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EXISTENCE AND UNIQUENESS OF POSITIVE SOLUTIONS
FOR A NONLOCAL DISPERSAL POPULATION MODEL

JIAN-WEN SUN

Abstract. In this article, we study the solutions of a nonlocal dispersal equa-
tion with a spatial weight representing competitions and aggregation. To over-

come the limitations of comparison principles, we introduce new definitions of

upper-lower solutions. The proof of existence and uniqueness of positive solu-
tions is based on the method of monotone iteration sequences.

1. Introduction

Let J : RN → R be a non-negative, continuous function such that
∫

RN J(x)dx =
1. With this function, we define the nonlocal dispersal operator

D[u] =
∫

Ω

J(x− y)u(y)dy − b(x)u,

where Ω ⊂ RN and b(x) ∈ C(Ω). This operator and variations of it have been
widely used for modeling dispersal processes in material science, phase transitions,
and genetics. In particular, the studies of the integro-differential equation

ut(x, t) =
∫

Ω

J(x− y)u(y, t)dy − b(x)u(x, t) + f(x, u) (1.1)

have attracted much attention; see, among other references, [2, 4, 5, 6, 13, 14, 20].
As stated in [12], if u(x, t) is thought as a density at position x at time t and the
probability distribution that individuals jump from y to x is given by J(x−y), then
the rate of dispersal is the difference in the rate at which individuals are arriving
to position x from all other places, or

∫
RN J(x− y)u(y, t)dy and the rate at which

they are leaving position x to all other places, or −u(x, t) =
∫

RN J(y− x)u(x, t)dy.
This also suggests that the asymptotic behavior for a linear nonlocal problem may
be fractional, see [2, 9]. The nonlocal dispersal equation (1.1) also represents a
model for solid phase transitions and peri-dynamic heat conduction [10]. However,
the dispersal kernel J might take negative values in physical situations.
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In this article, we consider the nonlocal dispersal equation

ut = d
[ ∫

RN

J(x− y)u(y, t)dy − u
]

+ u(1 + αu− βu2 − [1 + α− β]G ∗ u) (1.2)

for (x, t) ∈ RN × (0,∞), subject to the initial condition

u(x, 0) = ψ(x) in RN , (1.3)

where

G ∗ u(x, t) =
∫

RN

G(x− y)u(y, t)dy .

It is assumed that d, α, β are non-negative constants and 1 +α− β > 0. Here d
is the dispersal rate, the term αu in (1.2) represents an advantage to the population
in local aggregation or grouping, by making available different food success or pro-
tecting measure against predation [7, 8, 11]. The term −βu2 represents competition
for space. The integral term G ∗ u in (1.2) represents intraspecific competition for
food resources with non-negative weight function G.

In the limit, the most localized version (G(x) = δ(x)) and β = 0, (1.2) reduces
to the nonlocal Logistic equation

ut = d(J ∗ u− u) + u(1− u), (1.4)

which is studied in [3, 18, 19]. It is important to point out that in [7], Britton first
posed a mathematical model of aggregation and nonlocal competition effects in a
singe species. The reader is referred to [8, 15] for a detailed background to such
models.

In this article, we focus mainly on the existence and uniqueness of solutions to
problem (1.2)-(1.3). It is well-known from [1, 16, 17, 21] that the monotone iter-
ation method is effective for the study of existence and uniqueness of solutions of
the reaction-diffusion equation. Recently, Deng [11] and Tian and Zhu [21] extend
the monotone iteration method to the reaction-diffusion equations with nonlocal
effects and reaction-diffusion systems with mixed quasimonotone nonlinearities. In
this paper, we consider the nonlocal dispersal equation (1.2). Since the compari-
son principle is not valid for (1.2)-(1.3) ([13]), we cannot use the classical nonlocal
upper-lower solutions method [2]. To overcome the limitations of the comparison
principles, we introduce new definitions of upper-lower solutions. The main ap-
proach is based on the construction of a monotone approximation. First, we give
two definitions of upper-lower solutions and establish that the upper-lower solu-
tions are ordered. Then the iteration sequences are obtained by the corresponding
characterization of coupled upper-lower solutions. The use of aggregation and spa-
tial averages competition is discussed. We show that there may not exist stable
steady states or time-dependent spatial uniform solution. Under some additional
assumptions on α , J and G, we find that the dynamic behavior of (1.2) is quite
different from the one in the limit equation (1.4), that is to say the non-zero steady
state may be unstable under the spatial perturbations.

For the reaction-diffusion equation with aggregations and nonlocal competitions
as considered in [7], it could be transformed into a system by using a special form
of function G. Then the nonlocal term which contains a spatial average is trans-
formed into local term. So the linear stability of uniform state and some bifurcation
phenomena of the local problem are well studied. It is not the case for nonlocal
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problems, as the dispersal operator D is nonlocal and there is a deficiency of regu-
larization [9]. We shall investigate further the effects of aggregation and traveling
fronts of (1.2) in a forthcoming work.

In Section 2, we give the definitions of two coupled upper-lower solutions and
establish the existence and uniqueness of non-negative solutions to (1.2)-(1.3). The
main method is based on two iteration sequences. We also discuss the effects of
aggregation on the dynamic of (1.2)-(1.3).

2. Existence and Uniqueness

We first give the basic assumptions:
(A1) J ∈ C(RN ) verifies J > 0 in B1 (the unit ball), J = 0 in RN \ B1 with∫

RN J(x)dx = 1 and J(x) = J(−x).
(A2) G is continuous with G ≥ 0 and G ∗ 1 = 1.
(A3) ψ is continuous, non-negative and ψ ∈ L1(RN ) ∩ L∞(RN ).
Note that the monotone iteration sequence method is non-unique due to different

upper-lower solutions. In this section, we give two different iteration sequences to
obtain the existence of solutions of (1.2)-(1.3). Throughout the rest of paper, we
assume that (A1)–(A3) hold.

2.1. Classical iteration sequence. In this subsection, we define a pair of coupled
upper-lower solutions. Then we obtain the existence of solutions to our nonlocal
problem. To begin, let us give the basic definition.

Definition 2.1. A pair of functions ω(x, t) and v(x, t) are called an upper and a
lower solution of (1.2)-(1.3) of type I, if all of the following hold:

(i) ω, v ∈ C1([0, T );L1(RN )
⋂
L∞(RN )) and ω(·, x), v(·, x) ∈ L∞([0, T )).

(ii) ω(x, 0) ≥ ψ(x) ≥ v(x, 0) in RN .
(iii) For (x, t) ∈ RN × [0, T ),

ωt ≥ d[J ∗ ω − ω] + ω[1 + αω]− βv3 − (1 + α− β)vG ∗ v, (2.1)

vt ≤ d[J ∗ v − v] + v[1 + αv]− βω3 − (1 + α− β)ωG ∗ ω. (2.2)

We can show that all the upper-lower solutions of type I are ordered. In fact,
we have the following result, whose proof is given at the end of this subsection.

Theorem 2.2. Let ω (respectively v) be an upper solution (respectively a lower
solution) of (1.2)-(1.3) of type I. Then

v(x, t) ≤ ω(x, t) ((x, t) ∈ RN × [0, T )).

Theorem 2.3. Suppose that ω and v are a pair of non-negative upper-lower solu-
tions of type I to (1.2)-(1.3). Then (1.2)-(1.3) admit a unique solution u(x, t) in
RN × [0, T ) which satisfies the relation

v(x, t) ≤ u(x, t) ≤ ω(x, t) ((x, t) ∈ RN × [0, T )).

Proof. We give the main proof in the following steps.
Step 1. Denote v0(x, t) = v(x, t) and ω0(x, t) = ω(x, t), we construct sequences
{vk} and {ωk} from classical process in RN × (0, T )

vkt − d[J ∗ vk − vk] = vk−1[1 + αvk−1]− β[ωk−1]3 − (1 + α− β)ωk−1G ∗ ωk−1,
(2.3)
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ωkt − d[J ∗ ωk − ωk] = ωk−1[1 + αωk−1]− β[vk−1]3 − (1 + α− β)vk−1G ∗ vk−1,
(2.4)

with initial conditions

vk(x, 0) = ψ(x), ωk(x, 0) = ψ(x).

Since (2.3) and (2.4) are linear nonlocal dispersal equations, we know that for each
k ≥ 1, the sequences {vk} and {ωk} are well defined by the nonlocal semigroup
theory [2].
Step 2. We show that the sequences defined above satisfy

v(x, t) ≤ vl(x, t) ≤ vl+1(x, t) ≤ ωl(x, t) ≤ ωl+1(x, t) ≤ ω(x, t) (2.5)

for l = 1, 2, . . . and (x, t) ∈ RN × (0, T ).
Let us begin to show that (2.5) holds if l = 1. Take z(x, t) = v(x, t)− v1(x, t), it

follows from (2.2) and (2.3) that

zt − d[J ∗ z − z] ≤ 0 in RN × (0, T ),

z(x, 0) ≤ 0 in RN .

Thus we know that z(x, t) ≤ 0 in RN×(0, T ) by the comparison principle of nonlocal
equation [12]. A similar discussion gives that ω1(x, t) ≤ ω(x, t) in RN × (0, T ).

Denote z1(x, t) = v1(x, t) − ω1(x, t). Since v(x, t) ≤ ω(x, t), it follows from
(2.3)-(2.4) that

z1
t − d[J ∗ z1 − z1] ≤ 0 in RN × (0, T ),

z1(x, 0) ≤ 0 in RN .

Thus we know that v1(x, t) ≤ ω1(x, t) in RN × (0, T ).
Now we show that v1(x, t) and ω1(x, t) are a pair of lower-upper solutions of

type I. Since v(x, t) ≤ v1(x, t) and ω1(x, t) ≤ ω(x, t), we have

v1
t − d[J ∗ v1 − v1]− v1 − α[v1]2 + β[ω1]3 + (1 + α− β)ω1G ∗ ω1

= (v − v1) + α([v]2 − [v1]2) + β([ω1]3 − [ω]3) + (1 + α− β)(ω1G ∗ ω1 − ωG ∗ ω)
≤ 0

and

ω1
t − d[J ∗ ω1 − ω1]− ω1 − α[ω1]2 + β[v1]3 + (1 + α− β)v1G ∗ v1

= (ω − ω1) + α([ω]2 − [ω1]2) + β([v1]3 − [v]3) + (1 + α− β)(v1G ∗ v1 − vG ∗ v)
≥ 0.

Next, we use a simple induction method. By choosing v1 and ω1 as the ordered
upper-lower solutions, after the similar above argument, we have

v1(x, t) ≤ v2(x, t) ≤ ω2(x, t) ≤ ω1(x, t) in RN × (0, T ).

Also v2(x, t) and ω2(x, t) are ordered lower-upper solutions of (1.1) of type I. The
conclusion in (2.5) follows from the induction principle.
Step 3. We show the existence of solutions to (1.2)-(1.3). Since the sequences
{vk}∞k=1 and {ωk}∞k=1 are monotone and bounded, there exist two function v̄ and
ω̄ such that

lim
k→∞

vk(x, t) = v̄(x, t) and lim
k→∞

ωk(x, t) = ω̄(x, t)
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pointwise in RN × (0, T ). It is trivial to see that v̄ ≤ ω̄ and

v̄t − d[J ∗ v̄ − v̄] = v̄[1 + αv̄]− β[ω̄]3 − (1 + α− β)ω̄G ∗ ω̄,
ω̄t − d[J ∗ ω̄ − ω̄] = ω̄[1 + αω̄]− β[v̄]3 − (1 + α− β)v̄G ∗ v̄.

Meanwhile, we can treat v̄ and ω̄ as upper-lower solutions to (1.2)-(1.3) of type I,
respectively. Thus we have v̄ ≥ ω̄. Hence v̄ = ω̄ and v̄ is a solution to (1.2)-(1.3).
Step 4. Inspired by [11], we give the uniqueness by some nonlocal estimates and
the Gronwall’s inequality. Assume that u1(x, t) and u2(x, t) are two solutions to
(1.2)-(1.3) in RN × (0, T ). Let ω1(x, t) = u1(x, t) − u2(x, t). Our main estimates
are based on the solution to the following nonlocal Dirichlet problem

γs(x, s) = d[J ∗ γ(x, s)dy − γ(x, s)]− h(x, s)γ(x, s) in B(0, r)× (0, t),

γ(x, s) = 0 in RN \B(0, r)× [0, t),

γ(x, 0) = χ(x) in B(0, r).

(2.6)

Here h(x, t) is a bounded and continuous function, B(0, r) = {x : |x| ≤ r} for some
r > 0. The initial value function χ(x) ∈ C∞c (B(0, r)), 0 ≤ χ ≤ 1 in B(0, r). The
global existence and uniqueness of the non-negative solution γ(x, s) of (2.6) is well
studied, see [18]. Now let τ = t− s, by a simple translation, we have

γτ (x, τ) = d[γ(x, τ)− J ∗ γ(x, τ)dy]− h(x, τ)γ(x, τ) in B(0, r)× (0, t),

γ(x, τ) = 0 in RN \B(0, r)× [0, t),

γ(x, t) = χ(x) in B(0, r).

(2.7)

Since u1 and u2 are two solutions to (1.2)-(1.3), then we have∫
RN

γ(x, t)ω1(x, t)dx

=
∫ t

0

∫
RN

[γs(x, s) + d(J ∗ γ(x, s)− γ(x, s))− h1(x, s)]ω1(x, s) dx ds

+ (1 + α− β)
∫ t

0

∫
RN

G ∗ ω1(x, s)u2(x, s)γ(x, s) dx ds,

where h1(x, s) = 1 + 2αθ(x, s) − 3βθ2(x, s) + (1 + α − β)G ∗ u1(x, s) for some θ
between u1 and u2.

Now by taking h = h1 in (2.7), we know that∫
B(0,r)

χ(x)ω1(x, t)dx = (1 + α− β)
∫ t

0

∫
B(0,r)

G ∗ ω1(x, s)u2(x, s)γ(x, s) dx ds

≤ (1 + α− β)M
∫ t

0

∫
B(0,r)

|ω1(x, s)| dx ds,

here M = max[0,T ]×RN |u2γ|. By the arbitrary of χ(x), without loss of generality,
we assume that

χ(x) =


1 if ω1(x, t) ≥ 0,
0 if ω1(x, t) = 0,
−1 if ω1(x, t) ≤ 0.

So we have ∫
RN

|ω1(x, t)|dx ≤ (1 + α− β)
∫ t

0

∫
RN

|ω1(x, s)| dx ds.
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Then the Gronwall’s inequality implies |ω1(x, t)| = 0 and we complete the proof. �

Remark 2.4. The iteration sequences in (2.3) and (2.4) are classical in the sense
that the right sides are only related to the previous step. We give another define of
iteration sequences whose right sides are related to the current step in the following
subsection. From Theorem 2.3, we obtain a unique bounded solution u(x, t) to
(1.2)-(1.3).

Proof of Theorem 2.2. Let γ(x, t) be a non-negative function, since u and v satisfy
(2.1)-(2.2), an easy calculation gives∫

RN

γ(x, t)v(x, t)dx

≤
∫ t

0

∫
RN

[γs(x, s) + d(J ∗ γ(x, s)− γ(x, s))]v(x, s) dx ds

− (1 + α− β)
∫ t

0

∫
RN

G ∗ u(x, s)u(x, s)γ(x, s) dx ds

+
∫ t

0

∫
RN

[(1 + αv)v − βu3]γ(x, s) dx ds+
∫

RN

v(x, 0)v(x, 0)dx

and ∫
RN

γ(x, t)u(x, t)dx

≥
∫ t

0

∫
RN

[γs(x, s) + d(J ∗ γ(x, s)− γ(x, s))]u(x, s) dx ds

− (1 + α− β)
∫ t

0

∫
RN

G ∗ v(x, s)v(x, s)γ(x, s) dx ds

+
∫ t

0

∫
RN

[(1 + αu)u− βv3]γ(x, s) dx ds+
∫

RN

u(x, 0)v(x, 0)dx.

Let θ(x, t) = v(x, t)− u(x, t), then we have θ(x, 0) = v(x, 0)− u(x, 0) ≤ 0. Accord-
ingly, ∫

RN

γ(x, t)θ(x, t)dx

≤
∫ t

0

∫
RN

[γs(x, s) + d(J ∗ γ(x, s)− γ(x, s)) + h(x, s)] θ(x, s) dx ds

+ (1 + α− β)
∫ t

0

∫
RN

G ∗ θ(x, s)u(x, s)γ(x, s) dx ds.

Take γ(x, s) the solution of (2.7) with h(x, τ) = (1 +α− β)G ∗ v+ 1 + 2αθ′(x, s)−
3βθ′2(x, s) for some θ′ between v and u. Then we know that∫

B(0,r)

χ(x)θ(x, t)dx ≤ (1 + α− β)C
∫ t

0

∫
B(0,r)

|θ(x, s)| dx ds,

where C > 0 is a constant. Hence we complete our proof by a similar way as in the
proof of Theorem 2.3. �



EJDE-2014/143 EXISTENCE AND UNIQUENESS OF POSITIVE SOLUTIONS 7

2.2. Another iteration sequence. In this subsection, we give a new definition
of upper-lower solutions and then obtain the existence and uniqueness solution to
(1.2)-(1.3). We also show that the solution is global at the end of this subsection.

Definition 2.5. A pair of functions ω̂(x, t) and v̂(x, t) are called an upper and a
lower solution of (1.2)-(1.3) of type II, if all of the following hold:

(i) ω̂, v̂ ∈ C1([0, T );L1(RN )).
(ii) ω̂(x, 0) ≥ u0(x) ≥ v̂(x, 0) in RN .
(iii) For (x, t) ∈ RN × [0, T ),

ω̂t ≥ d[J ∗ ω̂ − ω̂] + ω̂[1 + αω̂]− βv̂3 − (1 + α− β)ω̂G ∗ v̂], (2.8)

v̂t ≤ d[J ∗ v̂ − v̂] + v̂[1 + αv̂]− βω3 − (1 + α− β)v̂G ∗ ω̂]. (2.9)

The following theorem is similar to Theorem 2.2, so we omit its proof.

Theorem 2.6. Let û ∈ C1([0, T );L1(RN )) (respectively v̂) be an upper solution
(respectively a lower solution) of (1.2)-(1.3) of type II. Then

v̂(x, t) ≤ û(x, t) ((x, t) ∈ RN × [0, T )).

Denote v̂0(x, t) = v̂(x, t) and ω̂0(x, t) = ω̂(x, t), we construct sequences {v̂k} and
{ω̂k} in RN × (0, T ) as follows:

v̂kt − d[J ∗ v̂k − v̂k] +Mv̂k

= v̂k−1[1 + αv̂k−1]− β[ω̂k−1]3 − (1 + α− β)v̂kG ∗ ω̂k−1] +Mv̂k−1,
(2.10)

ω̂kt − d[J ∗ ω̂k − ω̂k] +Mω̂k

= ω̂k−1[1 + αω̂k−1]− β[v̂k−1]3 − (1 + α− β)ω̂kG ∗ v̂k−1] +Mω̂k−1,
(2.11)

with initial conditions

v̂k(x, 0) = ψ(x), ω̂k(x, 0) = ψ(x).

Here M is a positive constant satisfying M > max{(1+α−β)G∗ω̂, (1+α−β)G∗v̂}.
We can show that ω̂k and v̂k are upper-lower solutions of type II and

v̂(x, t) ≤ v̂k(x, t) ≤ v̂k+1(x, t) ≤ ω̂k(x, t) ≤ ω̂k+1(x, t) ≤ ω̂(x, t) for k ≥ 1.

Then the existence and uniqueness are similar to the proof of Theorem 2.3. In
summary, we have the following result.

Theorem 2.7. Suppose that ω̂ and v̂ are a pair of ordered upper-lower solutions
to (1.2)-(1.3) of type II. Then (1.2) admits a unique solution u(x, t) in RN × [0, T )
with u(x, 0) = ψ(x) which satisfies the relation

v̂(x, t) ≤ u(x, t) ≤ ω̂(x, t) ((x, t) ∈ RN × [0, T )).

At the end of this section, we construct an upper solution to (1.2)-(1.3) and show
that the solution is global, that is it is defined for all t ≥ 0. To this end, let ω be
the solution of the equation

ωt = ω(1 + αω − βω2),

ω(0) = max |u0|.

Since ω is a bounded upper solution to (1.2)-(1.3), and it is trivial to see that 0 is
lower solution. From Theorems 2.3, 2.7, 2.2 and 2.6, we have proved the following
theorem.



8 J.-W. SUN EJDE-2014/143

Theorem 2.8. Assume that (A1)–(A3) hold. Then there exists a unique global
solution to (1.2)-(1.3).

Finally, we use the spatially non-uniformly perturbations to discuss the effects
of aggregation on the stability of uniformly steady solution of (1.2) when β = 0.
In order to consider stability to perturbations of wave number k, we substitute
u(x, t) = 1 + εeikxeλt into (1.2) and neglect high term of ε, then we obtain that

λ(k) = d[Ĵ(k)− 1] + α− (1 + α− β)Ĝ(k),

where Ĵ(k) denotes the Fourier transform of J ; that is,

Ĵ(k) =
∫

RN

J(x)e−ikxdx.

In view of that Ĵ(0) = Ĝ(0) = 1, we have λ(0) = −1 < 0. However, by the basic
properties of Fourier transform, we have

lim
k→∞

Ĵ(k) = lim
k→∞

Ĝ(k) = 0.

Thus, if k is large, we can take α large enough such that λ(k) > 0. In this case,
we know that the uniform steady state 1 of (1.2) may become unstable. Under the
assumption that α is large, there is a constant k1 > 0 such that if k > k1, the steady
state of (1.2) is unstable to perturbations including the wave number k, which is
quite different from (1.4), see for example [2].

References

[1] A. Ackleh, K. Deng, C. Cole, E. Cammey, H. Tran; Existence-uniqueness and monotone
approximation for an erythropoiesis age-structured model, J. Math. Anal. Appl. 289 (2004)

530–544.

[2] F. Andreu-Vaillo, J. M. Mazón, J. D. Rossi, J. Toledo-Melero; Nonlocal Diffusion Problems,
Mathematical Surveys and Monographs, AMS, Providence, Rhode Island, 2010.

[3] P. Bates, P. Fife, X. Ren, X. Wang; Travelling waves in a convolution model for phase
transitions, Arch. Ration. Mech. Anal. 138 (1997) 105–136.

[4] M. Bogoya; A nonlocal nonlinear diffusion equation in higher space dimensions, J. Math.

Anal. Appl. 344 (2008) 601–615.
[5] M. Bogoya; Blowing up boundary conditions for a nonlocal nonlinear diffusion equation in

several space dimensions, Nonlinear Anal. 72 (2010) 143–150.
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