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BIFURCATION FROM INFINITY AND NODAL SOLUTIONS OF
QUASILINEAR ELLIPTIC DIFFERENTIAL EQUATIONS

BIAN-XIA YANG

ABSTRACT. In this article, we establish a unilateral global bifurcation theorem
from infinity for a class of N-dimensional p-Laplacian problems. As an appli-
cation, we study the global behavior of the components of nodal solutions of
the problem
div(pp(Vu)) + Aa(z)f(u) =0, z€ B,
u=0, z€IB,

where 1 < p < o0, pp(s) = |s|P72s, B = {z € RV : || < 1}, and a €
C(B, [0, 00)) is radially symmetric with a # 0 on any subset of B, f € C(R,R)
and there exist two constants so < 0 < s1, such that f(s2) = f(s1) =0, and
f(s)s >0 for s € R\ {s2,0,s1}. Moreover, we give intervals for the parameter
A, where the problem has multiple nodal solutions if lims_.q f(s)/¢p(s) =
fo > 0 and lims_—.oo f(8)/¥p(s) = foo > 0. We use topological methods and
nonlinear analysis techniques to prove our main results.

1. INTRODUCTION

In natural sciences, there are various concrete problems involving bifurcation
phenomena, for example, Taylor vortices [3], catastrophic shifts in ecosystems [10]
and shimmy oscillations of an aircraft nose landing gear [I1]. The existence of bifur-
cation phenomena have called the attention of several mathematicians. Dai et al [4]
established a unilateral global bifurcation theorem from infinity for one-dimensional
p-Laplacian problem, and studied the global behavior of the components of nodal
solutions of nonlinear one-dimensional p-Laplacian eigenvalue problem.

Dai and Ma [5] established a result from trivial solutions line about the continua
of radial solutions for the N-dimensional p-Laplacian problem on the unit ball of R
with N > 1 and 1 < p < co. Ambrosetti and Hess [I] studied the global behavior
of the components of positive solutions of quasilinear elliptic differential equation
under the asymptotically linear growth condition. Ambrosetti et al [2] studied
the existence of branches of positive solutions for quasilinear elliptic differential
equation under the equidiffusive growth condition, which extend the main result in
[1]. However, these references gave no information about the sign-changing solution.

Motivated by the above articles, it is our main purpose to use the results in [5]
and in line with the global bifurcation results from infinity by Rabinowitz [9]. We
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shall establish the unilateral global bifurcation result from infinity for the following
N-dimensional p-Laplacian problem

—div(p,(Vu)) = Aa(z)pp(u) + g(z,u; X)), =z € B,

u=0, x€IB, (1.1)

where 1 < p < 00, ¢,(s) = |s|P~2s, B is the unit ball of RV, a € M(B) is a
non-negative function with

M(B) = {a € C(B) is radially symmetric with a(-) # 0 on any subset of B},

the function g : B x R x R — R satisfies the Carathéodory condition in the first
two variables and is radially symmetric with respect x.
It is clear that the radial solutions of (1.1]) are the solutions of
—(rN o, (W) = MV a(r) e, (u) 4 rN g us N),  ae. € (0,1),

u'(0) = u(1) =0, (1:2)

where r = |z| with « € B, a € M (I) is a non-negative function with I = (0,1) and
M(I) = {a € C(I) is radially symmetric with a(-) # 0 on any subset of I}.
We also assume the perturbation function g satisfies the assumption

g(r, s;A)

|s|—oc0 |5|pf1

=0 (1.3)

uniformly for a.e. r € I and A on bounded sets.

Based on the unilateral global bifurcation results from zero by [5], and the global
bifurcation results from infinity, Theorem we shall study the existence of radial
nodal solutions for the nonlinear eigenvalue problem

div(,(Va)) + Aa(2)f(u) =0, @€ B,

u=0, x€dBb, (1.4)

where a and f satisfy the following assumptions:

(H1) a € C(B,[0,00)) with a # 0 on any subset of B;
(H2) there exist fo, foo € (0,00) such that

fo = lim J(s) and  foo = lim f(s) .

s—0 |5|p*25 §—00 |S|1”72S7

(H3) f € C(R,R), there exist two constants ss < 0 < s1, such that f(s2) =
f(s1) = f(0) =0, and f(s)s >0 for s € R\ {s2,0,51}.

We look for radial nodal solution of (1.4]), namely for v = u(r) verifying

(" hep() + XN la(r) f(u) = 0, ae r el

u'(0) = u(1) =0, (15)

where r = |z| with « € B.

The rest of this article is arranged as follows. In Section 2, we establish the
unilateral global bifurcation results from infinity of . In Section 3, we study
the global behavior of the components of nodal solutions of problem .
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2. UNILATERAL GLOBAL BIFURCATION FROM INFINITY

Let B := {u € CY(I)[u/(0) = u(1) = 0} with the norm |ul = max,j|u(r)| +
max, 7 |[u'(r)]. Let S denote the set of functions in £ which have exactly k — 1
interior nodal zeros in I and are positive near r = 0, and set S, = —S; and
Sk = S,j U S, . It is clear that S,j and S, are disjoint and open in E. We also let
oy =R x S} and ¢ = R x Sy, under the product topology, where v € {4, —}. We
use . to denote the closure of the set of nontrivial solutions of inRx E. We
add the points {(A, 00)|A € R} to space R x E.

Lemma 2.1 ([8, Theorem 1.5.3]). Assume (H1) holds. Then the problem

(TN_1<Pp(U/))/ + )\rN_la(r)gop(u) =0, ae rel, 2.1)
uw'(0) =u(l) =0 ’

has a sequence of simple eigenvalues A\, with Ay — oo as k — oo, and the corre-
sponding eigenfunctions i have exactly k—1 simple zeros, and each \i(p) depends
continuously on p.

Let Ar denote the k-th eigenvalue of problem (2.1). The main result of this
section is the following theorem.

Theorem 2.2. Let assumption hold. Then there exists a connected component
Dy of S U (A x {o0}), containing Ay x {oo}. Moreover if A C R is an interval
such that AN (U2, A,) = A and U is a neighborhood of Ay, x {0} whose projection
on R lies in A and whose projection on E is bounded away from 0, then either

(1) Dy —U is bounded in R x E in which case Dy, —U meets Z = {(\,0)|X € R},
or
(2) Dy —U is unbounded.

If (2) occurs and DY —U has a bounded projection on R, then D} —U meets \; x {oo}
for some j # k.

Proof. If (\,u) € .7 with ||ul| # 0, dividing (1.2)) by ||u||?> and setting w = u/ | u|?
yield

_ _ _1 9(r,u; )
—(TN 1<pp(w’))/ = )\(rN Ya(r)pp(w)) + 7N 1HU||2W’ ae rel, (2.9)

w'(0) = w(1) =0.

Define
||w||2(p71)7”Nflg(T,w/Hw||2; )\)7 if w0,

) =
f(rywa ) {0’ lfU)ZO,
Clearly, (2.2)) is equivalent to
—(erlgop(w’))/ = AN ta(r)pp(w)) + f(r,w;A), ae r e,
w'(0) =w(1) = 0.

It is obvious that (A, 0) is always the solution of (2.3)). By simple computation, we
can show that assumption (|1.3]) implies

Flrws X) = of|wl"™1)

near w = 0, uniformly for all € I and on bounded X intervals.

(2.3)
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Now applying [5, Theorem 3.2] to problem (2.3), we have the connected compo-
nent C} of #U(A\;x{0}), containing Ay x {0} is unbounded and lies in ¢ U(A, x{0}).
Under the inversion w — w/||w||*> = u,Cy — DY satisfying problem . Clearly,
Dj, satisfies the conclusions of this theorem. O

By [6, Lemma 6.4.1] and using the similar argument, we can prove [9, Corollary
1.8] with obvious changes. Also we have the following theorem.

Theorem 2.3. There exists a neighborhood N C U of A\, x {oo} such that (A, u) €
(D NN)\ {( Ak x {oo})} implies (N, u) = (Mg + o(1), apr, + w), where ¢y, is the
eigenfunction corresponding to A with ek = 1,a > 0(a < 0) and |Jw|| = o(|a])
at |a| = co.

Remark 2.4. Note that Theorem [2.3]implies that (D} NN) C (¢} U (Ar x {o0})).
However, it need not be the case that D} C (¢} U (Ax x {o0})) even in the case of
p = 2 (see the example in [9]).
3. GLOBAL BEHAVIOR OF THE COMPONENTS OF NODAL SOLUTIONS
Let &,7 € C(R,R) be such that
f(u) = fopp(u) +&(u),  fu) = foopp(u) +n(u)
with

SO NP0

= 0.
u[—0 p (1) Ju|—o0 (1)

Let us consider

_(TN_1%(U/))/ = MV La(r) fopp(u) + MV ta(r)é(u), ae. e,

(3.1)
v (0) =u(1l) =0
as a bifurcation problem from the trivial solution v = 0, and
(W) = Wl foop () + MM )y (u), ae v el

u'(0)=u(l)=0

as a bifurcation problem from infinity.
Applying [5, Theorem 3.2] to (3.1), we have that for each integer k& > 1, there
exists a continuum Cf ,, of solutions of (L.5) joining (Ax/fo,0) to infinity, and

(Cr oM (Ae/fo,0)}) C gbz Applying Theorem to (3.2]), we can show that for
each integer k > 1, there exists a continuum Dzm of solutions of (1.5)) meeting

(Ak/ foo, 00). Moreover, Theorem imply that
(Dk 00 \{( A&/ foc, 00)}) € &%

Next, we shall show that these two components are disjoint under the assumption
(H3). Hence the essential role is played by the fact of whether f possesses zeros in

R\{0}.
Theorem 3.1. Let (H1)-(H3) hold. Then
(i) for (A\u) € (C,j’(] UCpo)s we have that s < u(r) < s for allr € I;
(ii) for (\,u) € (D), UDy ), we have that either max,cru(r) > s or
min,c7u(r) < ss.
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Proof. Suppose on the contrary that there exists (A, u) € (C,:f0 UC,;OUDZ:OO UD,;OO)
such that either max{u(r)|r € I} = s; or min{u(r)|r € I} = s5. Let 0 < 71 <
.-+ < 73, = 1 denote the zeros of u. We only treat the case of max{u(r)|r € I} = s;
because the proof for the case of min{u(r)|r € I} = sy can be given similarly.
In this case, there exists j € {1,---,k,} such that max{u(r)|r € I} = s; and
0 <wu(r) < s forall r € [1;, 7j41].

We claim that there exists 0 < m < oo such that f(s) < mep,(s1 — s) for any
s €0, s1].

Clearly, the claim is true for the case of s = 0 or s = s; by (H3). Suppose on
the contrary that there exists so € (0, s1) such that

f(s0) > mepp(s1 — so)

for any m > 0. It follows that m < f(so)/@p(s1 — so). This contradicts the
arbitrariness of m.
Now, let us consider the problem

—(r" op((s1 = w)')) + XN rma(r) p (st — w)
= MV ma(r)ep(s1 —u) — MV ta(r) f(u), 1€ (15, Tj1),
s1 —u(rj) >0, s1—u(rj41) > 0.
It is obvious that f(s) < me,(s1 — s) for any s € [0, s1] implies
(N (51— w)) + A tma(r)gp(s1 —u) 2 0, € (75, 7541),
s1—u(rj) >0, s1—u(rjy1) > 0.

The strong maximum principle of [7] implies that s; > u(r) in [75,7j41]. This is a
contradiction. O

Remark 3.2. If N = 1, then Theorems and correspond to the main
results in [4].

In [2], they needed f € C*(R*,R), while in this article, we need just f € C(R,R).
Furthermore, they studied the existence of branches of positive solutions, while we
have the existence of branches of sign-changing solutions. So we have extended the
results in [2, [4].
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