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EXISTENCE OF MULTIPLE SOLUTIONS FOR QUASILINEAR
ELLIPTIC EQUATIONS IN RN

HONGHUI YIN, ZUODONG YANG

Abstract. In this article, we establish the multiplicity of positive weak solu-

tion for the quasilinear elliptic equation

−∆pu+ λ|u|p−2u = f(x)|u|s−2u+ h(x)|u|r−2u x ∈ RN ,

u > 0 x ∈ RN ,

u ∈W 1,p(RN )

We show how the shape of the graph of f affects the number of positive solu-

tions. Our results extend the corresponding results in [21].

1. Introduction

In this article we consider the existence of solutions for the nonlinear quasilinear
problem

−∆pu+ λ|u|p−2u = f(x)|u|s−2u+ h(x)|u|r−2u x ∈ RN ,

u > 0 x ∈ RN

u ∈W 1,p(RN )

(1.1)

where 1 ≤ r < p < s < p∗, p < N , p∗ = pN
N−p denotes the critical Sobolev exponent,

λ > 0 is a parameter, h ∈ L
p
p−r (RN )\{0} is nonnegative. For the function f , we

assume the following conditions:
(C1) f ∈ C(RN ) and is nonnegative in RN ;
(C2) f∞ = lim|x|→∞ f(x) > 0;
(C3) There exist some points x1, x2, . . . , xk in RN such that f(xi) are some strict

maxima and satisfy

f∞ < f(xi) = fmax ≡ max{f(x)|x ∈ RN}

for i = 1, 2, . . . , k.
Associated with (1.1), we consider the energy functional

Iλ(u) =
1
p

∫
RN
|∇u|p + λ|u|pdx− 1

s

∫
RN

f(x)|u|sdx− 1
r

∫
RN

h(x)|u|rdx.
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It is well known that the functional Iλ ∈ C1(W 1,p(RN ), R), and that the solutions
of (1.1) are the critical points of the energy functional Iλ.

When p = 2 and h(x) ≡ 0, Equation (1.1) becomes

−∆u+ λu = f(x)|u|s−2u x ∈ RN ,

u > 0 x ∈ RN ,

u ∈ H1(RN ).

(1.2)

It is known that the existence of positive solutions of (1.2) is affected by the shape
of the graph of f(x). This has been the focus of a great deal of research by several
authors [3, 4, 8, 18]. Specially, if f is a positive constant, then (1.2) has a unique
positive solution [15] Adachi and Tanaka [1] showed that there exist at least four
positive solutions of the equation

−∆u+ λu = f(x)|u|s−2u+ h(x) x ∈ RN ,

u > 0 x ∈ RN ,

u ∈ H1(RN )

(1.3)

under the assumptions 0 < f(x) ≤ f∞ = lim|x|→∞ f(x), h ∈ H−1(RN )\{0} is
nonnegative and ‖h‖H−1 is sufficiently small. Several authors have studied a gen-
eralized version of (1.3),

−∆u+ λu = f(x, u) + h(x) x ∈ RN ,

u > 0 x ∈ RN ,

u ∈ H1(RN )

(1.4)

where f(x, u) and h(x) satisfy some suitable conditions. They showed the existence
of at least two positive solutions when ‖h‖H−1 is sufficiently small, see [2, 9, 14].

Wu [21] considered the problem (1.1) with p = 2, under some suitable assump-
tions on f(x), h(x). The author obtained the existence of multiple positive solution
by variational methods. Several publications [5, 6, 10, 22] show results about the
quasilinear elliptic equation

−∆pu+ λ|u|p−2u = f(x, u) x ∈ Ω,

u ∈W 1,p
0 (Ω), u 6= 0

(1.5)

where 1 < p < N , N ≥ 3, Ω is an unbounded domain in RN . Because of the
unboundedness of the domain, the Sobolev compact embedding does not hold.
There are many methods to overcome the difficulty. In [22], the authors used the
concentration-compactness principle posed by Lions and the mountain pass lemma
to solve problem (1.5). In [5, 6], the authors studied the problem in symmetric
Sobolev spaces which posses Sobolev compact embedding.

Especially, when λ = 1, f(x, u) = q(x)uα and Ω is replaced by RN , using a min-
max procedure formulated by Bahri and Li [4], Citti and Uguzzoni [10] obtained
the existence of a solution u ∈W 1,p(RN )∩C1+β

loc (RN ) of (1.5) when p ∈ (1, 2), and
β ∈ (0, 1) is constant. In [19], the authors studied the problem

−∆pu+ λa(x)up−1 = f(x)up
∗−1 + g(x)uq x ∈ RN ,

u ∈ D1,p
0 (RN ) ∩ C1+β

loc (RN ), lim
|x|→∞

u(x) = 0,
(1.6)
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which is a general case of (1.1). The authors proved that there exists a positive
solution of (1.6) for all λ in some interval [0, λ0).

In this article, we consider show the existence of multiple positive solutions of
(1.1). Our arguments are based on a combination of the concentration-compactness
principle of Lions [16], and Ekeland’s variational principle [13]. Our main result is
the following theorem.

Theorem 1.1. Assume (C1)–(C3) hold, and h ∈ L
p
p−r (RN )\{0} is nonnegative.

Then there exists λ0 > 0 such that for all λ > λ0, Equation (1.1) has at least k+ 1
positive solutions.

The rest of this article is organized as follows. In Section 2, we give some
preliminaries and some properties of Nehri manifold. In Section 3, we prove the
main result, Theorem 1.1.

2. Preliminaries

Throughout the paper, C, c will denote various positive constants, their values
may vary from place to anther. By the change of variables η = λ−1/p, v(x) =
ηp/(s−p)u(ηx), Equation (1.1) can be transformed into

−∆pv + |v|p−2v = fη|v|s−2v + η
p(s−r)
s−p hη|v|r−2v x ∈ RN ,

v > 0 x ∈ RN ,

v ∈W 1,p(RN )

(2.1)

where fη = f(ηx), hη = h(ηx).
For u ∈ W 1,p(RN ), c ∈ R, a ∈ C(RN ) nonnegative and bounded, and b ∈

L
p
p−r (RN ) non-negative, we define

Ia,b(u) =
1
p
‖u‖p − 1

s

∫
RN

a|u|sdx− η
p(s−r)
s−p

1
r

∫
RN

b|u|rdx;

Ma,b(c) = {u ∈W 1,p(RN )\{0}|〈I ′a,b(u), u〉 = c};
αa,b(c) = inf{Ia,b(u)|u ∈Ma,b(c)},

where ‖u‖ = (
∫

Ω
|∇u|p + |u|pdx)1/p is a standard norm in W 1,p(RN ) and I ′a,b

denote the Fréchet derivative of Ia,b. We shall write Ma,b(0), αa,b(0) as Ma,b, αa,b
respectively. Then, we have the following results.

Lemma 2.1. Suppose a is a continuous bounded and nonnegative function on RN ,
then αa,0(c) = c

p for c > 0 and

αa,0 ≤ αa,0(c) + αa,0(−c)− s− p
sp
|c| for all c ∈ R.

Proof. The case p = 2 was proved by Cao-Noussair [8, Lemma 2.2]. By a modifica-
tion of the method given in [8], we obtain our result. For the readers convenience,
we give a sketch here. For any c > 0, let u ∈Ma,0(c). Then

‖u‖p =
∫

RN
a|u|sdx+ c ≥ c.

Thus
Ia,0(u) =

1
p
‖u‖p − 1

s

∫
RN

a|u|sdx = (
1
p
− 1
s

)‖u‖p +
c

s
≥ c

p
.
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To show that the equality holds, choose v ∈ W 1,p(RN ) with
∫

RN |∇v|
pdx = c, for

any σ > 0, define

uσ(x) = σ
N−p
p v(σx), wσ(x) = (1 + θ)uσ

where θ > 0 being selected so that wσ ∈Ma,0(c). It is easy to see that∫
RN
|∇uσ|pdx = c,∫

RN
|uσ|qdx = σ

(N−p)q
p −N

∫
RN
|v|qdx→ 0 as σ →∞

for q < p∗. Obviously, such a θ = θ(σ) exists when σ large enough and θ → 0 as
σ → +∞. Therefore,

Ia,0(wσ) =
1
p
‖wσ‖p −

1
s

∫
RN

a|wσ|sdx→
c

p
as σ → +∞.

Hence
αa,0(c) =

c

p
.

To complete the proof of Lemma 2.1, let c > 0 and u ∈Ma,0(−c). Then

‖u‖p =
∫

RN
a|u|sdx− c <

∫
RN

a|u|sdx.

It is easy to see that there exist unique t ∈ (0, 1) such that v = tu ∈ Ma,0. Then
we have

Ia,0(v) = (
1
p
− 1
s

)‖v‖p

= (
1
p
− 1
s

)tp‖u‖p

< (
1
p
− 1
s

)‖u‖p +
c

s
− c

s

= Ia,0(u) +
c

p
+ (

1
s
− 1
p

)c

≤ Ia,0(u) + αa,0(c)− s− p
sp

c.

The required inequality then follows by taking the infimum over Ma,0(−c). �

Define

ψ(u) = 〈I ′fη,hη (u), u〉 = ‖u‖p −
∫

RN
fη|u|sdx− η

p(s−r)
s−p

∫
RN

hη|u|rdx.

Then for u ∈Mfη,hη , we have

〈ψ′(u), u〉 = p‖u‖p − s
∫

RN
fη|u|sdx− rη

p(s−r)
s−p

∫
RN

hη|u|rdx

= (p− r)‖u‖p − (s− r)
∫

RN
fη|u|sdx.

Using the same methods as [20], we split Mfη,hη into three parts:

M+
fη,hη

= {u ∈Mfη,hη |(p− r)‖u‖p − (s− r)
∫

RN
fη|u|sdx > 0};
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M0
fη,hη = {u ∈Mfη,hη |(p− r)‖u‖p − (s− r)

∫
RN

fη|u|sdx = 0};

M−fη,hη = {u ∈Mfη,hη |(p− r)‖u‖p − (s− r)
∫

RN
fη|u|sdx < 0}.

Then we have the following result.

Lemma 2.2. There exists η1 > 0 such that for all η ∈ (0, η1), we have M0
fη,hη

= ∅.

Proof. Assume the contrary, that is M0
fη,hη

6= ∅ for all η > 0. Then for u ∈M0
fη,hη

,
we have

‖u‖p =
s− r
p− r

∫
RN

fη|u|sdx (2.2)

η
p(s−r)
s−p

∫
RN

hη|u|rdx = ‖u‖p −
∫

RN
fη|u|sdx =

s− p
p− r

∫
RN

fη|u|sdx. (2.3)

Moreover,

s− p
s− r

‖u‖p = ‖u‖p −
∫

RN
fη|u|sdx ≤ η

p(s−r)
s−p ‖hη‖

L
p
p−r
‖u‖r

= ηβ‖h‖
L

p
p−r
‖u‖r,

where β = p(s−r)
s−p −

p−r
p N . Also we have

‖u‖ ≤ [
s− r
s− p

ηβ‖h‖
L

p
p−r

]
1
p−r . (2.4)

Let K : Mfη,hη → R be given by

K(u) = c(s, r)(
‖u‖p

s−1
p−1∫

RN fη|u|sdx
)
p−1
s−p − η

p(s−r)
s−p

∫
RN

hη|u|rdx,

where c(s, r) = ( s−rp−r )
1−s
s−p s−p

p−r . Then K(u) = 0 for all η > 0 and u ∈ M0
fη,hη

. From
(2.2) and (2.3), it follows that for u ∈M0

fη,hη
, and

K(u) = c(s, r)[
( s−rp−r

∫
RN fη|u|

sdx)
s−1
p−1∫

RN fη|u|sdx
]
p−1
s−p − s− p

p− r

∫
RN

fη|u|sdx = 0. (2.5)

However, by (2.4), the Hölder and Sobolev inequalities and

(
‖u‖s∫

RN fmax|u|sdx
)
p−1
s−p > (

Ss

fmax
)
p−1
s−p for all u ∈Mfη,hη ,

where S = infu∈W 1,p(RN )\{0}
‖u‖
‖u‖Ls is the best Sobolev constant. Also we have

K(u) ≥ c(s, r)( ‖u‖p
s−1
p−1∫

RN fη|u|sdx
)
p−1
s−p − ηβ‖h‖

L
p
p−r
‖u‖r

≥ ‖u‖r[c(s, r)( Ss

fmax
)
p−1
s−p ‖u‖1−r − ηβ‖h‖

L
p
p−r

]

≥ ‖u‖r[c(s, r)( Ss

fmax
)
p−1
s−p (ηβ

s− r
s− p

‖h‖
L

p
p−r

)
1−r
p−r − ηβ‖h‖

L
p
p−r

]
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for all u ∈M0
fη,hη

, where β = p(s−r)
s−p −

p−r
p N > 0 (see Lemma 3.11). Since 1−r

p−r ≤ 0,
there exists η1 > 0 such that for each η ∈ (0, η1) and u ∈M0

fη,hη
, we have K(u) > 0,

this contradicts to (2.5). We can conclude that M0
fη,hη

= ∅ for all η ∈ (0, η1). �

By Lemma 2.2 for η ∈ (0, η1) we write Mfη,hη = M+
fη,hη

∪M−fη,hη and define

α+
fη,hη

= inf
u∈M+

fη,hη

Ifη,hη , α−fη,hη = inf
u∈M−fη,hη

Ifη,hη .

The following Lemma shows that the minimizers on Mfη,hη are “usually” critical
points for Ifη,hη .

Lemma 2.3. For η ∈ (0, η1), if u0 is a local minimizer for Ifη,hη on Mfη,hη , then
I ′fη,hη (u0) = 0 in W−1(RN ), where W−1(RN ) is the dual space of W 1,p(RN ).

Proof. If u0 is a local minimizer for Ifη,hη on Mfη,hη , then u0 is a solution of the
optimization problem

minimize Ifη,hη (u) subject to ψ(u) = 0.

Hence, by the theory of Lagrange multipliers, there exists θ ∈ R such that

I ′fη,hη (u0) = θψ′(u0) in W−1(RN ).

This implies
〈I ′fη,hη (u0), u0〉 = θ〈ψ′(u0), u0〉.

Since u0 ∈Mfη,hη and by Lemma 2.2, M0
fη,hη

= ∅ when η ∈ (0, η1), we have

〈I ′fη,hη (u0), u0〉 = 0 and 〈ψ′(u0), u0〉 6= 0.

So we obtain θ = 0. This completes the proof. �

For each u ∈W 1,p(RN )\{0}, we define

tmax = (
p− r
s− r

‖u‖p∫
RN fη|u|sdx

)
1
s−p > 0.

Then we have the following Lemma.

Lemma 2.4. There exists η2 > 0 such that for each u ∈ W 1,p(RN )\{0} and
η ∈ (0, η2), we have

(i) there is a unique t− = t−(u) > tmax > 0 such that t−u ∈ M−fη,hη and
Ifη,hη (t−u) = maxt≥tmax Ifη,hη (tu);

(ii) if
∫

RN hη|u|
rdx > 0, then there is a unique 0 < t+ = t+(u) < tmax < t− =

t−(u) such that t+u ∈M+
fη,hη

, t−u ∈M−fη,hη and

Ifη,hη (t+u) = min
t−≥t≥0

Ifη,hη (tu), Ifη,hη (t−u) = max
t≥tmax

Ifη,hη (tu).

Proof. (i) Since h(x) is nonnegative, then
∫

RN hη|u|
rdx ≥ 0. Let

m(t) = tp−r‖u‖p − ts−r
∫

RN
fη|u|sdx,

clearly, m(t) is increasing in (0, tmax) and is decreasing in (tmax,+∞), also, we have

m(0) = 0, lim
t→+∞

m(t) = −∞,
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i.e. m(t) is concave and achieve its maximum at tmax. Moreover,

m(tmax) = (
p− r
s− r

‖u‖p∫
RN fη|u|sdx

)
p−r
s−p ‖u‖p − (

p− r
s− r

‖u‖p∫
RN fη|u|sdx

)
s−r
s−p

∫
RN

fη|u|sdx

=
‖u‖p

s−r
s−p

(
∫

RN fη|u|sdx)
p−r
s−p

[(
p− r
s− r

)
p−r
s−p − (

p− r
s− r

)
s−r
s−p ]

=
s− p
s− r

(
p− r
s− r

)
p−r
s−p (

‖u‖s∫
RN fη|u|sdx

)
p−r
s−p ‖u‖r

≥ s− p
s− r

(
p− r
s− r

)
p−r
s−p (

Ss

fmax
)
p−r
s−p ‖u‖r = C‖u‖r.

Since C > 0,

0 ≤ η
p(s−r)
s−p

∫
RN

hη|u|rdx ≤ ηβ‖h‖
L

p
p−r
‖u‖r

and β > 0, there exists η2 > 0, such that for any η ∈ (0, η2), we have

m(tmax) > η
p(s−r)
s−p

∫
RN

hη|u|rdx.

Case (a):
∫
RN

hη|u|rdx = 0. Then there is unique t− > tmax such that m(t−) = 0
and m′(t−) < 0. Now

〈ψ′(t−u), t−u〉 = (p− r)‖t−u‖p − (s− r)
∫

RN
fη|t−u|sdx = (t−)r+1m′(t−) < 0

and

〈I ′fη,hη (t−u), t−u〉 = ‖t−u‖p −
∫

RN
fη|t−u|sdx− η

p(s−r)
s−p

∫
RN

hη|t−u|rdx

= (t−)r[(t−)p−r‖u‖p − (t−)s−r
∫

RN
fη|u|sdx]

= (t−)rm(t−) = 0.

Thus, t−u ∈M−fη,hη . Moreover, we have

d

dt
Ifη,hη (tu) = 0,

d2

dt2
Ifη,hη (tu) < 0, for t = t−.

Then we have Ifη,hη (t−u) = maxt≥tmax Ifη,hη (tu).
Case (b):

∫
RN hη|u|

rdx > 0. There are unique t+ and t− such that 0 < t+ <

tmax < t− such that

m(t+) = η
p(s−r)
s−p

∫
RN

hη|u|rdx = m(t−)

and m′(t+) > 0 > m′(t−). Similar to the argument in Case a, we have t±u ∈
M±fη,hη , and Ifη,hη (t−u) ≥ Ifη,hη (tu) ≥ Ifη,hη (t+u) for each t ∈ [t+, t−], and
Ifη,hη (tu) ≥ Ifη,hη (t+u) for each t ∈ [0, t+].

(ii) By case (b) it follows part (i) �

To establish the existence of a local minimum for Ifη,hη on Mfη,hη , we need the
following results.
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Lemma 2.5. (i) For each u ∈M+
fη,hη

, we have
∫

RN hη|u|
rdx > 0 and Ifη,hη (u) < 0.

In particular αfη,hη ≤ α+
fη,hη

< 0.

(ii) Ifη,hη is coercive and bounded below on Mfη,hη for all η ∈ (0, ( s−ps−r )
1
β ).

Moreover, αfη,hη → 0 as η → 0.

Proof. (i) For each u ∈M+
fη,hη

, we have

(p− r)‖u‖p − (s− r)
∫

RN
fη|u|sdx > 0,

‖u‖p =
∫

RN
fη|u|sdx+ η

p(s−r)
s−p

∫
RN

hη|u|rdx.

By (C1), we have

η
p(s−r)
s−p

∫
RN

hη|u|rdx = ‖u‖p −
∫

RN
fη|u|sdx >

s− p
p− r

∫
RN

fη|u|sdx ≥ 0

and

Ifη,hη (u) = (
1
p
− 1
s

)
∫

RN
fη|u|sdx+ (

1
p
− 1
r

)η
p(s−r)
s−p

∫
RN

hη|u|rdx

< (
1
p
− 1
s

)
∫

RN
fη|u|sdx+ (

1
p
− 1
r

)
s− p
p− r

∫
RN

fη|u|sdx

= (s− p)( 1
ps
− 1
pr

)
∫

RN
fη|u|sdx ≤ 0

(ii) For each u ∈ Mfη,hη , we have ‖u‖p =
∫

RN fη|u|
sdx + η

p(s−r)
s−p

∫
RN hη|u|

rdx.
Then by the Hölder and Young inequalities,

Ifη,hη (u) ≥ s− p
ps
‖u‖p − s− r

rs
ηβ‖h‖

L
p
p−r
‖u‖r

≥ (
s− p
ps
− s− r

ps
ηβ)‖u‖p − ηβ (p− r)(s− r)

prs
‖h‖

p
p−r

L
p
p−r

.

Thus, Ifη,hη is coercive and bounded below on Mfη,hη for all η ∈ (0, ( s−ps−r )
1
β ) and

αfη,hη → 0 as η → 0, where β = p(s−r)
s−p −

p−r
p N > 0 as above. �

3. Proofs of main results

Now, we use the graph of the coefficient f to find some Palais-Smale sequences
which are used to prove Theorem 1.1. For a > 0, let Ca(xi) denote the hypercube
ΠN
j=1(xij−a, xij +a) centered at xi = (xi1, x

i
2, . . . , x

i
N ) for i = 1, 2, . . . , k. Let Ca(xi)

and ∂Ca(xi) denote the closure and the boundary of Ca(xi) respectively. By the
conditions (C1) and (C3), we can choose numbers K, l > 0 such that Cl(xi) are
disjoint, f(x) < f(xi) for x ∈ ∂Cl(xi) for all i = 1, 2, . . . , k and ∪ki=1Cl(x

i) ⊂
ΠN
i=1(−K,K).
Define φη ∈ C(R,R), gη ∈ (W 1,p(RN ),RN ) by

φη(t) =


2K
η t > 2K

η ,

t − 2K
η ≤ t ≤

2K
η ,

− 2K
η t < − 2K

η .
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gjη(u) =

∫
RN φη(xj)|u|sdx∫

RN |u|sdx
for j = 1, 2, . . . , N

gη(u) = (g1
η(u), g2

η(u), . . . , gNη (u)) ∈ RN .

Let Cil/η ≡ Cl/η(xi/η),

N i
η = {u ∈M−fη,hη”u ≥ 0 and gη(u) ∈ Cil/η},

∂N i
η = {u ∈M−fη,hη : u ≥ 0 and gη(u) ∈ ∂Cil/η}

for i = 1, 2, . . . , k. It is easy to verify that N i
η and ∂N i

η are nonempty sets for all
i = 1, 2, . . . , k. Consider the minimization problems in N i

η and ∂N i
η for Ifη,hη ,

γiη = inf
u∈Niη

Ifη,hη (u), γiη = inf
u∈∂Niη

Ifη,hη (u).

Using the results in [19], we can assume w be a unique positive radial solution of

−∆pu+ |u|p−2u = fmax|u|s−2u x ∈ RN ,

u > 0 x ∈ RN ,

u ∈W 1,p(RN )

and that Ifmax,0(w) = αfmax,0. By (C3) and the routine computations, we have

αfmax,0 < αf∞,0.

For small η > 0 satisfying 2
√
η < 1, we define a function ψη ∈ C1(RN , [0, 1]) such

that

ψη(x) =

{
1 |x| < 1

2
√
η − 1,

0 |x| > 1
2
√
η ,

and |∇ψη| ≤ 2 in RN . Let xη = 1
2
√
η (1, 1, . . . , 1) ∈ RN and

wη(x) = t−η w(x− xi

η
+ xη)ψη(x− xi

η
+ xη),

where t−η > 0 are selected such that wη ∈ M−fη,hη . Then we have the following
results.

Lemma 3.1. As η → 0, we have

(i) η
p(s−r)
s−p

∫
RN hηw

r(x− xi

η + xη)ψrη(x− xi

η + xη)dx→ 0;
(ii) t−η → 1.

Proof. (i) Since β = p(s−r)
s−p −

p−r
p N > 0 and hη(x) ≥ 0, we have

0 ≤ eta
p(s−r)
s−p

∫
RN

hηw
r(x− xi

η
+ xη)ψrη(x− xi

η
+ xη)dx

≤ ηβ‖h‖
L

p
p−r
‖w(x− xi

η
+ xη)ψη(x− xi

η
+ xη)‖r

and

‖w(x− xi

η
+ xη)ψη(x− xi

η
+ xη)‖p → sp

s− p
αfmax,0.

Thus (i) holds.
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(ii) Since wη ∈M−fη,hη , we have

(t−η )p[
∫

RN
|∇(w(x− xi

η
+ xη)ψη(x− xi

η
+ xη))|p

+ (w(x− xi

η
+ xη)ψη(x− xi

η
+ xη))p]

= (t−η )s
∫

RN
fηw

s(x− xi

η
+ xη)ψsη(x− xi

η
+ xη)dx

+ η
p(s−r)
s−p (t−η )r

∫
RN

hηw
r(x− xi

η
+ xη)ψrη(x− xi

η
+ xη)dx.

When η → 0, from part (i) it follows that

(t−η )p(‖w‖p + o(η)) = (t−η )p‖w(x− xi

η
+ xη)ψη(x− xi

η
+ xη)‖p + o(η)

= (t−η )s
∫

RN
fηw

s(x− xi

η
+ xη)ψsη(x− xi

η
+ xη)dx+ o(η)

= (t−η )s
∫

RN
f(ηx+ xi − ηxη)wsdx+ o(η).

Moreover, ηxη → 0 as η → 0, and from ‖w‖p =
∫

RN fmaxw
sdx, we have

t−η > tmax = (
p− r
s− r

‖w(x− xi

η + xη)ψη(x− xi

η + xη)‖p∫
RN fη|w(x− xi

η + xη)ψη(x− xi

η + xη)|sdx
)

1
s−p

→ (
p− r
s− r

)
1
s−p > 0.

Thus, t−η → 1 as η → 0 and (ii) holds. �

Let η∗ = min{η1, η2, ( s−ps−r )
1
β }, then we have the following result.

Lemma 3.2. For each ε > 0, there exists ηε ∈ (0, η∗] such that

α−fη,hη ≤ γ
i
η < min{αfmax,0 + ε, αfη,hη + αf∞,0}, i = 1, 2, . . . , k, η ∈ (0, ηε).

Proof. For i = 1, 2, . . . , k, obviously we have α−fη,hη ≤ γ
i
η.

Now we show the second inequality hold. First, we prove that gη(wη) ∈ Cil/η.
For j = 1, 2, . . . , N , since

gjη(wη) =

∫
RN φη(xj)ws(x− xi

η + xη)ψsη(x− xi

η + xη)dx∫
RN w

s(x− xi

η + xη)ψsη(x− xi

η + xη)dx

and

ψη(x− xi

η
+ xη) = 0 if |xj −

xij
η
| > 1
√
η
.

By the definition of ψη, we have

gjη(wη) =

∫
Ci
l/η

φη(xj)ws(x− xi

η + xη)ψsη(x− xi

η + xη)dx∫
Ci
l/η

ws(x− xi

η + xη)ψsη(x− xi

η + xη)dx
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provided 1√
η <

l
η . From the definition of φη and gη we conclude that gη(wη) ∈ Cil/η.

Thus, wη ∈ N i
η. Moreover, by Lemma 3.1, we obtain

Ifη,hη (wη) =
(t−η )p

p
[
∫

RN
|∇(w(x− xi

η
+ xη)ψη(x− xi

η
+ xη))|pdx

+
∫

RN
|w(x− xi

η
+ xη)ψη(x− xi

η
+ xη)|pdx]

−
(t−η )s

s

∫
RN

fηw
s(x− xi

η
+ xη)ψsη(x− xi

η
+ xη)dx

− η
p(s−r)
s−p

(t−η )r

r

∫
RN

hηw
r(x− xi

η
+ xη)ψrη(x− xi

η
+ xη)dx

=
1
p

∫
RN
|∇w|p + |w|pdx− 1

s

∫
RN

f(ηx+ xi − ηxη)wsdx+ o(η).

Since ηxη → 0 as η → 0 and from the above, we have

Ifη,hη (wη) = Ifmax,0(w) + o(η) = αfmax,0 + o(η).

Therefore, for any ε > 0 there exists η3 > 0 such that

γiη < αfmax,0 + ε, i = 1, 2, . . . , k, η ∈ (0, η3).

Moreover, αfmax,0 < αf∞,0 and αfη,hη → 0 as η → 0, then there exists η4 > 0 such
that

γiη < αfη,hη + αf∞,0, i = 1, 2, . . . , k, η ∈ (0, η4).

We take ηε = min{η3, η4}, this implies

γiη < min{αfmax,0 + ε, αfη,hη + αf∞,0},

for i = 1, 2, . . . , k and η ∈ (0, ηε). This completes the proof. �

Since W 1,p(RN ) is not a Hilbert space in general, even if the (PS) sequence {un}
of Iλ(u) is bounded, hence there exists u ∈W 1,p(RN ) such that

un ⇀ u in W 1,p(RN ),

we can not ensure

|∇unk |p−2∇unk ⇀ |∇u|p−2∇u in L
p
p−1 (RN )

for some subsequence {unk} of {un}, so we can not use Brezis-Lieb lemma [20]
directly. We use the following results.

Lemma 3.3. If {un} ⊂W 1,p(RN ) is a (PS)c sequence of Ifη,hη , then there exists
a subsequence {uk} such that uk ⇀ u0 in W 1,p(RN ) for some u0 ∈W 1,p(RN ), and
I ′(u0) = 0, ∇uk → ∇u0 a.e. in RN .

The proof of the above lemma was given in [12, Lemma 2.1], also in [17]. We
omit it here.

Lemma 3.4. There are positive numbers δ and ηδ ∈ (0, η∗] such that for i =
1, 2, . . . , k, we have

γ̃iη > αfmax,0 + δ for all η ∈ (0, ηδ).
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Proof. Fix i ∈ {1, 2, . . . , k}. Suppose the contrary that there exists a sequence {ηn}
with ηn → 0 as n → ∞ such that γ̃iηn → c ≤ αfmax,0. Consequently, there exists a
sequence {un} ⊂ ∂N i

ηn such that gηn(un) ∈ ∂Ci l
ηn

and

〈I ′fηn ,hηn (un), un〉 = 0,

Ifηn ,hηn (un)→ c ≤ αfmax,0.

By Lemma 2.5, {un} is uniformly bounded in W 1,p(RN ). For un ∈ M−fηn ,hηn , we
deduce from the Sobolev imbedding theorem that there exists a constant ν > 0
such that ‖un‖ > ν for all n. Applying the concentration-compactness principle of
Lions [16] to |un|s, there are positive constants R,µ and {yn} ⊂ RN such that∫

BN (yn,R)

|un|sdx ≥ µ for all n,

where BN (yn, R) = {x ∈ RN ||x− yn| < R}. Let ũn = un(x+ yn), and define

f̃ηn(x) = f(ηnx+ ηnyn), h̃ηn(x) = h(ηnx+ ηnyn).

Then we have
〈I ′efηn ,ehηn (ũn), ũn〉 = 0,

I efηn ,ehηn (ũn)→ c.
(3.1)

By Lemma 3.3, Sobolev imbedding theorem and Riesz’s theorem, there is a u0 ∈
W 1,p(RN ) and a subsequence of {ũn}, still denoted by {ũn} such that

ũn ⇀ u0 in W 1,p(RN ),

ũn → u0 a.e. in RN ,∫
BN (0,R)

|ũn|sdx→
∫
BN (0,R)

|u0|sdx ≥ µ,

and

∇ũn → ∇u0 a.e. in RN ,

|∇ũn|p−2∇ũn ⇀ |∇u0|p−2∇u0 in L
p
p−1 (RN ).

Set wn = ũn − u0. By the Brezis-Lieb lemma [20], we have∫
RN

f̃ηn |ũn|sdx =
∫

RN
f̃ηn |u0|sdx+

∫
RN

f̃ηn |wn|sdx+ o(1). (3.2)

Since {un} is uniformly bounded and ũn ⇀ u0, we obtain

η
p(s−r)
s−p

n

∫
RN

hηn |un|rdx = η
p(s−r)
s−p

n

∫
RN

h̃ηn |ũn|rdx→ 0 as n→∞ (3.3)

and
‖ũn‖p = ‖u0‖p + ‖wn‖p + o(1). (3.4)

Combining (3.1)-(3.4), we have

‖wn‖p −
∫

RN
f̃ηn |wn|sdx = −(‖u0‖p −

∫
RN

f̃ηn |u0|sdx) + o(1). (3.5)

We distinguish the two cases: (A) ‖wn‖ → 0 and (B) ‖wn‖ → c > 0.
Case (A): From condition (C3) we can choose a positive constant δ such that

f(x) < fmax for x ∈ Cil+δ\Cil−δ.
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We complete the proof by establishing the contradiction

lim
n→∞

Ifηn ,hηn (un) > αfmax,0.

Consider the sequence {ηnyn}. By passing to a subsequence if necessary, we may
assume that one of the following cases occur:

(A1) {ηnyn} ⊂ C
i

l+δ\Cil−δ,
(A2) {ηnyn} ⊂ C

i

l−δ,
(A3) {ηnyn} ⊂ RN\Cil+δ and {ηnyn} is bounded;
(A4) {ηnyn} is unbounded.

Let ε > 0 and Rε > 0 be such that∫
|x|≥Rε |ũn|

sdx∫
RN |ũn|sdx

≤ ε. (3.6)

In case (A1), we assume ηnyn → ỹ ∈ Cil+δ\Cil−δ and f(ỹ) < fmax. Consequently
by (3.3) and (3.4), we have

lim
n→∞

Ifηn ,hηn (un) = lim
n→∞

[
1
p
‖ũn‖p −

1
s

∫
RN

f̃ηn(x)|ũn|sdx− η
p(s−r)
s−p

n

∫
RN

h̃ηn |ũn|rdx]

=
1
p
‖u0‖p −

1
s

∫
RN

f(ỹ)|u0|sdx

≥ αf(ey),0 > αfmax,0,

we also have

‖u0‖p −
∫

RN
f(ỹ)|u0|sdx = 0,

which is a contradiction.
In case (A2),

gjηn(un) =

∫
RN φηn(xj + (yn)j)|ũn|sdx∫

RN |ũn|sdx

=

∫
|x|≤Rε φηn(xj + (yn)j)|ũn|sdx+

∫
|x|≥Rε φηn(xj + (yn)j)|ũn|sdx∫

RN |ũn|sdx
.

In the region |x| ≤ Rε, when n is sufficiently large, we have

xj + (yn)j ∈ (
xij − (l − δ)

ηn
−Rε,

xij + (l − δ)
ηn

+Rε) ⊂ (−2K
ηn

,
2K
ηn

).

It follows from (3.6) and the definition of φηn that

gjηn(un) > (
xij − (l − δ)

ηn
−Rε)(1− ε)−

2K
ηn

ε,

gjηn(un) < (
xij + (l − δ)

ηn
+Rε)(1− ε) +

2K
ηn

ε.

It is clear from the above inequalities that we can choose ε > 0, δ > ε sufficiently
small such that

gjηn(un) ∈ (
xij − l
ηn

,
xij + l

ηn
)

for n large enough, which contradicts gηn(un) ∈ ∂Cil/ηn .
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In case (A3), we assume that ηnyn → ỹ 6∈ Cil+δ as n → ∞, then for some
j ∈ {1, 2, . . . , N}, we have ỹj ≥ xij + (l + δ) or ỹj ≤ xij − (l + δ).

First, we assume ỹj ≥ xij + (l+ δ) occurs, then (yn)j >
xij+(l+ δ

2 )

ηn
for all n. When

|xj | ≤ Rε, we have

xj + (yn)j >
xij + (l + δ

2 )
ηn

−Rε

and

gjηn(un) > (
xij + (l + δ

2 )
ηn

−Rε)(1− ε)−
2K
ηn

ε >
xij + l

ηn
,

for sufficiently small ε > 0, δ > ε and n large enough. This contradicts to gηn(un) ∈
∂Ci l

ηn

. When ỹj ≤ xij − (l + δ), the argument is similar.

In case (A4), we assume ηnyn →∞ as n→∞, using a similar argument to case
(A1) and condition (C3), we can also obtain a contradiction.
Case (B): Set

‖u0‖p −
∫

RN
f̃ηn |u0|sdx = A+ o(1),

then by (3.5),

‖wn‖p −
∫

RN
f̃ηn |wn|sdx = −A+ o(1).

Without loss of generality, we may assume that A > 0(A < 0 can be considered
similarly). We can choose a sequence {tn} with tn → 1 as n → ∞ such that
vn = tnwn satisfies

‖vn‖p −
∫

RN
f̃ηn |vn|sdx = −A.

Since u0 ∈M efηn ,0(A+ o(1)), by (3.2)-(3.4) and Lemma 2.1 we have

Ifηn ,hηn (un) =
1
p
‖u0‖p −

1
s

∫
RN

f̃ηn(x)|u0|sdx

+
1
p
‖wn‖p −

1
s

∫
RN

f̃ηn(x)|wn|sdx+ o(1)

≥ A+ o(1)
p

+
1
p
‖vn‖p −

1
s

∫
RN

f̃ηn(x)|vn|sdx+ o(1)

≥ α efηn ,0(A) + α efηn ,0(−A) + o(1)

> α efηn ,0 +
s− p
2sp

A+ o(1)

≥ αfmax,0 +
s− p
2sp

A+ o(1),

which is a contradiction. If A = 0, we can find two sequences {tn} and {sn} with
tn → 1, sn → 1 as n→∞ such that wn = tnwn, vn = snu0 satisfy

‖wn‖p −
∫

RN
f̃ηn |wn|sdx = 0,

‖vn‖p −
∫

RN
f̃ηn |vn|sdx = 0.

Thus

lim
n→∞

Ifηn ,hηn (un)
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= lim
n→∞

[1
p
‖wn‖p −

1
s

∫
RN

f̃ηn |wn|sdx+
1
p
‖vn‖p −

1
s

∫
RN

f̃ηn |vn|sdx
]

> αfmax,0,

which is a contradiction. This completes the proof. �

From now on, taking δ > 0 as in Lemma 3.4, and fixing ε > 0 such that ε ≤ δ,
consider ηε as in Lemma 3.2, ηδ as in Lemma 3.4, and denote η0 = min{ηε, ηδ}.

Lemma 3.5. If η ∈ (0, η0), then for each u ∈ Mfη,hη , there exist εu > 0 and
a differentiable function ξu : B(0, εu) ⊂ W 1,p(RN ) → R+ such that ξu(0) =
1, ξu(v)(u− v) ∈Mfη,hη , and

〈ξ′u(0), v〉 =
[
p

∫
RN
|∇u|p−2∇u∇v + |u|p−2uvdx

− s
∫

RN
fη|u|s−2uvdx− η

p(s−r)
s−p r

∫
RN

hη|u|r−2uvdx
]

÷
[
(p− r)‖u‖p − (s− r)

∫
RN

fη|u|sdx
]

for all v ∈W 1,p(RN ).

Proof. For u ∈Mfη,hη , define a function F : R×W 1,p(RN )→ R by

Fu(ξu, w) = 〈I ′fη,hη (ξu(u− w)), ξu(u− w)〉

= ξpu

∫
RN
|∇(u− w)|p + |u− w|pdx− ξsu

∫
RN

fη|u− w|sdx

− η
p(s−r)
s−p ξru

∫
RN

hη|u− w|rdx.

Then Fu(1, 0) = 〈I ′fη,hη (u), u〉 = 0 and

d

dξu
Fu(1, 0) = p‖u‖p − s

∫
RN

fη|u|sdx− η
p(s−r)
s−p r

∫
RN

hη|u|rdx

= (p− r)‖u‖p − (s− r)
∫

RN
fη|u|sdx 6= 0.

According to the implicit function theorem, there exist εu > 0 and a differentiable
function ξu : B(0, εu) ⊂W 1,p(RN )→ R+ such that ξu(0) = 1, and

〈ξ′u(0), v〉 =
[
p

∫
RN
|∇u|p−2∇u∇v + |u|p−2uvdx

− s
∫

RN
fη|u|s−2uvdx− η

p(s−r)
s−p r

∫
RN

hη|u|r−2uvdx
]

÷
[
(p− r)‖u‖p − (s− r)

∫
RN

fη|u|sdx
]
,

and Fu(ξu(v), v) = 0 for all v ∈ B(0, εu), which is equivalent to

〈I ′fη,hη (ξu(v)(u− w)), ξu(v)(u− w)〉 = 0, ∀v ∈ B(0, εu).

That is, ξu(v)(u− v) ∈Mfη,hη . �
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Lemma 3.6. If η ∈ (0, η0), then for each u ∈ N i
η, there exist εu > 0 and

a differentiable function ξ−u : B(0, εu) ⊂ W 1,p(RN ) → R+ such that ξ−u (0) =
1, ξ−u (v)(u− v) ∈ N i

η for all v ∈ B(0, εu), and

〈(ξ−u )′(0), v〉 =
[
p

∫
RN
|∇u|p−2∇u∇v + |u|p−2uvdx

− s
∫

RN
fη|u|s−2uvdx− η

p(s−r)
s−p r

∫
RN

hη|u|r−2uvdx
]

÷
[
(p− r)‖u‖p − (s− r)

∫
RN

fη|u|sdx
]

for all v ∈W 1,p(RN ).

Proof. Similar to the argument in Lemma 3.5, there exist εu > 0 and a differentiable
function ξ−u : B(0, εu) ⊂ W 1,p(RN ) → R+ such that ξ−u (0) = 1, ξ−u (v)(u − v) ∈
Mfη,hη for all v ∈ B(0, εu), Since

(p− r)‖u‖p − (s− r)
∫

RN
fη|u|sdx < 0,

thus, if εu small enough, by the continuity of the functions ξ−u and gη, we have

〈ψ′(ξ−u (v)(u− v))), ξ−u (v)(u− v)〉

= (p− r)‖ξ−u (v)(u− v)‖p − (s− r)
∫

RN
fη|ξ−u (v)(u− v)|sdx < 0.

and gη(ξ−u (v)(u− v)) ∈ Cil/η. �

Proposition 3.7. (i) If η ∈ (0, η0), then there exists a (PS)αfη,hη sequence {un} ⊂
Mfη,hη in W 1,p(RN ) for Ifη,hη .

(ii) If η ∈ (0, η0), then there exists a (PS)γiη sequence {un} ⊂ N i
η in W 1,p(RN )

for Ifη,hη , i = 1, 2, . . . , k.

Proof. Since the proof of (i) is similar to that of (ii), but simpler, we only prove
(ii) here. We denote by N i

η the closure of N i
η, then we note that

N i
η = N i

η ∪ ∂N i
η, for each i = 1, 2, . . . , k.

From Lemma 3.2 and Lemma 3.4, we obtain

γiη < min{αfη,hη + αf∞,0, γ̃iη}, i = 1, 2, . . . , k, η ∈ (0, η0). (3.7)

Hence
γiη = inf{Ifη,hη (u) : u ∈ N i

η} for i = 1, 2, . . . , k.
Fix some i ∈ {1, 2, . . . , k}. Applying the Ekeland variational principle [17] there
exists a minimizing sequence {un} ⊂ N i

η such that

Ifη,hη (un) < γiη +
1
n
, (3.8)

Ifη,hη (un) < Ifη,hη (w) +
1
n
‖w − un‖ for all w ∈ N i

η. (3.9)

From (3.7) we may assume that un ∈ N i
η for n sufficiently large. Applying Lemma

3.6 with u = un we obtain the functional ξ−un : B(0, εun) → R for some εun > 0
such that ξ−un(w)(un − w) ∈ N i

η. Choose 0 < ρ < εun and u ∈ W 1,p(RN ) with
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u 6≡ 0. Set wρ = ρu
‖u‖ and znρ = ξ−un(wρ)(un − wρ). Since znρ ∈ N i

η, we deduce from
(3.9) that

Ifη,hη (znρ )− Ifη,hη (un) ≥ − 1
n
‖znρ − un‖.

By the mean value theorem, we have

〈I ′fη,hη (un), znρ − un〉+ o(‖znρ − un‖) ≥ −
1
n
‖znρ − un‖.

Thus,

〈I ′fη,hη (un),−wρ〉+(ξ−un(wρ)−1)〈I ′fη,hη (un), un−wρ〉 ≥ −
1
n
‖znρ−un‖+o(‖znρ−un‖).

(3.10)
Since ξ−un(wρ)(un − wρ) ∈ N i

η and consequently from (3.10) we obtain

− ρ〈I ′fη,hη (un),
u

‖u‖
〉+ (ξ−un(wρ)− 1)〈I ′fη,hη (un)− I ′fη,hη (znρ ), un − wρ〉

≥ − 1
n
‖znρ − un‖+ o(‖znρ − un‖).

Thus,

〈I ′fη,hη (un),
u

‖u‖
〉 ≤

(ξ−un(wρ)− 1)
ρ

〈I ′fη,hη (un)− I ′fη,hη (znρ ), un − wρ〉

+
‖znρ − un‖

nρ
+
o(‖znρ − un‖)

ρ
.

(3.11)

Since
‖znρ − un‖ ≤ ρ|ξ−un(wρ)|+ |ξ−un(wρ)− 1|‖un‖

and

lim
ρ→0

|ξ−un(wρ)− 1|
ρ

≤ ‖(ξ−un)′(0)‖,

if we let ρ→ 0 in (3.11) for a fixed n, and by Lemma 2.5 (ii) we can find a constant
C > 0, independent of ρ, such that

〈I ′fη,hη (un),
u

‖u‖
〉 ≤ C

n
(1 + ‖(ξ−un)′(0)‖).

We are done once we show that ‖(ξ−un)′(0)‖ is uniformly bounded in n. By Lemma
2.5 (ii), Lemma 3.6 and the Hölder inequality, we have

〈(ξ−un)′(0), v〉 ≤ b‖v‖
|(p− r)‖un‖p − (s− r)

∫
RN fη|un|sdx|

for some b > 0.

We only need to show that

|(p− r)‖un‖p − (s− r)
∫

RN
fη|un|sdx| > C

for some C > 0 and n large. We argue by way of contradiction. Assume that there
exists a subsequence {un} satisfy

(p− r)‖un‖p − (s− r)
∫

RN
fη|un|sdx = o(1). (3.12)

By the fact that un ∈M−fη,hη (un) and (3.12), we obtain that∫
RN

fη|un|sdx > 0.
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So we have

‖un‖ ≤ [
s− r
s− p

ηβ‖h‖
L

p
p−r

]
1
p−r + o(1) (3.13)

‖un‖ > (
p− r
s− r

Ss

fmax
)

1
s−p + o(1). (3.14)

Then

K(un) = c(s, r)
[ ( s−rp−r

∫
RN fη|un|

sdx+ o(1))
s−1
p−1∫

RN fη|un|sdx

] p−1
s−p − s− p

p− r

∫
RN

fη|un|sdx

= o(1).
(3.15)

However, by (3.13)-(3.14), the Hölder and Sobolev inequalities, combining with
β > 0 and η ∈ (0, η0), we have

K(un) ≥ c(s, r)( ‖un‖p
s−1
p−1∫

RN fη|un|sdx
)
p−1
s−p − ηβ‖h‖

L
p
p−r
‖un‖r + o(1)

≥ ‖un‖r[c(s, r)(
Ss

fmax
)
p−1
s−p ‖un‖1−r − ηβ‖h‖

L
p
p−r

] + o(1)

≥ ‖un‖r[c(s, r)(
Ss

fmax
)
p−1
s−p (ηβ

s− r
s− p

‖h‖
L

p
p−r

)
1−r
p−r − ηβ‖h‖

L
p
p−r

] + o(1)

≥ d
for some d > 0 and n large enough. This is a contradiction to (3.15). So we have

Ifη,hη (un) = γiη + o(1)

and I ′fη,hη (un) = 0 in W−1(RN ). Thus we complete the proof of (ii). �

Theorem 3.8. For each η ∈ (0, η0), Equation (2.1) has a positive solution uη ∈
M+
fη,hη

such that Ifη,hη (uη) = αfη,hη = α+
fη,hη

.

Proof. By Proposition 3.7 (i), there exists a (PS)αfη,hη sequence {un} ⊂Mfη,hη , by
Lemma 2.5 (ii) and Lemma 3.3, there exist a subsequence {un} and uη in W 1,p(RN )
such that

un ⇀ uη weakly in W 1,p(RN ),

un → uη a.e. in RN ,

un → uη in Lq(RN ) for1 ≤ q ≤ p∗,
∇un → ∇uη a.e. in RN ,

|∇un|p−2∇un ⇀ |∇uη|p−2∇uη in L
p
p−1 (RN ),

It is easy to see that uη is a solution of (2.1)
Moreover, by the Egorov theorem and the Hölder inequality and condition h ∈

L
p
p−r (RN ), we obtain ∫

RN
hη|un|rdx→

∫
RN

hη|uη|rdx.

We claim that
∫

RN hη|uη|
rdx 6= 0. If not,

‖un‖p =
∫

RN
fη|un|sdx+ o(1),
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and

(
1
p
− 1
s

)
∫

RN
fη|un|sdx

=
1
p
‖un‖p −

1
s

∫
RN

fη|un|sdx− η
p(s−r)
s−p

1
r

∫
RN

hη|un|rdx+ o(1)

= αfη,hη + o(1),

this contradicts αfη,hη < 0. Thus, uη is a nontrivial solution of (2.1). Now we show
that un → uη strongly in W 1,p(RN ). If not, ‖uη‖ < lim infn→∞ ‖un‖, so we have

αfη,hη ≤ Ifη,hη (uη) = (
1
p
− 1
s

)‖uη‖p − (
1
r
− 1
s

)η
p(s−r)
s−p

∫
RN

hη|uη|rdx

< lim
n→∞

Ifη,hη (un) = αfη,hη ,

this is a contradiction. Thus Ifη,hη (uη) = αfη,hη . At last, we show uη ∈M+
fη,hη

. If
not, by Lemma 2.2, we know that uη ∈ M−fη,hη , by Lemma 2.4, there exist unique
t+0 and t−0 such that t+0 uη ∈M

+
fη,hη

and t−0 uη ∈M
−
fη,hη

, and t+0 < t−0 = 1. Since

d

dt
Ifη,hη (t+0 uη) = 0,

d2

dt2
Ifη,hη (t+0 uη) > 0,

there exists t̃ ∈ (t+0 , t
−
0 ] such that Ifη,hη (t+0 uη) < Ifη,hη (t̃uη). By Lemma 2.4,

Ifη,hη (t+0 uη) < Ifη,hη (t̃uη) ≤ Ifη,hη (t−0 uη) = Ifη,hη (uη),

which is a contradiction. Thus, Ifη,hη (uη) = αfη,hη = α+
fη,hη

. Since Ifη,hη (uη) =
Ifη,hη (|uη|) and |uη| ∈M+

fη,hη
, by Lemma 2.3 and the maximum principle, we may

assume that uη is a positive solution of (2.1). �

Proposition 3.9. Assume that {un} ⊂ M−fη,hη is a (PS)c sequence, where c <

αfη,hη + αf∞,0. Then there exists a subsequence, still denoted by {un}, and u0 in
W 1,p(RN ) such that un → u0 strongly in W 1,p(RN ) and Ifη,hη (u0) = c.

Proof. By Lemma 2.5 (ii), there exists a subsequence {un} and u0 in W 1,p(RN )
such that

un ⇀ u0 weakly in W 1,p(RN ).

First, we claim that u0 ≡ 0 is impossible. If not, by h ∈ L
p
p−r (RN ), the Egorov

theorem and the Hölder inequality, we have

‖un‖p = o(1). (3.16)

Moreover, {un} ⊂M−fη,hη , we deduce from the Sobolev imbedding theorem that

‖un‖ > C for some C > 0, n = 1, 2, . . . .

which contradicts to (3.16). Thus, by Lemma 3.3, u0 is a nontrivial solution of (2.1)
and Ifη,hη (u0) ≥ αfη,hη . We write un = u0 + vn with vn ⇀ 0 weakly in W 1,p(RN ).
By the Brezis-Lieb lemma [16], we have∫

RN
fη|un|pdx =

∫
RN

fη|u0|pdx+
∫

RN
fη|vn|pdx+ o(1)

=
∫

RN
fη|u0|pdx+

∫
RN

f∞|vn|pdx+ o(1).
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Since {un} is a bounded sequence in W 1,p(RN ), we have {vn} is also a bounded
sequence in W 1,p(RN ). Moreover, by h ∈ L

p
p−r (RN ), the Egorov theorem and the

Hölder inequality, we have∫
RN

hη|vn|rdx =
∫

RN
hη|un|rdx−

∫
RN

hη|u0|rdx+ o(1) = o(1).

Hence, for n large enough, we can conclude that

αfη,hη + αf∞,0 > Ifη,hη (u0 + vn)

≥ Ifη,hη (u0) +
1
p
‖vn‖p −

1
s

∫
RN

f∞|vn|sdx+ o(1)

≥ αfη,hη +
1
p
‖vn‖p −

1
s

∫
RN

f∞|vn|sdx+ o(1),

we obtain
1
p
‖vn‖p −

1
s

∫
RN

f∞|vn|sdx < αf∞,0 + o(1). (3.17)

Also from I ′fη,hη (un) = o(1) in W−1(RN ), {un} is uniformly bounded and u0 is a
solution of (2.1), we obtain

〈I ′fη,hη (un), un〉 = ‖vn‖p −
∫

RN
f∞|vn|sdx+ o(1) = o(1). (3.18)

We claim that (3.17) and (3.18) can be hold simultaneously only if {vn} admits a
subsequence which converges strongly to zero. If not, then ‖vn‖ is bounded away
from zero; that is,

‖vn‖ ≥ C for some C > 0.
From (3.18), it follows that∫

RN
f∞|vn|sdx ≥

sp

s− p
αf∞,0 + o(1).

By (3.17) and (3.18), for n large enough

αf∞,0 ≤ (
1
p
− 1
s

)
∫

RN
f∞|vn|sdx+ o(1)

=
1
p
‖vn‖p −

1
s

∫
RN

f∞|vn|sdx+ o(1) < αf∞,0,

which is a contradiction. Therefore, un → u0 strongly inW 1,p(RN ) and Ifη,hη (u0) =
c. �

Proof of Theorem 1.1. By Lemma 3.2, Proposition 3.7 and Proposition 3.9, for
each η ∈ (0, η0) and i ∈ {1, 2, . . . , k}, there exist a sequence {uin} ⊂ N i

η and
ui0 ∈W 1,p(RN )\{0} such that

Ifη,hη (uin) = γiη + o(1),

I ′fη,hη (uin) = o(1)

and uin → ui0 strongly in W 1,p(RN ). Obviously, the function ui0 is a solution of the
equation (2.1) and Ifη,hη (ui0) = γiη. Similar to the argument in Theorem 3.8, we
have ui0 is positive. Since giη(ui0) ∈ Cl/η(xi), uη ∈ M+

fη,hη
and ui0 ∈ M−fη,hη , where

uη is a positive solution of Eq.(2.1) as in Theorem 3.8. This implies uη, ui0 and uj0
are different for i 6= j.
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Letting λ0 = η−p0 , Uλ(x) = λ
1
s−puη(λ1/px) and Ui(x) = λ

1
s−pui0(λ1/px). We

obtain Uλ and Ui are positive solutions of the (1.1) with i = 1, 2, . . . , k. This
completes the proof. �

Remark 3.10. It is easy to see from the proof of Theorem 1.1 that the solutions
Uλ, Ui(i = 1, 2, . . . , k) satisfy

(1) ‖Uλ‖L∞(RN ), ‖Ui‖L∞(RN ) →∞ as λ→∞;

(2) ‖Uλ‖Lp(RN ), ‖Ui‖Lp(RN ) →∞ as λ→∞ if p < s < p2

N + p;

(3) ‖Uλ‖Lp(RN ), ‖Ui‖Lp(RN ) → 0 as λ→∞ if p2

N + p < s < p∗.

Lemma 3.11. When 1 ≤ r < p < s < p∗ and N ≥ 1, we have p(s−r)
s−p −

(p−r)N
p > 0.

Proof. When N ≤ p and 1 ≤ r < p < s < p∗, obviously, we have
p(s− r)
s− p

− (p− r)N
p

> 0.

We consider only the case N > p. Set

L(s) = p2(s− r)− (p− r)N(s− p), s ∈ (p, p∗).

Then it is easy to see that

L(s) ≥ min{L(p), L(p∗)} = min{p2(p− r), p3r

N − p
} > 0.

This completes the proof. �
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