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BIFURCATION FROM INFINITY AND NODAL SOLUTIONS OF
QUASILINEAR ELLIPTIC DIFFERENTIAL EQUATIONS

BIAN-XIA YANG

Abstract. In this article, we establish a unilateral global bifurcation theorem
from infinity for a class of N -dimensional p-Laplacian problems. As an appli-

cation, we study the global behavior of the components of nodal solutions of

the problem

div(ϕp(∇u)) + λa(x)f(u) = 0, x ∈ B,
u = 0, x ∈ ∂B,

where 1 < p < ∞, ϕp(s) = |s|p−2s, B = {x ∈ RN : |x| < 1}, and a ∈
C(B̄, [0,∞)) is radially symmetric with a 6≡ 0 on any subset of B̄, f ∈ C(R,R)

and there exist two constants s2 < 0 < s1, such that f(s2) = f(s1) = 0, and
f(s)s > 0 for s ∈ R \ {s2, 0, s1}. Moreover, we give intervals for the parameter

λ, where the problem has multiple nodal solutions if lims→0 f(s)/ϕp(s) =

f0 > 0 and lims→∞ f(s)/ϕp(s) = f∞ > 0. We use topological methods and
nonlinear analysis techniques to prove our main results.

1. Introduction

In natural sciences, there are various concrete problems involving bifurcation
phenomena, for example, Taylor vortices [3], catastrophic shifts in ecosystems [10]
and shimmy oscillations of an aircraft nose landing gear [11]. The existence of bifur-
cation phenomena have called the attention of several mathematicians. Dai et al [4]
established a unilateral global bifurcation theorem from infinity for one-dimensional
p-Laplacian problem, and studied the global behavior of the components of nodal
solutions of nonlinear one-dimensional p-Laplacian eigenvalue problem.

Dai and Ma [5] established a result from trivial solutions line about the continua
of radial solutions for the N -dimensional p-Laplacian problem on the unit ball of RN
with N ≥ 1 and 1 < p < ∞. Ambrosetti and Hess [1] studied the global behavior
of the components of positive solutions of quasilinear elliptic differential equation
under the asymptotically linear growth condition. Ambrosetti et al [2] studied
the existence of branches of positive solutions for quasilinear elliptic differential
equation under the equidiffusive growth condition, which extend the main result in
[1]. However, these references gave no information about the sign-changing solution.

Motivated by the above articles, it is our main purpose to use the results in [5]
and in line with the global bifurcation results from infinity by Rabinowitz [9]. We
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shall establish the unilateral global bifurcation result from infinity for the following
N -dimensional p-Laplacian problem

−div(ϕp(∇u)) = λa(x)ϕp(u) + g(x, u;λ), x ∈ B,
u = 0, x ∈ ∂B, (1.1)

where 1 < p < ∞, ϕp(s) = |s|p−2s,B is the unit ball of RN , a ∈ M(B) is a
non-negative function with

M(B) = {a ∈ C(B̄) is radially symmetric with a(·) 6≡ 0 on any subset of B̄},

the function g : B × R × R → R satisfies the Carathéodory condition in the first
two variables and is radially symmetric with respect x.

It is clear that the radial solutions of (1.1) are the solutions of

−(rN−1ϕp(u′))′ = λrN−1a(r)ϕp(u) + rN−1g(r, u;λ), a.e. r ∈ (0, 1),

u′(0) = u(1) = 0,
(1.2)

where r = |x| with x ∈ B, a ∈M(I) is a non-negative function with I = (0, 1) and

M(I) = {a ∈ C(Ī) is radially symmetric with a(·) 6≡ 0 on any subset of Ī}.

We also assume the perturbation function g satisfies the assumption

lim
|s|→∞

g(r, s;λ)
|s|p−1

= 0 (1.3)

uniformly for a.e. r ∈ I and λ on bounded sets.
Based on the unilateral global bifurcation results from zero by [5], and the global

bifurcation results from infinity, Theorem 2.2, we shall study the existence of radial
nodal solutions for the nonlinear eigenvalue problem

div(ϕp(∇u)) + λa(x)f(u) = 0, x ∈ B,
u = 0, x ∈ ∂B, (1.4)

where a and f satisfy the following assumptions:

(H1) a ∈ C(B̄, [0,∞)) with a 6≡ 0 on any subset of B̄;
(H2) there exist f0, f∞ ∈ (0,∞) such that

f0 = lim
s→0

f(s)
|s|p−2s

and f∞ = lim
s→∞

f(s)
|s|p−2s

;

(H3) f ∈ C(R,R), there exist two constants s2 < 0 < s1, such that f(s2) =
f(s1) = f(0) = 0, and f(s)s > 0 for s ∈ R \ {s2, 0, s1}.

We look for radial nodal solution of (1.4), namely for u = u(r) verifying(
rN−1ϕp(u′)

)′ + λrN−1a(r)f(u) = 0, a.e. r ∈ I,
u′(0) = u(1) = 0,

(1.5)

where r = |x| with x ∈ B.
The rest of this article is arranged as follows. In Section 2, we establish the

unilateral global bifurcation results from infinity of (1.1). In Section 3, we study
the global behavior of the components of nodal solutions of problem (1.4).
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2. Unilateral global bifurcation from infinity

Let E := {u ∈ C1(Ī)|u′(0) = u(1) = 0} with the norm ‖u‖ = maxr∈Ī |u(r)| +
maxr∈Ī |u′(r)|. Let S+

k denote the set of functions in E which have exactly k − 1
interior nodal zeros in I and are positive near r = 0, and set S−k = −S+

k and
Sk = S+

k ∪ S
−
k . It is clear that S+

k and S−k are disjoint and open in E. We also let
φνk = R× Sνk and φk = R× Sk under the product topology, where ν ∈ {+,−}. We
use S to denote the closure of the set of nontrivial solutions of (1.2) in R×E. We
add the points {(λ,∞)|λ ∈ R} to space R× E.

Lemma 2.1 ([8, Theorem 1.5.3]). Assume (H1) holds. Then the problem(
rN−1ϕp(u′)

)′ + λrN−1a(r)ϕp(u) = 0, a.e. r ∈ I,
u′(0) = u(1) = 0

(2.1)

has a sequence of simple eigenvalues λk with λk → ∞ as k → ∞, and the corre-
sponding eigenfunctions ϕk have exactly k−1 simple zeros, and each λk(p) depends
continuously on p.

Let λk denote the k-th eigenvalue of problem (2.1). The main result of this
section is the following theorem.

Theorem 2.2. Let assumption (1.3) hold. Then there exists a connected component
Dνk of S ∪ (λk × {∞}), containing λk × {∞}. Moreover if Λ ⊂ R is an interval
such that Λ∩ (∪∞k=1λk) = λk and U is a neighborhood of λk×{∞} whose projection
on R lies in Λ and whose projection on E is bounded away from 0, then either

(1) Dνk−U is bounded in R×E in which case Dνk−U meets R = {(λ, 0)|λ ∈ R},
or

(2) Dνk − U is unbounded.
If (2) occurs and Dνk−U has a bounded projection on R, then Dνk−U meets λj×{∞}
for some j 6= k.

Proof. If (λ, u) ∈ S with ‖u‖ 6= 0, dividing (1.2) by ‖u‖2 and setting w = u/‖u‖2
yield

−
(
rN−1ϕp(w′)

)′ = λ
(
rN−1a(r)ϕp(w)

)
+ rN−1 g(r, u;λ)

‖u‖2(p−1)
, a.e. r ∈ I,

w′(0) = w(1) = 0.
(2.2)

Define

f(r, w;λ) =

{
‖w‖2(p−1)rN−1g(r, w/‖w‖2;λ), if w 6= 0,
0, if w = 0,

Clearly, (2.2) is equivalent to

−
(
rN−1ϕp(w′)

)′ = λ
(
rN−1a(r)ϕp(w)

)
+ f(r, w;λ), a.e. r ∈ I,

w′(0) = w(1) = 0.
(2.3)

It is obvious that (λ, 0) is always the solution of (2.3). By simple computation, we
can show that assumption (1.3) implies

f(r, w;λ) = o(|w|p−1)

near w = 0, uniformly for all r ∈ I and on bounded λ intervals.
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Now applying [5, Theorem 3.2] to problem (2.3), we have the connected compo-
nent Cνk of S ∪(λk×{0}), containing λk×{0} is unbounded and lies in φνk∪(λk×{0}).
Under the inversion w → w/‖w‖2 = u, Cνk → Dνk satisfying problem (1.2). Clearly,
Dνk satisfies the conclusions of this theorem. �

By [6, Lemma 6.4.1] and using the similar argument, we can prove [9, Corollary
1.8] with obvious changes. Also we have the following theorem.

Theorem 2.3. There exists a neighborhood N ⊂ U of λk×{∞} such that (λ, u) ∈
(Dνk ∩ N ) \ {(λk × {∞})} implies (λ, u) = (λk + o(1), αϕk + w), where ϕk is the
eigenfunction corresponding to λk with ‖ϕk‖ = 1, α > 0(α < 0) and ‖w‖ = o(|α|)
at |α| =∞.

Remark 2.4. Note that Theorem 2.3 implies that (Dνk ∩N ) ⊂ (φνk ∪ (λk × {∞})).
However, it need not be the case that Dνk ⊂ (φνk ∪ (λk × {∞})) even in the case of
p = 2 (see the example in [9]).

3. Global behavior of the components of nodal solutions

Let ξ, η ∈ C(R,R) be such that

f(u) = f0ϕp(u) + ξ(u), f(u) = f∞ϕp(u) + η(u)

with

lim
|u|→0

ξ(u)
ϕp(u)

= 0, lim
|u|→∞

η(u)
ϕp(u)

= 0.

Let us consider

−
(
rN−1ϕp(u′)

)′ = λrN−1a(r)f0ϕp(u) + λrN−1a(r)ξ(u), a.e. r ∈ I,
u′(0) = u(1) = 0

(3.1)

as a bifurcation problem from the trivial solution u ≡ 0, and

−
(
rN−1ϕp(u′)

)′ = λrN−1a(r)f∞ϕp(u) + λrN−1a(r)η(u), a.e. r ∈ I,
u′(0) = u(1) = 0

(3.2)

as a bifurcation problem from infinity.
Applying [5, Theorem 3.2] to (3.1), we have that for each integer k ≥ 1, there

exists a continuum Cνk,0, of solutions of (1.5) joining (λk/f0, 0) to infinity, and
(Cνk,0\{(λk/f0, 0)}) ⊆ φνk. Applying Theorem 2.2 to (3.2), we can show that for
each integer k ≥ 1, there exists a continuum Dνk,∞ of solutions of (1.5) meeting
(λk/f∞,∞). Moreover, Theorem 2.3 imply that

(Dνk,∞\{(λk/f∞,∞)}) ⊆ φνk.

Next, we shall show that these two components are disjoint under the assumption
(H3). Hence the essential role is played by the fact of whether f possesses zeros in
R\{0}.

Theorem 3.1. Let (H1)-(H3) hold. Then
(i) for (λ, u) ∈ (C+

k,0 ∪ C
−
k,0), we have that s2 < u(r) < s1 for all r ∈ Ī;

(ii) for (λ, u) ∈ (D+
k,∞ ∪ D

−
k,∞), we have that either maxr∈Ī u(r) > s1 or

minr∈Ī u(r) < s2.
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Proof. Suppose on the contrary that there exists (λ, u) ∈ (C+
k,0∪C

−
k,0∪D

+
k,∞∪D

−
k,∞)

such that either max{u(r)|r ∈ Ī} = s1 or min{u(r)|r ∈ Ī} = s2. Let 0 < τ1 <
· · · < τk = 1 denote the zeros of u. We only treat the case of max{u(r)|r ∈ Ī} = s1

because the proof for the case of min{u(r)|r ∈ Ī} = s2 can be given similarly.
In this case, there exists j ∈ {1, · · · , k, } such that max{u(r)|r ∈ Ī} = s1 and
0 ≤ u(r) ≤ s1 for all r ∈ [τj , τj+1].

We claim that there exists 0 < m < ∞ such that f(s) ≤ mϕp(s1 − s) for any
s ∈ [0, s1].

Clearly, the claim is true for the case of s = 0 or s = s1 by (H3). Suppose on
the contrary that there exists s0 ∈ (0, s1) such that

f(s0) > mϕp(s1 − s0)

for any m > 0. It follows that m < f(s0)/ϕp(s1 − s0). This contradicts the
arbitrariness of m.

Now, let us consider the problem

−(rN−1ϕp((s1 − u)′))′ + λrN−1ma(r)ϕp(s1 − u)

= λrN−1ma(r)ϕp(s1 − u)− λrN−1a(r)f(u), r ∈ (τj , τj+1),

s1 − u(τj) > 0, s1 − u(τj+1) > 0.

It is obvious that f(s) ≤ mϕp(s1 − s) for any s ∈ [0, s1] implies

−(rN−1ϕp((s1 − u)′))′ + λrN−1ma(r)ϕp(s1 − u) ≥ 0, r ∈ (τj , τj+1),

s1 − u(τj) > 0, s1 − u(τj+1) > 0.

The strong maximum principle of [7] implies that s1 > u(r) in [τj , τj+1]. This is a
contradiction. �

Remark 3.2. If N = 1, then Theorems 2.2, 2.3 and 3.1 correspond to the main
results in [4].

In [2], they needed f ∈ C1(R+,R), while in this article, we need just f ∈ C(R,R).
Furthermore, they studied the existence of branches of positive solutions, while we
have the existence of branches of sign-changing solutions. So we have extended the
results in [2, 4].

References

[1] A. Ambrosetti, P. Hess; Positive solutions of asymptotically linear elliptic eigenvalue prob-
lems, J. Math. Anal. Appl. 73 (2) (1980) 411-422.

[2] A. Ambrosetti, J. G. Azorero, I. Peral; Multiplicity results for some nonlinear elliptic equa-

tions, J. Funct. Anal. 137 (1996) 219-242.
[3] M. S. Berger; Nonlinearity and Functional Analysis, Academic Press, 1977.

[4] G. W. Dai, R. Y. Ma, Y. Q. Lu; Bifurcation from infinity and nodal solutions of quasilinear

problems without the signum condition, J. Math. Anal. Appl. 397 (2013) 119-123.
[5] G. W. Dai, R. Y. Ma; Unilateral global bifurcation and nodal solutions for the p-Laplacian

with sign-changing weight, arXiv: 1203.3262vl [math. AP] 15 Mar 2012.
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