
b −δ−1

= 2(1 + t)
C0
b −δV (x)− 2

(C0

b
− δ
)

(1 + t)
C0
b −δ−1

≥ 2(1 + t)
C0
b −δ−1

{
(1 + t)

C0

1 + |x|
−
(C0

b
− δ
)}
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≥ 2(1 + t)
C0
b −δ−1

{
(1 + t)

C0

1 + bt+R0
−
(C0

b
− δ
)}
,

for all x ∈ Ω(t).
Here, we find that

lim
t→∞

(
(1 + t)

C0

1 + bt+R0
−
(C0

b
− δ
))

=
C0

b
−
(C0

b
− δ
)

= δ > 0.

So, there exists t0 > 0 such that for all t ∈ [t0,+∞)

(1 + t)
C0

1 + bt+R0
−
(C0

b
− δ
)
≥ 1

2
δ.

Thus, we have the inequality

2(1 + t)
C0
b −1−δ

{
(1 + t)

C0

1 + bt+R0
−
(C0

b
− δ
)}
≥ (1 + t)

C0
b −1−δδ, 0 ≤ t0 ≤ t,

which implies desired estimate. �

Based on Lemmas 2.1 and 2.2 we have the inequality
d

dt
{f(t)Eu(t) + g(t)(u, ut)} ≤

d

dt

{1
2

∫
R2

(gt(t)− g(t)V (x))|u|2dx
}

+
1
2

∫
R2

(gt(t)V (x)− gtt(t))|u|2dx
(2.12)

for t ≥ t0 ≥ 0.
We want to use the following lemma. However, when C0 > 2b and f(t), g(t) are

given by (2.10) the proof of this lemma is easily done. We will prove the lemma
only for b < C0 ≤ 2b and f(t), g(t) given by(2.11).

Lemma 2.3. Assume the functions f(t) and g(t) defined by (2.10) and (2.11)
satisfy the following three properties, for t ≥ t0 ≥ 0:

(iii) −gtt(t) ≤ C1
1+bt ,

(iv) V (x)gt(t) ≤ C2V (x), for all x ∈ R2,
(v) gt(t)− V (x)g(t) ≤ C3, for all x ∈ R2,

where Ci (i = 1, 2, 3) are positive constants.

Proof. We proof only (iii) under the condition b < C0 ≤ 2b with f(t), g(t) given by
(2.11). The other cases are easy to proof. Note that

−gtt(t) = −
(C0 − δb

2b

)(C0

b
− δ − 1

)(C0

b
− δ − 2

)
(1 + t)

C0
b −δ−3

≤ C(1 + t)
C0
b −δ−3

≤ C(1 + t)
2b
b −δ−3

= C(1 + t)−1−δ

≤ C(1 + t)−1.

Here, we find that
1

max{1, b}(1 + t)
≤ 1

1 + bt
,

so that
1

1 + t
≤ max{1, b}

1 + bt
≤ C

1 + bt
.
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Thus, we have the following inequality with some C1 > 0:

C(1 + t)−1 ≤ C1

1 + bt
,

which implies the desired inequality. �

By integrating both sides of (2.12) over [t0, t], we find that

f(t)Eu(t) + g(t)(u(t, ·), ut(t, ·))− {f(t0)Eu(t0) + g(t0)(u(t0, ·), ut(t0, ·))}

≤ 1
2

∫
R2

(gt(t)− V (x)g(t))|u(t, x)|2dx− 1
2

∫
R2

(gt(t0)− V (x)g(t0))|u(t0, x)|2dx

+
1
2

∫ t

t0

∫
R2
V (x)gt(s)|u(s, x)|2 dx ds+

1
2

∫ t

t0

∫
R2

(−gtt(s))|u(s, x)|2 dx ds.

It follows from Lemma 2.3 with large t0 that
f(t)Eu(t) + g(t)(u(t, ·), ut(t, ·))

≤ C4 +
C3

2

∫
R2
|u(t, x)|2dx+

C2

2

∫ t

t0

∫
R2
V (x)|u(s, x)|2 dx ds

+
C1

2C0

∫ t

t0

∫
R2

C0

1 + bs
|u(s, x)|2 dx ds,

(2.13)

where

C4 = f(t0)Eu(t0) + g(t0)(u(t0, ·), ut(t0, ·))−
1
2

∫
R2

(gt(t0)− V (x)g(t0))|u(t0, x)|2dx.

We shall rely on the following powerful lemma, motivated by results from Ikehata
[6] and Charão-Ikehata [3].

Lemma 2.4. Let u ∈ C([0,+∞); (H1(R2))2) ∩ C1([0,+∞); (L2(R2))2) be the so-
lution to (1.1)-(1.2). Then

‖u(t, ·)‖2 +
∫ t

0

∫
R2
V (x)|u(s, x)|2 dx ds ≤ ‖u0‖2 + C‖d(·)(V (·)|u0|+ |u1|)‖2

for all t ≥ 0, where C > 0 is a constant and d(x) := {1 + log (1 + |x|)}(1 + |x|).
Proof. First, we define an auxiliary function

χ(t, x) =
∫ t

0

u(s, x)ds

that satisfies

χtt − a2∆χ− (b2 − a2)∇(divχ) + V (x)χt = V (x)u0 + u1, (2.14)

χ(0, x) = 0, χt(0, x) = u0(x) x ∈ R2. (2.15)

Multiplying (2.14) by χt and integrating over [0, t]× R2 we obtain

1
2
‖χt‖2 +

a2

2
‖∇χ‖2 +

(b2 − a2)
2

∫
R2

(divχ)2dx+
∫ t

0

∫
R2
V (x)|χt|2 dx ds

=
1
2
‖u0‖2 +

∫
R2

(V (x)u0 + u1) · χ(t, x)dx.
(2.16)

The next step is to use the two dimensional Hardy-Sobolev inequality [10],∫
R2

|v(x)|2

d(x)2
dx ≤ C

∫
R2
|∇v(x)|2dx, v ∈ (H1(R2))2, (2.17)
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where
d(x) := {1 + log (1 + |x|)}(1 + |x|).

The last term of (2.16) can be estimated by using (2.17) and the Schwarz inequality
as follows. ∫

R2
(V (x)u0 + u1)χ(t, x)dx

≤
∫

R2
(V (x)|u0|+ |u1|)|χ(t, x)|dx

=
∫

R2
d(x)(V (x)|u0|+ |u1|)

|χ(t, x)|
d(x)

dx

≤
{∫

R2
d(x)2(V (x)|u0|+ |u1|)2dx

}1/2{∫
R2

|χ(t, x)|2

d(x)2
dx
}1/2

≤ 1
2ε
‖d(·)(V (·)|u0|+ |u1|)‖2 +

ε

2

∣∣∣∣∣∣χ(t, ·)
d(·)

∣∣∣∣∣∣2
≤ 1

2ε
‖d(·)(V (·)|u0|+ |u1|)‖2 +

εC

2
‖∇χ‖2,

where ε > 0 is an arbitrary real number and C is the constant in the Hardy-Sobolev
inequality.

Combining the above estimate with (2.16), we conclude that

1
2
‖χt‖2 +

a2

2
(1− εC

a2
)‖∇χ‖2 +

(b2 − a2)
2

∫
R2

(divχ)2dx+
∫ t

0

∫
R2
V (x)|χt|2 dx ds

≤ 1
2
‖u0‖2 + C‖d(·)(V (·)|u0|+ |u1|)‖2.

(2.18)
Now, fixing ε > 0 such that 1− εC

a2 > 0, we obtain

‖χt‖2 +
∫ t

0

∫
R2
V (x)|χt|2 dx ds ≤ ‖u0‖2 + C‖d(·)(V (·)|u0|+ |u1|)‖2, (2.19)

which implies the desired statement of Lemma 2.4, with χt = u:

‖u‖2 +
∫ t

0

∫
R2
V (x)|u|2 dx ds ≤ ‖u0‖2 + C‖d(·)(V (·)|u0|+ |u1|)‖2. (2.20)

�

As consequence of Lemma 2.4, since

V (x) ≥ C0

1 + |x|
≥ C0

1 +R0 + bt
≥ 1

(1 +R0)
C0

1 + bt
, x ∈ Ω(t)

we have

1
(1 +R0)

∫ t

0

∫
R2

C0

1 + bs
|u(s, x)|2 dx ds ≤ ‖u0‖2 +C‖d(·)(V (·)|u0|+ |u1|)‖2, (2.21)

where C > 0 is a constant.
After these preparations let us prove only Theorem 1.1. The proof of Proposition

1.2 part (II) is quite similar, using (2.11) in stead of (2.10).
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Proof of Theorem 1.1. It follows from Lemma 2.4, (2.13) and (2.21) that

f(t)Eu(t) + g(t)(u(t, ·), ut(t, ·)) ≤ CR0 , (2.22)

where the constant CR0 > 0 depends on the L2-norm of the initial data and R0.
By using the Schwarz inequality, the definition of the total energy, and Lemma 2.4
again we obtain

f(t)Eu(t) ≤ g(t)‖u(t, ·)‖ ‖ut(t, ·)‖+ CR0 ≤ Cg(t)
√
Eu(t) + CR0 , t ≥ t0,

with some constant C > 0 depending on R0 and the initial data. Therefore, if we
set X(t) =

√
Eu(t) for t ∈ [t0,+∞), then we get

f(t)X2(t)− Cg(t)X(t)− CR0 ≤ 0. (2.23)

By solving the quadratic inequality (2.23) for X(t) (cf. [15]) we have√
Eu(t) ≤

Cg(t) +
√
C2g2(t) + 4CR0f(t)

2f(t)
.

This inequality leads to

Eu(t) ≤ C
( g(t)
f(t)

)2

+ C
( 1
f(t)

)
, t ≥ t0,

which implies the desired estimate of the Theorem 1.1. Remember that f(t) =
(1 + t)2 and g(t) = (1 + t) in the present case. �
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