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RIGOROUS MATHEMATICAL INVESTIGATION OF A
NONLINEAR ANISOTROPIC DIFFUSION-BASED IMAGE

RESTORATION MODEL

TUDOR BARBU, ANGELO FAVINI

Abstract. A nonlinear diffusion based image denoising technique is intro-
duced in this paper. The proposed PDE denoising and restoration scheme

is based on a novel diffusivity function that uses an automatically detected

conductance parameter. A robust mathematical treatment is also provided
for our anisotropic diffusion model. We demonstrate that edge-stopping func-

tion model is properly chosen, explaining the mathematical reasons behind

it. Also, we perform a rigorous mathematical investigation on of the exis-
tence and uniqueness of the solution of our nonlinear diffusion equation. This

PDE-based noise removal approach outperforms most diffusion-based meth-

ods, producing considerably better smoothing results and providing a much
better edge preservation.

1. Introduction

An efficient noise removal that preserves the essential image features, like bound-
aries, corners and other sharp structures, still represents a challenging task in the
image processing domain [12]. The conventional image smoothing algorithms, such
as averaging filter, median filter or classic Gaussian filter are capable to reduce the
noise amount, but also have the disadvantage of blurring the edges [5]. For this
reason, many edge-preserving denoising techniques based on Partial Differential
Equations (PDEs) have been developed in the last three decades [12, 6].

The linear diffusion models represent the simplest PDE-based image denoising
solutions. A 2D Gausian smoothing process is equivalent to a linear diffusion filter-
ing. Thus, if a degraded image is processed by convolution with a Gaussian kernel,
the result represents also the solution of the heat equation [6]. The major disad-
vantage of the linear PDE models is their blurring effect over the image details.
Linear diffusion has no localization property and could dislocate the edges when
moving from finer to coarser scales.

The nonlinear diffusion based methods avoid the blurring and localization prob-
lems of the linear filters. They perform a directional diffusion, which is degenerate
along the gradient direction, having the effect of denoising the image along but
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not across the edges. Various nonlinear diffusion-based noise removal techniques
have been elaborated since the early work of Perona and Malik in 1987 [13]. They
developed an anisotropic diffusion framework for image denoising and restoration,
which was able to smooth the noisy image while preserving its edges, by encourag-
ing the diffusion within image regions and prohibiting it across strong boundaries.
Two diffusivity function variants were considered for this model [13]. There is a
lot of literature based on the denoising scheme proposed by Perona and Malik, nu-
merous nonlinear diffusion techniques derived from this influential algorithm being
constructed in the last 25 years [18]. Many papers consider mathematical investiga-
tions, numerical implementations and possible applications of Perona-Malik model.
Its stability has been extensively studied in the last decades [18].

Also, in the last decades there have been developed a lot of denoising approaches
based on Total Variation (TV) regularization [12, 15]. The total variation principle
was introduced by Rudin, Osher and Fetami in 1992 [15]. Their variational filtering
technique is based on the minimization of the TV norm. While TV denoising is
remarkably effective at simultaneously preserving the edges whilst smoothing away
noise in flat regions, it also suffers from the staircasing effect and its corresponding
Euler-Lagrange equation is highly nonlinear and difficult to compute. For this
reason, in the last two decades there have been proposed many improved versions of
the TV denoising model [12], such as contrast invariant TV-L1 model [10], Adaptive
TV de-noising [11], spatially adaptive TV [14], anisotropic HDTV regularizer [7],
TV models with ADMM algorithms [17] and TV minimization with Split Bregman
[3].

We have conducted a large amount of research in the PDE-based image de-
noising and restoration domain in the last years, too. Several PDE variational [1]
and nonlinear diffusion based techniques [2] have been developed by us in the last
years. In this paper we consider a nonlinear anisotropic diffusion scheme for image
restoration. The proposed model, based on a novel edge-stopping function and a
conductance parameter depending on the current state of the image, is detailed
in the next section. A robust mathematical treatment of the proposed diffusion
scheme, representing the main contribution of this article, is provided in the third
section. The image noise removal results and the performed method comparison
are described in the fourth section. This paper ends with a conclusions section and
a list of references.

2. Robust anisotropic diffusion based noise reduction technique

We consider an edge-preserving image noise removal PDE model using the non-
linear anisotropic diffusion. The proposed diffusion-based image noise reduction
algorithm is given by the following parabolic equation:

∂u

∂t
= div(ψK(u)(|∇u|2)∇u)

u(0, x, y) = u0, (x, y) ∈ Ω

∇u · ν = 0, on (0, T )× ∂Ω

(2.1)

where u0 is the initial noisy image, its domain is Ω ⊂ R2 and ν is the normal to ∂Ω.
The nonlinear diffusion model provided by (2.1) is based on the following diffusivity
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(edge-stopping) function, ψK(u) : [0,∞)→ [0,∞):

ψK(u)(s2) =

{
α
√

K(u)
β·s2+η , if s > 0,

1, if s = 0,
(2.2)

where α, β ∈ [0.5, 0.8] and η ∈ [0.5, 1).
As one can see in (2.2), the modeled edge-stopping function is based on a con-

ductance diffusivity depending on the state of the image u at time t. Conductance
parameter is very important for the diffusion process. When the gradient mag-
nitude exceeds its value, the corresponding edge is enhanced [6, 13, 18]. Some
algorithms, including the Perona–Malik filter, use a fixed value [13, 18]. Another
solution is to make this parameter a function of time. One may use a high value at
the beginning, then it is reduced gradually, as the image is smoothed [18].

Other approaches detect automatically the conductance diffusivity as a function
of the current state of the processed image. Various noise estimation methods are
used for conductance parameter detection [16]. We also consider an automatic com-
putation of this parameter, based on the image noise estimation at each iteration.
Some statistics are utilized by the proposed conductance parameter model that is
expressed as the following function:

K(u) = ‖u‖F
median(u)
ε · n(u)

, (2.3)

where ε ∈ (0, 1], ‖u‖F is the Frobenius norm of image u, median(u) represents its
median value and n(u) is the number of its pixels.

The proposed diffusivity function ψK(u) is properly chosen. In the next sec-
tion, where a mathematical investigation of the developed model is provided, we
demonstrate that ψK(u) satisfies the main conditions related to any edge-stopping
function. The problem of existence and uniqueness of the solution of our anisotropic
diffusion model is also investigated in the third section, where we prove that this
equation has a unique weak solution in some certain cases.

A robust numerical approximation scheme is then computed for this continuous
mathematical model. Thus, the equation (2.1) is discretized by using a 4-nearest-
neighbours discretization of the Laplacian operator, ∆u. From (2.1), we obtain
∂u
∂t = div(ψK(u)(|∇u|2)∇u) ⇒ u(x, y, t + 1) − u(x, y, t) ∼= div(ψK(u)(|∇u|2)∆u),
which leads to the approximating scheme

ut+1 = ut + λ
∑

q∈N(p)

ψK(u)(|∇up,q(t)|)2|∇up,q(t)|, (2.4)

where λ ∈ (0, 1), N(p) is the set of pixels representing the 4-neighborhood of
the pixel p = (x, y) (x and y representing coordinates) and the image gradient
magnitude in a particular direction at iteration t is computed as follows:

∇up,q(t) = u(q, t)− u(p, t). (2.5)

The restoration algorithm given by (2.4) is applied on the current image for
t = 0, 1, . . . , N , where N is the maximum number of iterations. Our noise removal
iterative approach converges quite fast to the desired solution. More about the
convergence of this finite difference scheme is discussed in the next section. It
produces the smoothed image uN from the degraded image u0 = u0 in a relatively
low number of steps, therefore the N value has to be quite low. The experiments
performed by using this iterative scheme are described in the fourth section.
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3. Mathematical treatment of the anisotropic diffusion model

In this section we provide a mathematical treatment of the proposed nonlinear
anisotropic diffusion model. First, we have to demonstrate that ψK(u) is properly
modeled, satisfying the main properties of an efficient edge-stopping function [6,
13, 17].

Obviously, we have ψK(u)(0) = 1. Also, the function is always positive, because

α ·
√

K(u)
β·s2+η > 0, ∀s ∈ R. The function ψK(u)(s2) is monotonically decreasing,

because

ψK(u)(s2
1) = α

√
K(u)

β · s2
1 + η

≤ α
√
K(u)β · s2

2 + η = ψK(u)(s2
2)

for all s1 ≥ s2. We also have lims→∞ ψK(u)(s2) = 0.
Besides these conditions, our diffusivity function satisfies another important one.

If one considers the flux function, defined as φ(s) = s · ψK(u)(s2), the process of
enhancing the image and sharpening its edges depends on the sign of its derivative,
[8, 18]. So, if the derivative of a flux function of a diffusion model is positive
(φ′(s) > 0), then the respective model represents a forward parabolic equation.
Otherwise, for φ′(s) < 0, that nonlinear diffusion model is a backward parabolic
equation [8]. In our case, the derivative of the flux function is computed as:

φ′(s) = ψK(u)(s2) + 2s2ψ′K(u)(s
2) (3.1)

which leads to

φ′(s) =
α
√
K(u)

βs2 + η
−
α
√
K(u)s2

βs2 + η
· β√

βs2 + η
. (3.2)

Therefore,

φ′(s) =
α
√
K(u)

(βs2 + η)3/2
[βs2 + η − βs2] =

αγ
√
K(u)

(βs2 + η)3/2
. (3.3)

Since αη
√
K(u)

(βs2+η)3/2 > 0, we obtain φ′(s) > 0 for any s, which means our PDE
denoising model is a forward parabolic equation that is stabile and it is quite likely
to have a solution.

The existence and uniqueness of the solution of our proposed diffusion model
requires a robust mathematical investigation. It should be said that, in general,
the problem (2.1) is ill-posed. It does not have a classical solution but has a
solution in weak sense that is in sense of distributions. One can prove the existence
and uniqueness of a weak solution in a certain case, related to some values of the
parameters of this model. Thus, we demonstrate that our anisotropic diffusion
model converges if γ = α2. Let us consider the following modification of the
function ψK(u):

ψK(u)(s2) =

α
√

K(u)
β·s2+η , s ∈ (0,M ],

α√
γ , if s = 0,

(3.4)

where M > 0 is arbitrarily large but fixed. The function K given by (2.3) is
Lipschitz and positive, that is, |K(u) −K(v)| ≤ ` · |u − v| and K(u) ≥ ρ, ∀u. By
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weak solution to equation (2.1) we mean a function u(0, T ) × Ω → R such that
u ∈ L2(0, T ;H1(Ω)) ∩ L2(0, T ; (H1(Ω))′) and for ∀ϕ ∈ H1(Ω), t ∈ [0, T ],∫

Ω

∂

∂t
u(t, x, y)ϕ(x, y) dx dy = −

∫
Ω

ψK(u)(|∇u(t, x, y)|2)∇u(t, x, y) · ∇ϕ(x, y) dx dy

u(0, x, y) = u0(x, y), ∀(x, y) ∈ Ω.
(3.5)

Here L2(Ω) is the space of all Lebesgue square integrable functions on Ω and the
Sobolev space H1(Ω) = {u ∈ L2(Ω), ∂u

∂xi
∈ L2(Ω), i = 1, 2}, where ∂u

∂xi
is taken in

the sense of distributions.
We have denoted by (H1(Ω))′ the dual of H1(Ω) and by C([0, ];L2(Ω)) the

space of continuous functions u : [0, T ]→ L2(Ω). By L2(0, T ;H1(Ω)), respectively
L2(0, T ; (H1(Ω))′), we denote the space of measurable functions u : (0, T )→ H1(Ω)
(respectively, u : (0, T )→ (H1(Ω))′) such that∫ T

0

‖u(t)‖H1(Ω)dt <∞, respectively
∫ T

0

‖u(t)‖2(H1(Ω))′dt <∞. (3.6)

Proposition 3.1. Assume that (2.2) holds. Then, for each u0 ∈ L2(Ω) there is a
unique weak solution u to problem (2.1). Moreover, if u0 ≥ 0, then u ≥ 0.

Proof. We consider the set

χ = {u ∈ C([0, T ];L2(Ω)) ∩ L2(0, T ;H1(Ω)); ‖u‖L2(0,T ;H1(Ω)) ≤ R}

and fix v ∈ χ. Consider the Cauchy problem

∂u

∂t
= div(ψK(v)(|∇u|2)∇u), t ∈ (0, T ), (x, y) ∈ Ω, (3.7)

with ∇u ·ν = 0 on (0, T )×∂Ω, u(0) = u0 in Ω. Equivalently, we have ∂u
∂t = Av(t)u,

u(0) = u0, with Av(t) : H1(Ω)→ (H1(Ω))′:

〈Av(t)u, ϕ〉H1(Ω) =
∫

Ω

ψK(v)(|∇u|2)∇u·∇ϕdx dy, ∀ϕ ∈ H1(Ω), t ∈ (0, T ). (3.8)

By a little computation involving (3.4), it follows that the operator Av(t) is, for
each t, monotone and demicontinuous from H1(Ω) to (H1(Ω))′. In other words,
〈Av(u) − Av(ū), u − ū〉 ≥ 0, ∀u, ū ∈ H1(Ω) and u → Av(u) is strongly-weakly
continuous from H1(Ω) to (H1(Ω))′. Moreover, for some C, α > 0, we have

‖Av(t)u‖(H1(Ω))′ ≤ C‖u‖H1(Ω), ∀u ∈ H1(Ω),

(H1(Ω))′〈Av(t)u, u〉H1(Ω) ≥ α‖u‖2H1(Ω), ∀u ∈ H1(Ω).

Then, according to a well-known result due to Lions [9], for each v ∈ χ, problem
(3.7) has a unique weak solution u = Φ(v). Now, it suffices to show that Φ is a
contraction on χ and leaves invariant this set. A little calculation involving (3.5)
and the monotonicity of the mapping r → ψK(u)(|r|2)r shows that, for some α0 > 0,

1
2
∂

∂t
‖u(t)− ū(t)‖2L2(Ω) + α0

∫
Ω

|∇
(
u(t, x, y)− ū(t, x, y)

)
|2 dx dy

≤
∫

Ω

|∇(u(t, x, y)− u(t, x, y))| |K(v(t, x, y))−K(v̄(t, x, y))| dx dy,
(3.9)
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for t ∈ (0, T ). This yields

‖u(t)− ū(t)‖2L2(Ω) +
α0

2

∫ t

0

∫
Ω

|∇
(
u(t, x, y)− ū(t, x, y)

)
|2 dx dy dt

≤ C
∫ t

0

∫
Ω

|v(t, x, y)− v̄(t, x, y))|2 dx dy dt,
(3.10)

where u = Φ(v), ū = Φ(v̄). If in χ we will consider the metric defined by the
distance d(u, ū) = sup0≤t≤T {‖u(t) − ū(t)‖L2(Ω)e

r0t} with γ0 suitably chosen, it
follows that d(Φ(v),Φ(v̄)) ≤ ρd(v, v̄), ∀v, v̄ ∈ X, for some 0 < ρ < 1. Moreover,
it follows by a similar calculation that, for a suitably chosen R, Φ leaves invariant
the set χ. Then, by Banach’s fixed point theorem, it follows the existence and
uniqueness in (2.1). Moreover, if u0 ≥ 0, then, taking ϕ = u− in (3.5), we see after
some calculation that u− = 0 and so u ≥ 0. This completes the proof of Proposition
3.1. We also have several remarks.

1. By replacing function (2.1) by (3.4), we have apparently modified the original
model. However, since in specific denoising or restoring applications the magnitude
of the gradient does not exceed a certain value (even for sharp edges), this choice
of ψK(u) is reasonable for M sufficiently large.

2. By Proposition 3.1 and its proof, it follows that the solution u to (2.1) can
be obtained iteratively as u = limn→∞ un, where un represents the weak solution
to the problem (2.1). Moreover, this implies that the solution u to (2.1) can be
obtained as limit of the finite difference scheme mentioned in the previous section:

u(t+ 1) = u(t) + div(ψK(u)(|∇u|2)∇u) in Ω, u(t) · ν = 0 on ∂Ω. (3.11)

3. We may rewrite equation (2.1) as

∂

∂t

√
K(u) =

1
2

div(g0(|∇u|2)∇u) +
1
4
K ′(u)√
K(u)

g0(|∇u|2)(|∇u|2 in (0, T )× Ω,

(3.12)
with u(0) = u0 in Ω, ∇u · ν = 0 on (0, T )× ∂Ω, where g0(s) = α√

βs+η
for s > 0. If

we neglect the low order term, then we get the equation

∂

∂t

√
K(u) =

1
2

div(g0(|∇u|2)∇u) in (0, T )× Ω (3.13)

with the Neumann boundary condition. This is a nonlinear parabolic equation of
the form studied in [4] and the methods developed there can be used to obtain
existence in (2.1) under more general conditions on K(u) (for instance, for K(u) >
0). It should be said that, for K(u) = constant, problem (2.1) reduces to the
bounded variation flow model and it is well posed in the space of functions with
bounded variation. �

4. Experiments

The described anisotropic diffusion-based denoising technique has been tested
on hundreds images affected by various levels of Gaussian noise, satisfactory results
being achieved. The following parameters of our PDE model have provided the
optimal smoothing results: α = 0.7, β = 0.65, η = 0.5, ε = 0.3, λ = 0.33 and
N = 15. One can see that η ∼= α2, therefore the nonlinear diffusion scheme has a
unique solution and it converges fast to it, the N value being quite low.
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A method comparison has also been performed. The proposed anisotropic diffu-
sion approach outperforms many other denoising methods, obtaining better noise
reduction results and converging considerably faster than some PDE-based algo-
rithms, including the Perona-Malik scheme [13] and the Total Variation (TV) tech-
niques [10, 11, 15]. It also provides a much better smoothing than the non-PDE
based filtering methods [5].

In Figure 1, there are displayed: (a) the original [512× 512] Peppers image; (b)
the image corrupted with Gaussian noise characterized by parameters µ = 0.21 and
var = 0.02; (c) the image processed by our AD (anisotropic diffusion) technique;
(d) the image filtered by the Perona-Malik algorithm; e) the image denoised by a
TV regularization scheme; (f)–(i) denoising results of [3× 3] 2D Gaussian, average,
median and Wiener kernels [5]. It is obvious from these displays that our approach
produces the best edge-preserving restoration results.

Figure 1. Method comparison: image processed with several fil-
tering techniques

The performance of our denoising method has been assessed by using the norm

of the error image measure, computed as
√∑X

x=1

∑Y
y=1[uN (x, y)− u0(x, y)]2. The
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Table 1. Norm-of-the-error measure values for various denoising algorithms

Our AD P-M TV Gaussian Average Median Wiener
5.15× 103 6.1× 103 5.8× 103 7.3× 103 6.4× 103 6× 103 5.9× 103

NE image values corresponding to the experiments described in Figure 1 are regis-
tered in Table 1. As one can see in this table, our AD approach corresponds to the
lowest NE value that indicates the best denoising.

Conclusion. We have proposed a nonlinear anisotropic diffusion based model for
image noise reduction in this paper. Our robust PDE technique performs not only
an efficient image denoising, but also an enhancement of the image boundaries.

A novel edge-stopping function and a conductance parameter modeled as a func-
tion of processed image are constructed, as well as an efficient numerical approx-
imation iterative algorithm, but the major contribution of this article is the rig-
orous mathematical treatment of the developed PDE-based model. First, we have
proved that the modeled diffusivity function is properly chosen, satisfying the re-
quired properties. Then, we have performed a mathematical demonstration of the
existence and uniqueness of the solution of this forward parabolic equation. We
demonstrate that this equation has a unique weak solution in some certain cases.

The performed restoration tests and the method comparison provided satisfac-
tory results. The developed nonlinear diffusion approach outperforms both the
PDE-based algorithms, like the Perona–Malik scheme or TV model, and the con-
ventional filtering techniques. Also, given its robust edge-preserving character, our
technique described here can be successfully used for solving edge detection and
image object detection tasks.
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