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STURM-PICONE TYPE THEOREMS FOR SECOND-ORDER
NONLINEAR DIFFERENTIAL EQUATIONS

AYDIN TIRYAKI

Abstract. The aim of this article is to give Sturm-Picone type theorems for
the pair of second-order nonlinear differential equations

(p1(t)|x′|α−1x′)′ + q1(t)f1(x) = 0

(p2(t)|y′|α−1y′)′ + q2(t)f2(y) = 0, t1 < t < t2

in both regular and singular cases. Our results include some earlier results and

generalize the well-known comparison theorems given by Sturm [19], Picone
[18] and Leighton [15] which play a key role in the qualitative behaviour of the

solutions.

1. Introduction

In 1836 the first important comparison theorem was given by Sturm [14, 20],
which deals with a pair of linear ordinary differential equations(

p1(t)x′
)′ + q1(t)x = 0, (1.1)(

p2(t)y′
)′ + q2(t)y = 0 (1.2)

on a bounded interval (t1, t2) where p1, q1, p2, q2 are real-valued continuous func-
tions and p1(t) > 0, p2(t) > 0 on [t1, t2]. In this celebrated paper, Sturm [19] proved
the following remarkable result.

Theorem 1.1 (Sturm’s Comparison Theorem). Suppose p1(t) = p2(t) and q1(t) >
q2(t), ∀t ∈ (t1, t2). If there exists a nontrivial real solution y of (1.2) such that
y(t1) = 0 = y(t2), then every real solution of (1.1) has at least one zero in (t1, t2).

In 1909, Picone [18] modified Sturm’s theorem as follows.

Theorem 1.2 (Sturm-Picone Theorem). Suppose that p2(t) ≥ p1(t) and q1(t) ≥
q2(t), for all t ∈ (t1, t2). If there exists a nontrivial real solution y of (1.2) such
that y(t1) = 0 = y(t2), then every real solution of (1.1) unless a constant multiple
of y has at least one zero in (t1, t2)

Note that Theorem 1.2 is a special case of Leighton’s theorem [15]. For a detailed
study and earlier developments of this subject, we refer the reader to the books
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[14, 20]. Sturm-Picone theorem is extended in several directions, see [2] and [3]
for linear systems, [17] for nonselfadjoint differential equations, [22] for implicit
differential equations, [7, 11, 16] for half-linear equations, [6] for degenerate elliptic
equations, [26] for linear equations on time scales. There is also a good amount
of interest in the qualitative theory of partial differential equations to determine
whether the given equation is oscillatory or not and Sturm-Picone theorem, also
plays an important role in this direction. For earlier developments, we refer to
[18, 19, 20], and for recent developments we refer to Yoshida’s book [24]. Sturm
comparison theorem for the half-linear elliptic equation and Picone type identities
have been studied in, for example, [4, 6, 7, 9, 12, 13, 21, 25].

When some or all of p1, q1, p2, q2 are not continuous at t1 or t2 or at t1 and
t2 both, where the possibility that the interval is unbounded is not excluded, then
(1.1), (1.2) are called singular differential equations. Analog of Theorems 1.1, 1.2
and other related theorems for singular differential equations have been obtained
earlier (see [20]). Recently, in [1], Sturm’s theorem for a pair of singular linear
differential equations was proved assuming that the solution of minorant equation
is principal at both end points of the interval. Very recently, Tyagi [23] studied a
pair of second order nonlinear differential equations

(p1(t)x′)′ + q1(t)f1(x) = 0, (1.3)

(p2(t)y′)′ + q2(t)f2(y) = 0, t1 < t < t2 (1.4)

under suitable sufficient conditions. He gave the generalization of these theorems to
(1.3) and (1.4) for regular and singular cases. Tyagi’s paper [23] is the first gener-
alization of Sturm-Picone theorem by establishing a nonlinear version of Leighton’s
variational Lemma. In the linear case, Tyagi’s results reduce to the celebrated
Sturm-Picone and Leighton theorems. But it is obvious that Tyagi’s result does
not work for the half-linear case.Our aim is to give an answer for this case. As far
as our understanding goes, there is no generalization of Leighton-type theorems for
nonlinear differential equations that contain the half-linear equation.

In this paper motivated by the ideas in [23], extending Tyagi’s results, we prove
a nonlinear analogue for Leighton’s theorem and we give a generalization to Sturm-
Picone theorem by establishing a suitable nonlinear version of Leighton’s variational
lemma which contain the half-linear and also the linear equations. Our results also
include the singular case.

2. Regular Sturm-Picone theorem for nonlinear equations

Let us consider a pair of second-order nonlinear ordinary differential equations

`x :=
(
p1(t)|x′|α−1x′

)′ + q1(t)f1(x) = 0, (2.1)

Ly :=
(
p2(t)|y′|α−1y′

)′ + q2(t)f2(y) = 0, t1 < t < t2 (2.2)

where p1, p2 ∈ C1
(
[t1, t2], (0,∞)

)
, q1, q2 ∈ C

(
[t1, t2], R

)
, f1, f2 ∈ C

(
R,R

)
, α

is a real positive constant, l and L are differential operators or mappings whose
domains consist of all real-valued functions x ∈ C1[t1, t2], such that p1|x′|α−1x′

and p2|x′|α−1x′ ∈ C1[t1, t2], respectively. In what follows, we assume the following
hypotheses with respect to functions f1 and f2:

(H1) Let f1 ∈ C1(R,R) and there exist α1 > 0, α0 > 0 such that α0|x|α−1 ≤
f ′1(x) 6= 0 and α1|x|α−1x ≥ f1(x) 6= 0, for all 0 6= x ∈ R, and f1(0) = 0,
f ′1(0) ≥ 0.
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(H2) Let f2 ∈ C(R,R) and there exist α2, α3 ∈ (0,∞) such that α3|y|α+1 ≤
f2(y)y ≤ α2|y|α+1, for all 0 6= y ∈ R.

Remark 2.1. Assumption (H1) motivates us to take the nonlinearities of the form

f1(x) = |x|α−1x
(
1∓ a nonlinear part

)
where nonlinear part is decaying at ∞.

Remark 2.2. Assumption (H2) simply says that f2(y)
|y|α−1y is bounded, for all 0 6=

y ∈ R.

We begin with a lemma and the definition of some concepts, needed in this
article.

Lemma 2.3 ([10, 12]). Define ϕ(u) := |u|α−1u, α > 0. If x, y ∈ R then

xϕ(x) + αyϕ(y)− (α+ 1)xϕ(y) ≥ 0

where equality holds if and only if x = y.

Let U be the set of all real valued functions u ∈ C1[t1, t2], such that u(t1) =
u(t2) = 0, where t1 and t2 are consecutive zeros of u. Also define the functionals j
and J : U → R by

j(u) =
∫ t2

t1

{p1(t)|u′(t)|α+1 − C1q1(t)|u(t)|α+1}dt

J(u) =
∫ t2

t1

{p2(t)|u′(t)|α+1 − (α2q
+
2 (t)− α3q

−
2 (t))|u(t)|α+1}dt

(2.3)

where C1 = ( α0
α1α

)αα1, q+2 = max{q2, 0} and q−2 = max{−q2, 0}. The variation
V (u) is defined as

V (u) = J(u)− j(u). (2.4)

Theorem 2.4 (Leighton’s variational type lemma). Suppose that there exists a
function u ∈ U , not identically zero in any open subinterval of (t1, t2) such that
j(u) ≤ 0. If x is a nontrivial solution of (2.1) such that (H1) holds, then x has a
zero in (t1, t2) except possibly when |u|α = |Kf1(x)| for some nonzero constant K.

Proof. Assume on the contrary that the statement is false. Let x(t) 6= 0 for every
t ∈ (t1, t2). We observe that the following equality is valid on (t1, t2):

(
αu(t)ϕ(u(t))
f1(x(t))

p1(t)ϕ(x′(t)))′

=
αu(t)ϕ(u(t))
f1(x(t))

(−q1(t)f1(x(t))) + p1(t)ϕ(x′(t))(
αu(t)ϕ(u(t))
f1(x(t))

)′

= −αq1(t)u(t)ϕ(u(t)) + p1(t)ϕ(x′(t))
[α(α+ 1)u′(t)ϕ(u(t))

f1(x(t))

− αu(t)ϕ(u(t))x′(t)f ′1(x(t))
f2
1 (x(t))

]
= −αq1(t)u(t)ϕ(u(t))− p1(t)

|f1(x(t))|α−1

(f ′1(x(t)))α
{
αα+1u′(t)ϕ(u′(t))

− α(α+ 1)ϕ
(u(t)x′(t)f ′1(x(t))

f1(x(t))

)
u′(t)
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+ α
u(t)x′(t)f ′1(x(t))

f1(x(t))
ϕ
(u(t)x′(t)f ′1(x(t))

f1(x(t))

)
− αα+1u′(t)ϕ(u′(t))

}
.

Using Lemma 2.3 with x = αu′(t) and y = u(t)x′(t)f ′1(x(t))
f1(x(t))

and hypothesis (H1), we
obtain (αu(t)ϕ(u(t))

f1(x(t))
p1(t)ϕ(x′(t))

)′
≤ −αq1(t)|u(t)|α+1 + αα+1p1(t)

(α1)α−1

αα0
|u′(t)|α+1

− p1(t)
|f1(x(t))|α−1

(f ′1(x(t)))α
[
|αu′(t)|α+1 + α|u(t)x′(t)f ′1(x(t))

f1(x(t))
|α+1

− (α+ 1)αu′(t)ϕ(
u(t)x′(t)f ′1(x(t))

f1(x(t))
)
]
.

This implies

p1(t)|u′(t)|α+1 − C1q1(t)|u(t)|α+1

≥ C1

(u(t)ϕ(u(t))
f1(x(t))

p1(t)ϕ(x′(t))
)′

+
C1

α
p1(t)

|f1(x(t))|α−1

(f ′1(x(t)))α
{
|αu′(t)|α+1 + α|u(t)x′(t)f ′1(x(t))

f1(x(t))
|α+1

− α(α+ 1)u′(t)ϕ
(u(t)x′(t)f ′1(x(t))

f1(x(t))

)}
.

(2.5)

Integrating over (t1, t2), it follows that∫ t2

t1

(p1(t)|u′(t)|α+1 − C1q1(t)|u(t)|α+1)dt

≥ C1(
|u(t)|α+1p1(t)ϕ(x′(t))

f1(x(t))
) |t2t1 +

C1

α

∫ t2

t1

p1(t)
|f1(x(t))|α−1

(f ′1(x(t)))α
{
|αu′(t)|α+1

+ α|u(t)x′(t)f ′1(x(t))
f1(x(t))

|α+1 − α(α+ 1)u′(t)ϕ(
u(t)x′(t)f ′1(x(t))

f1(x(t))
)
}
dt.

(2.6)

Now, there are three cases for the behavior of x(t) at t1 and t2.
Case 1. If both x(t1) 6= 0 and x(t2) 6= 0, then it follows from (2.6) and u ∈ U that
j(u) ≥ 0 and from Lemma 2.3∫ t2

t1

p1(t)
|f1(x(t))|α−1

(f ′1(x(t)))α
{|αu′(t)|α+1 + α|u(t)x′(t)f ′1(x(t))

f1(x(t))
|α+1

− α(α+ 1)u′(t)ϕ
(u(t)x′(t)f ′1(x(t))

f1(x(t))

)
}dt = 0

if and only if

αu′(t)− u(t)x′(t)f ′1(x(t))
f1(x(t))

≡ 0.

This implies
|u(t)|α = |Kf1(x(t))|, ∀t ∈ (t1, t2)

and for some constant K. Since t1 and t2 are consecutive zeros of u, this implies
that u(t) 6= 0 for all t ∈ (t1, t2). So K is a non-zero constant. Using this fact,
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we obtain j(u) > 0, which leads a contradiction. This contradiction shows that x
vanishes at least once in (t1, t2).
Case 2. If both x(t1) = 0 and x(t2) = 0, then x′(t1) 6= 0 and x′(t2) 6= 0. It
follows from the fact that zeros of a nontrivial solution of (2.1) are simple, which
can be proved as follows. Indeed we prove only the case x(t1) = 0. Assume on the
contrary that x′(t1) = 0. We take x(t) > 0 on (t1, t2) in the case x(t) < 0 on (t1, t2)
is similar and hence omitted. It follows from (2.1) that

x′(t) = ϕ−1{− 1
p1(t)

∫ t

t1

q1(s)f1(x(s))ds},

where ϕ−1(s) = |s| 1α−1s is the inverse function of ϕ. Since x(t1) = 0 and p1 ∈
C1([t1, t2], (0,∞)),

x(t) =
∫ t

t1

ϕ−1
(
− 1
p1(ξ)

∫ ξ

a

q1(s)f1(x(s))ds
)
dξ

≤ (t− t1)ϕ−1
(
M

∫ t

t1

|q1(s)||f1(x(s))|ds
)

for t1 ≤ t ≤ t2, where

M = max
{ 1
p1(t)

: t1 ≤ t ≤ t2
}

Hence

ϕ(x(t)) ≤ (t− t1)αM
∫ t

t1

|q1(s)|f1(x(s))|ds for t1 ≤ t ≤ t2.

Using (H1), it follows from the Gronwall inequality that ϕ(x(t)) = 0 for each
t ∈ [t1, t2]. This implies that x(t) = 0 on (t1, t2), which contradicts the hypothesis
x(t) > 0 on (t1, t2). Then if x(t1) = 0, by L’Hospital’s Rule, considering (H1),
assuming x′(t1) > 0,

lim
t→t+1

ϕ
(u(t)
x(t)

)
= ϕ

(
lim
t→t+1

u′(t)
x′(t)

)
<∞

and

lim
t→t+1

u(t)
α1

ϕ
(u(t)
x(t)

)
p1(t)ϕ(x′(t)) ≤ lim

t→t+1

u(t)ϕ(u(t))p1(t)ϕ(x′(t))
f1(x(t))

≤ lim
t→t+1

α

α0
u(t)ϕ

(u(t)
x(t)

)
p1(t)ϕ(x′(t)),

we have

lim
t→t+1

u(t)ϕ(u(t))p1(t)ϕ(x′(t))
f1(x(t))

= 0.

Similarly,

lim
t→t−2

u(t)ϕ(u(t))p1(t)ϕ(x′(t))
f1(x(t))

= 0,

if x(t2) = 0.
Therefore, we obtain from (2.6) that j(u) ≥ 0 and hence we obtain a contradic-

tion j(u) > 0 unless |f1(x)| is a constant multiple of |u|α.
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Case 3. If x(t1) = 0 and x(t2) 6= 0 or x(t1) 6= 0, x(t2) = 0, then as in the proof of
Case 1, it is obvious that j(u) > 0 which leads a contradiction and hence x vanishes
at least once in (t1, t2). This completes the proof. �

From Theorem 2.4 we have the following result which is an extension of Leighton’s
Theorem for (2.1) and (2.2).

Theorem 2.5. Let (H1), (H2) hold. If there exists a nontrivial real solution y of
Ly = 0 in (t1, t2) such that y(t1) = y(t2) = 0 and V (y) ≥ 0, then every nontrivial
solution x of `x = 0 has one of the following properties:

(i) x has a zero in (t1, t2) or,
(ii) |f1(x)| is a nonzero constant multiple of |y|α.

Proof. Since y(t1) = 0 = y(t2) and Ly(t) = 0, by applying Green’s identity, we
have

y(t)
(
p2(t)|y′(t)|α−1y′(t)

)′
+ q2(t)f2(y(t))y(t) = 0,(

p2(t)y(t)|y′(t)|α−1y′(t)
)′

= y(t)
(
p2(t)|y′(t)|α−1y′(t)

)′
+ |y′(t)|α+1p2(t)

= −q2(t)f2(y(t))y(t) + |y′(t)|α+1p2(t).

Integrating both side from t1 and t2, we obtain∫ t2

t1

(
q2(t)f2(y(t))y(t)− p2(t)|y′(t)|α+1

)
dt = 0. (2.7)

In view of (H2), one can see that∫ t2

t1

{(q2(t)f2(y(t))y(t)−
(
α2q

+
2 (t)− α3q

−
2 (t)

)
|y(t)|α+1}dt ≤ 0 (2.8)

By (2.7) and (2.8), we have J(y) ≤ 0. Since V (y) ≥ 0 this implies that

j(y) ≤ J(y) ≤ 0

and hence by an application of Theorem 2.4 every nontrivial solution x of `x = 0
has at least one zero in (t1, t2) except possibly when |f1(x(t))| is a nonzero constant
multiple of |y(t)|α. This completes the proof. �

Remark 2.6. If the condition V (y) ≥ 0 is strengthened to V (y) > 0, conclusion
(ii) of Theorem 2.5 does not hold.

From Theorem 2.5 we immediately have the following Corollary which is an
extension of Sturm-Picone Comparison Theorem for the equations (2.1) and (2.2).

Corollary 2.7. Let (H1) and (H2) hold. Suppose there exists a nontrivial solution
y of Ly = 0 in (t1, t2) such that y(t1) = 0 = y(t2) if p2(t) ≥ p1(t) and

C1q1(t)−
(
α2q2(t)− (α3 − α2)q−2 (t)

)
≥ 0

for every t ∈ (t1, t2), then every nontrivial solution x of `x = 0 has at least one
zero in (t1, t2) unless |f1(x)| is a nonconstant multiple of |y|α.

From Theorem 2.4, Theorem 2.5 and Corollary 2.7 we easily obtain the following
results which are straight forward extensions of the variational Lemma, Leighton’s
theorem and the celebrated Sturm-Picone theorem from [14, 15, 19, 20] valid for
linear second order equations to the case of half-linear equations.
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Corollary 2.8. Let f1(x) = |x|α−1x in (2.1) if∫ t2

t1

{p1(t)|u′(t)|α+1 − q1(t)|u(t)|α+1}dt ≤ 0,

where u ∈ U , not identically zero in any open subinterval of (t1, t2), then every
nontrivial solution x of (2.1) has a zero in (t1, t2) except possibly when u = Kx for
some nonzero constant K.

Corollary 2.9. Let us consider equations (2.1) and (2.2) with f1(u) = |u|α−1u =
f2(u). Suppose there exists a nontrivial solution y of Ly = 0 in (t1, t2) such that
y(t1) = 0 = y(t2). If∫ t2

t1

{(p2(t)− p1(t))|y′(t)|α+1 + (q1(t)− q2(t))|y(t)|α+1}dt ≥ 0,

then every nontrivial solution x of `x = 0 has at least one zero in (t1, t2) except
possibly it is a constant multiple of y.

Corollary 2.10. Consider the equations (2.1) and (2.2) with f1(u) = |u|α−1u =
f2(u). Let p2(t) ≥ p1(t) and q1(t) ≥ q2(t) for every t ∈ (t1, t2). If there exists a
nontrivial solution y of Ly = 0 in (t1, t2) such that y(t1) = 0 = y(t2), then any
nontrivial solution x of `x = 0 either has a zero in (t1, t2) or it is a nonzero constant
multiple of y.

Note that the Corollaries 2.8–2.10 were also obtained by Jaros and Kusano [11].
But their proofs depend on the Picone-type and Wirtinger-type inequalities. Corol-
lary 2.9 was also obtained by Li and Yeh [16] using different way.

3. Singular Sturm-Picone theorem for nonlinear equations

In this section, we consider the second-order nonlinear singular equations

`sx :=
(
p1(t)|x′|α−1x′

)′
+ q1(t)f1(x) = 0 (3.1)

Lsy :=
(
p2(t)|y′|α−1y′

)′
+ q2(t)f2(y) = 0 t1 < t < t2, (3.2)

where p1, p2 ∈ C
(
(t1, t2), (0,∞)

)
, q1, q2 ∈ C

(
(t1, t2), R

)
, some or all of p1, p2, q1, q2

may not be continuous at t1 or t2 or at t1 and t2 both, where the possibility that
the interval is unbounded is not excluded. Let f1, f2 ∈ C(R,R), `s and Ls are dif-
ferential operators or mappings whose domains consists of all real-valued functions
x ∈ C1(t1, t2) such that p1|x′|α−1x′ and p2|x′|α−1x′ ∈ C1(t1, t2) respectively.

We begin with the following quadratic functionals corresponding to (3.1) and
(3.2) respectively. For t1 < ξ < η < t2, let

jξη(u) =
∫ η

ξ

{p1(t)|u′(t)|α+1 − C1q1(t)|u(t)|α+1}dt (3.3)

Jξη(u) =
∫ η

ξ

{p2(t)|u′(t)|α+1 − (α2q
+
2 (t)− α3q

−
2 (t))|u(t)|α+1}dt. (3.4)

Let us define js(u) = limξ→t+1 ,η→t
−
2
jξη(u) and Js(u) = limξ→t+1 ,η→t

−
2
Jξη(u) when-

ever the limit exists.
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The domains Djs of js and DJs of Js are defined to be the set of all real-valued
continuous functions u ∈ C1(t1, t2) such that js(u) and Js(u) exist. Let us define

At1t2 [u, x] = lim
t→t−2

αu(t)ϕ(u(t))p1(t)ϕ(x′(t))
f1(x(t))

− lim
t→t+1

αu(t)ϕ(u(t))p1(t)ϕ(x′(t))
f1(x(t))

(3.5)
whenever the limits on the right-hand side exist. The variation Vs(u) is defined as

Vs(u) = Js(u)− js(u); (3.6)

i.e.,

Vs(u) =
∫ t2

t1

{
(
p2(t)−p2(t)

)
|u′(t)|α+1 +(C1q1(t)−(α2q

+
2 (t)−α3q

−
2 (t)))|u(t)|α+1}dt

with domain D := Djs ∩ DJs . We begin with the singular version of Leighton’s
variational type lemma for (3.1).

Theorem 3.1. Suppose there exists a function u ∈ D, not identically zero in any
open interval subinterval of (t1, t2) such that js(u) ≤ 0. If x is a nontrivial solution
of (3.1) such that the hypotheses (H1) holds and At1t2 [u, x] ≥ 0, then x has a zero
in (t1, t2) unless |f1(x)| is a nonzero constant multiple of |u|α.

Proof. Assume for the sake of contradiction that equation (3.1) has a nonzero,
nontrivial solution on (t1, t2). Along the same lines of proof of Theorem 2.4, we see
that the inequality (2.5) holds on (t1, t2). An integration of (2.5) over (ξ, η) yields

jξη(u) ≥ C1
u(t)ϕ(u(t))p1(t)ϕ(x′(t))

f1(x(t))
|ηξ +

C1

α

∫ η

ξ

p1(t)
|f1(x(t))|α+1

(f ′1(x(t)))α
{
|αu′(t)|α+1

+ α|u(t)x′(t)f ′1(x(t))
f1(x(t))

|α+1 − α(α+ 1)u′(t)ϕ
(u(t)x′(t)f ′1(x(t))

f1(x(t))

)}
dt .

Letting ξ → t+1 , η → t−2 and using At1t2 [u, x] ≥ 0 we obtain

js(u) ≥ C1

α

∫ t2

t1

p1(t)
|f1(x(t))|α+1

(f ′1(x(t)))α
{
|αu′(t)|α+1 + α|u(t)x′(t)f ′1(x(t))

f1(x(t))
|α+1

− α(α+ 1)u′(t)ϕ
(u(t)x′(t)f ′1(x(t))

f1(x(t))

)}
dt

(3.7)

and ∫ t2

t1

p1(t)
|f1(x(t))|α+1

(f ′1(x(t)))α
{
|αu′(t)|α+1

+ α|u(t)x′(t)f ′1(x(t))
f1(x(t))

|α+1 − α(α+ 1)u′(t)ϕ
(u(t)x′(t)f ′1(x(t))

f1(x(t))

)}
dt = 0

if and only if

|αu′(t)|α+1 + α|u(t)x′(t)f ′1(x(t))
f1(x(t))

|α+1 − α(α+ 1)u′(t)ϕ
(u(t)x′(t)f ′1(x(t))

f1(x(t))

)
≡ 0

According to Lemma 2.3, this implies

|u(t)|α = |Kf1(x(t))| for every t ∈ (t1, t2)

and for some nonzero constant K. Using this fact, we have js(u) > 0 which leads to
a contradiction. This contradiction shows that x vanishes at least once in (t1, t2).
This completes the proof. �
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As in Section 2, from Theorem 3.1 plays an important role to establish the
following result which is an extension of Leighton’s theorem for equations (3.1) and
(3.2) for the singular case.

Theorem 3.2. Suppose that there exists a nontrivial real solution y ∈ D of Lsy = 0
in (t1, t2). Let x be any nontrivial solution of `sx = 0. Let also (H1) and (H2). If
At1t2 [y, x] ≥ 0,

lim
t→t+1

p2(t)y(t)|y′(t)|α−1y′(t) ≥ 0, lim
t→t−2

p2(t)y(t)|y′(t)|α−1y′(t) ≤ 0

and Vs(y) > 0, then x has at least one zero in (t1, t2). If the condition V (y) > 0
is weakened to Vs(y) ≥ 0 the same conclusion holds unless |f1(x)| is a nonzero
constant multiple of |y|α.

From Theorem 3.2, we have the following corollary which is the extension of
Sturm-Picone comparison theorem for equations (3.1) and (3.2).

Corollary 3.3. Suppose that there exists a nontrivial real solution y ∈ D of Lsy = 0
in (t1, t2). Let x be any nontrivial solution of `sx = 0. Let also (H1) and (H2). If
At1t2 [y, x] ≥ 0, p2(t) ≥ p1(t),

lim
t→t+1

p2(t)y(t)|y′(t)|α−1y′(t) ≥ 0, lim
t→t−2

p2(t)y(t)|y′(t)|α−1y′(t) ≤ 0,

C1q1(t)− (α2q2(t)− (α3 − α2)q−2 (t)) ≥ 0 ∀t ∈ (t1, t2),

then x has at least one zero in (t1, t2) unless |f1(x)| is a nonzero constant multiple
|y|α.

Finally the results in Theorems 3.1–3.2 and Corollary 3.3 which are nonlinear
extensions of the variational lemma, Leighton’s theorem and Sturm-Picone theorem
respectively, can also be given for the singular half-linear case as in the following:

Corollary 3.4. Let f1(x) = |x|α−1x in (3.1). Suppose that there exists a function
u ∈ Djs , not identically zero in any open subinterval of (t1, t2) such that js(u) ≤ 0.
If x is a nontrivial solution of (3.1) such that At1t2 [u, x] ≥ 0, then x has a zero in
(t1, t2) except possibly when u = Kx for some nonzero constant K.

Corollary 3.5. Let us consider equations (3.1) and (3.2) with f1(u) = |u|α−1u =
f2(u). Suppose that there exists a nontrivial real solution of y ∈ D of Lsy = 0. Let
x be any nontrivial solution of `sx = 0. If Vs(y) ≥ 0, At1t2 [y, x] ≥ 0 and

lim
t→t+1

p2(t)y(t)|y′(t)|α−1y′(t) ≥ 0, lim
t→t−2

p2(t)y(t)|y′(t)|α−1y′(t) ≤ 0,

then x has at least one zero in (t1, t2) unless x is a nonzero constant multiple of y.

Corollary 3.6. Consider the equations (3.1) and (3.2) with f1(u) = |u|α−1u =
f2(u). Suppose that there exists a nontrivial real solution y ∈ D of Lsy = 0.
Let x be any nontrivial solution of `s(x) = 0. If At1t2 [y, x] ≥ 0, p2(t) ≥ p1(t),
q1(t) ≥ q2(t) for all t ∈ (t1, t2), and

lim
t→t+1

p2(t)y(t)|y′(t)|α−1y′(t) ≥ 0, lim
t→t−2

p2(t)y(t)|y′(t)|α−1y′(t) ≤ 0,

then any nontrivial solution x of `sx = 0 either has a zero in (t1, t2) or it is a
nonzero constant multiple of y.
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