NONLINEAR ELLIPTIC PROBLEM OF 2-\(q\)-LAPLACIAN TYPE WITH ASYMMETRIC NONLINEARITIES

DANDAN YANG, CHUANZHI BAI

Abstract. In this article, we study the nonlinear elliptic problem of 2-\(q\)-Laplacian type
\[-\Delta u - \mu \Delta_q u = -\lambda |u|^{r-2}u + au + b(u^+)^{\theta-1} \quad \text{in } \Omega,\]
\[u = 0 \quad \text{on } \partial \Omega,\]
where \(\Omega \subset \mathbb{R}^N\) is a bounded domain. For \(a\) is between two eigenvalues, we show the existence of three nontrivial solutions.

1. Introduction

In this article, we are interested in finding the multiple nontrivial weak solutions to the nonlinear elliptic problem of 2-\(q\)-Laplacian type,
\[-\Delta u - \mu \Delta_q u = -\lambda |u|^{r-2}u + au + b(u^+)^{\theta-1} \quad \text{in } \Omega, \quad u = 0 \quad \text{on } \partial \Omega, \tag{1.1}\]
where \(\Omega \subset \mathbb{R}^N\) is a bounded domain with smooth boundary \(\partial \Omega\). \(\lambda, \mu > 0\) are two parameters, \(N \geq 2\), \(1 < q < 2 < \theta \leq 2^* = \frac{2N}{N-2}\), \(a \in \mathbb{R}\), \(b > 0\), and \(u^+ = \max\{u, 0\}\). \(\Delta_q u = \text{div}(|\nabla u|^{q-2}\nabla u)\) is the \(q\)-Laplacian of \(u\).

Paiva and Presoto [12] studied the semilinear elliptic problem with asymmetric nonlinearities,
\[-\Delta u = -\lambda |u|^{q-2}u + au + b(u^+)^{p-1} \quad \text{in } \Omega, \quad u = 0 \quad \text{on } \partial \Omega. \tag{1.2}\]
Where \(N \geq 3\), \(1 < q < 2 < p \leq 2^*, a \in \mathbb{R}, b > 0\) and \(\lambda\) is a positive parameter.

Problem (1.2) is also closely related to the class of superlinear Ambrosetti-Prodi problems [10],
\[-\Delta u = au + (u^+)^p + f(x) \quad \text{in } \Omega. \tag{1.3}\]
Further results for problem (1.3) can be found in [4, 5, 11] and references cited therein.

\[\text{2000 Mathematics Subject Classification. 35J60, 35B38.}\]
\[\text{Key words and phrases. Quasilinear elliptic equations with } q\text{-Laplacian; critical exponent; asymmetric nonlinearity; weak solution.}\]
\[\text{©2014 Texas State University - San Marcos, Submitted July 9, 2014. Published August 11, 2014.}\]
Marano and Papageorgiou [10] obtained the existence of three solutions of the (p, q)-Laplacian problem
\[
-\Delta_p u - \mu \Delta_q u = f(x, u) \quad \text{in } \Omega,
\]
\[
u = 0 \quad \text{on } \partial \Omega,
\]
by using variational methods and truncation arguments. Nonlinear elliptic problems involving the p-q-Laplacian operator is an active area of research; see [8, 9, 13, 15, 17, 18] and the references therein.

Motivated by the above works, we shall extend the results of problem (1.2) to problem (1.1). By using variational methods, we obtain three solutions to (1.1).

We say that g is asymmetric when g satisfies the Ambrosetti-Prodi type condition
\[
g_+ := \lim_{t \to +\infty} \frac{g(t)}{t} < \lambda_k < \lambda_1 < g_- := \lim_{t \to -\infty} \frac{g(t)}{t}.
\]

Since problem (1.1) involves $-\Delta$ and $-\Delta_q$, the arguments will be more complicated, and more analysis and estimates are needed.

The eigenvalue problem of the Laplacian, in $\Omega \subset \mathbb{R}^N$, has the form
\[
-\Delta u = \lambda u \quad \text{in } H_0^1(\Omega).
\]

By the Ljusternik-Schnirelman principle it is well known that there exists a non-decreasing sequence of nonnegative eigenvalues $0 < \lambda_1 < \lambda_2 \leq \cdots \leq \lambda_j \leq \cdots$ and a correspondent eigenfunctions φ_j. Also, the first eigenvalue λ_1 is simple and the eigenfunctions associated with λ_1 do not change sign.

Now we are ready to state our main results.

Theorem 1.1. Let $N \geq 3$, $1 < \min\{q, r\} \leq \max\{q, r\} < 2 < \theta < 2^* \text{ and } \lambda_k < a < \lambda_{k+1}$. Then, for $\lambda > 0$ and $\mu > 0$ small enough, problem (1.1) has at least three nontrivial solutions.

Theorem 1.2. Let $N \geq 4$, $1 < \min\{q, r\} \leq \max\{q, r\} < 2 < \theta = 2^* \text{ and } \lambda_k < a < \lambda_{k+1}$. Then, for $\lambda > 0$ and $\mu > 0$ small enough, problem (1.1) has at least three nontrivial solutions.

This article is organized as follows. In Section 2, we show some geometric conditions to establish the Mountain-Pass levels and give a technical lemma which is crucial in the proof of our main results. In Section 3, we establish the existence of three nontrivial solutions for the nonlinear elliptic problem (1.1).

2. Preliminaries

In this article, $\|\cdot\|_p$ and $|\cdot|_p$ denote the norms on $W_0^{1,p}(\Omega)$ and $L^p(\Omega)$, respectively;
\[
\|u\|_p = \left(\int_\Omega |\nabla u|^p \, dx \right)^{1/p}, \quad |u|_p = \left(\int_\Omega |u|^p \, dx \right)^{1/p}.
\]

For convenience, we substitute $\|\cdot\|$ for $\|\cdot\|_2$. The best Sobolev constant S of the embedding $H_0^1(\Omega) \hookrightarrow L^{2^*}(\Omega)$ is denoted by
\[
S = \inf_{u \in H_0^1(\Omega) \setminus \{0\}} \frac{\|u\|^2}{|u|^2_{2^*}}.
\]
It is known that S is independent of Ω and is never achieved except when $\Omega = \mathbb{R}^N$ (see [16]). Consider the energy functional $I_{\lambda, \mu}$ defined on $H^1_0(\Omega)$ given by

$$I_{\lambda, \mu}(u) = \frac{1}{2} \|u\|^2 + \frac{\mu}{q} \|u\|_q^q + \frac{\lambda}{r} \int_\Omega |u|^r dx - \frac{a}{2} \int_\Omega |u|^2 dx - \frac{b}{\theta} \int_\Omega (u^+)^\theta dx. \quad (2.1)$$

It is easy to know that $I_{\lambda, \mu}$ is of class C^2 and there exists a one to one correspondence between the weak solutions of (1.1) and the critical points of $I_{\lambda, \mu}$ on $H^1_0(\Omega)$.

By a weak solution of (1.1) we mean that $u \in H^1_0(\Omega)$ satisfying

$$\langle I'_{\lambda, \mu}(u), v \rangle = \int_\Omega \langle \nabla u \nabla v + \mu |\nabla u|^{q-2} \nabla u \nabla v \rangle dx + \lambda \int_\Omega |u|^{r-2} u v dx - a \int_\Omega u v dx - b \int_\Omega (u^+)^{\theta-1} v dx = 0$$

for all $v \in H^1_0(\Omega)$.

Denote by φ_i a normalized eigenvector relative to eigenvalue λ_i of (1.5). Let $V_k = \langle \varphi_1, \ldots, \varphi_k \rangle$ and $W_k = V_k^\perp$. Without loss of generality, we suppose $0 \in \Omega$, and $m \in \mathbb{N}$ large enough so that $B_{2/m} \subset \Omega$, where $B_{2/m}$ denotes the ball of radius $2/m$ with center in 0. Consider the functions introduced in [7].

$$\zeta_m(x) = \begin{cases} 0 & \text{if } x \in B_{1/m}, \\ m|x| - 1 & \text{if } x \in A_m = B_{2/m} \setminus B_{1/m}, \\ 1 & \text{if } x \in \Omega \setminus B_{2/m}. \end{cases}$$

Set $\varphi_i^m = \zeta_m \varphi_i$,

$$V_k^m = \langle \varphi_1^m, \ldots, \varphi_k^m \rangle$$

and $W_k^m = (V_k^m)^\perp$. For each $m \in \mathbb{N}$, define a positive cut-off function $\eta \in C^\infty_c(B_{1/m})$ such that $\eta \equiv 1$ in $B_{1/2m}$, $\eta \leq 1$ in $B_{1/m}$ and $\|\nabla \eta\|, \|\eta\| \leq 4m$; take $\varphi_k^m = \eta \varphi_{k+1}$. Then

$$\supp \eta \cap \supp \varphi_{k+1} = \emptyset \quad (2.2)$$

whenver $u \in V_k^m$. By [7], it is easy to check the following Lemma.

Lemma 2.1. As $m \to \infty$ we have

$$\varphi_i^m \rightharpoonup \varphi_i \quad (\text{in } H^1_0(\Omega)) \quad \text{and} \quad \max_{u \in V_k^m, \|u\| = 1} \|u\|^2 \leq \lambda_k + c_k m^{2-N}.$$

Corollary 2.2. For m large enough

$$V_k^m \ominus W_k = H^1_0. \quad (2.3)$$

As an easy consequence of Lemma 2.1 we have the following decomposition of H^1_0.

Lemma 2.3. Assume $\lambda_1 < a$, $1 < \min\{q, r\} \leq \max\{q, r\} < 2 < \theta \leq 2^*$ and $\lambda, \mu > 0$. Then every (PS) sequence of $I_{\lambda, \mu}$ is bounded.

Proof. Suppose $\{u_n\} \subset H^1_0(\Omega)$ is a (PS) sequence of $I_{\lambda, \mu}$; i.e., it satisfies

$$\left| \frac{1}{2} \|u_n\|^2 + \frac{\mu}{q} \|u_n\|_q^q + \frac{\lambda}{r} \int_\Omega |u_n|^r dx - \frac{a}{2} \int_\Omega |u_n|^2 dx - b \int_\Omega (u_n^+)^\theta dx \right| \leq C, \quad (2.4)$$

$$\left| \int_\Omega \nabla u_n \nabla v + \mu |\nabla u_n|^{q-2} \nabla u_n \nabla v \right| dx + \lambda \int_\Omega |u_n|^{r-2} u_n v dx$$

$$- a \int_\Omega u_n v dx - b \int_\Omega (u_n^+)^{\theta-1} v dx \leq \epsilon_n \|v\|, \quad \forall v \in H^1_0(\Omega), \quad (2.5)$$

where $\epsilon_n \to 0$.\]
where \(\epsilon_n \to 0 \) as \(n \to \infty \). By (2.4) and (2.5), we obtain
\[
C + \epsilon_n \| u_n \|
\geq |I_\lambda(u_n) - \frac{1}{2} (I_\lambda'(u_n), u_n)|
= \left| \left(\frac{\mu}{q} - \frac{\lambda}{2} \right) \| u_n \| + \left(\frac{\lambda}{r} - \frac{\lambda}{2} \right) \int_\Omega |u_n|^r \right| dx + \left(\frac{b}{2} - \frac{b}{\theta} \right) \int_\Omega (u_n^+)^\theta dx
\geq \left(\frac{b}{2} - \frac{b}{\theta} \right) \int_\Omega (u_n^+)^\theta dx.
\]
Thus, we have
\[
\int_\Omega (u_n^+)^\theta dx \leq C + \epsilon_n \| u_n \|. \tag{2.7}
\]
Moreover, by Hölder inequality, we have
\[
\int_\Omega (u_n^+)^2 dx \leq \|\Omega\|^{\theta/2} \left(\int_\Omega (u_n^+)^\theta dx \right)^{2/\theta}. \tag{2.8}
\]
On the other hand, by (2.5) we have
\[
|\langle I_{\lambda, \mu}'(u_n), u_n^- \rangle| = \| u_n \|^2 + \mu \| u_n^- \|^q + \lambda \| u_n^- \|^r - a \| u_n^- \|^2 \leq \epsilon_n \| u_n^- \|, \tag{2.9}
\]
with \(u^- = \max\{-u, 0\} \). It follows from (2.4), (2.7), (2.8) and (2.9) that
\[
\frac{1}{2} \| u_n^+ \|^2 \leq \left(\frac{\mu}{q} - \frac{\lambda}{2} \right) \| u_n^- \|^q + \lambda \| u_n^- \|^r - a \| u_n^- \|^2 + \| u_n^- \|^2 + \frac{1}{2} |\langle I_{\lambda, \mu}'(u_n), u_n^- \rangle| + C \tag{2.10}
\]
\[
\leq \frac{1}{2} \| u_n^+ \|^2 + \frac{b}{\theta} \int_\Omega (u_n^+)^\theta dx + \epsilon_n \| u_n^- \|^2 + C
\leq \epsilon_n \| u_n^- \|^2 + \epsilon_n \| u_n^- \|^2 + C.
\]

Firstly, we show that \((u_n^+) \) is bounded in \(H^1_0(\Omega) \). Suppose by contradiction that \(\| u_n^+ \| \to \infty \), by (2.10), we know that \((u_n^-) \) is also unbounded. Let \(w_n = u_n^- / \| u_n^- \| \). Since \(\{ u_n \} \) is bounded in \(H^1_0(\Omega) \), there exists \(w \in H^1_0(\Omega) \) such that
\[
w_n \to w \quad \text{in} \quad H^1_0(\Omega),
w_n \to w \quad \text{in} \quad L^s, \quad \forall 1 \leq s < 2^* ,
w_n \to w \quad \text{a.e. in} \quad \Omega.
\]
From (2.10), there exists \(\sigma > 0 \) satisfying
\[
\| u_n^- \| \geq \sigma \| u_n^+ \|^2 \tag{2.11}
\]
whenever \(n \) is large. Notice that
\[
w_n^+ = \frac{u_n^+}{\| u_n \|} = \frac{u_n^+}{(\| u_n^+ \|^2 + \| u_n^- \|^2)^{1/2}} \leq \frac{u_n^+}{(\| u_n^+ \|^2 + \sigma^2 \| u_n^- \|^4)^{1/2}},
\]
which implies that \(w \leq 0 \). Furthermore, by
\[
w_n^- = \frac{u_n^-}{\| u_n \|} = \frac{u_n^-}{(\| u_n^+ \|^2 + \| u_n^- \|^2)^{1/2}} = \frac{u_n^-}{\| u_n \|} \cdot \frac{\| u_n^- \|}{(\| u_n^+ \|^2 + \| u_n^- \|^2)^{1/2}}
\]
and (2.11), we obtain \(\|w_n^-\| \to 1 \). Hence, by (2.9),
\[
- \lambda \frac{|u_n^-|^r}{\|u_n\|^2} + \mu \frac{\|u_n^-\|^q}{\|u_n\|^2} + a \frac{|u_n^-|^2}{\|u_n\|^2} \to 1.
\]
(2.12)
Recalling that \(q, r < 2 \), we obtain
\[
\frac{|u_n^-|^r}{\|u_n\|^2} \leq |\Omega|^{\frac{2-r}{2}} \|u_n^-\|^{q-2} \to 0,
\]
(2.13)
\[
\frac{|u_n^-|^r}{\|u_n\|^2} \leq |\Omega|^{\frac{2-r}{2}} S^{-\frac{2}{r}} \|u_n^-\|^{\frac{2}{r}-2} \to 0.
\]
(2.14)
Moreover, by (2.11) and \(\|w_n^-\| \to 1 \), we have
\[
\frac{u_n^-}{\|u_n\|} - \frac{u_n^-}{\|u_n\|} = \frac{u_n^-}{\|u_n\|} \left(\frac{\|u_n\|}{\|u_n^-\|} - 1 \right) \to 0 \quad \text{in } H^1_0(\Omega).
\]
Thus we may exchange \(\|w_n^-\| \) for \(\|u_n^-\| \) in (2.12), and substituting (2.13) and (2.14) into it, we obtain \(\|w_n^-\| \to 1/\sqrt{\alpha} \), then \(w \neq 0 \). Taking \(v = \varphi_1 \) in (2.5), one has
\[
\int_\Omega \left[\nabla w_n \nabla \varphi_1 + \mu \frac{\|u_n\|^q}{\|u_n\|^2} \int_\Omega |\nabla w_n|^{q-2} \nabla w_n \nabla \varphi_1 \, dx \right. \\
+ \left. \lambda \frac{r}{\|u_n\|^2} \int_\Omega |\nabla w_n|^{q-2} \nabla w_n \nabla \varphi_1 \, dx \right. \\
+ \left. \frac{b}{\|u_n\|^2} \int_\Omega |(u_n^+)^{\theta-1}\varphi_1| \, dx \right. \\
= (\lambda_1 - a) \int_\Omega w \varphi_1 \, dx = 0,
\]
(2.15)
that is,
\[
(\lambda_1 - a) \int_\Omega w \varphi_1 \, dx = 0,
\]
which is a contradiction, as \(w \leq 0 \), \(w \neq 0 \) and \(\lambda_1 < a \), so that \((u_n^+) \) is bounded.
Finally, assume that \(\|u_n\| \to \infty \) and \(\|u_n^+\| \leq C \) for all \(n \in \mathbb{N} \). Taking \(v = w_n \) in (2.5), by (2.13) and
\[
\int_\Omega (u_n^+)^\theta \, dx \to 0,
\]
for \(\theta \leq 2^* \), we obtain \(a|w_n|^2 \to 1 \), so that \(w_n \to w \) in \(L^2(\Omega) \) with \(w \neq 0 \). Then by (2.5) we obtain
\[
\int_\Omega \nabla w \nabla v \, dx - a \int_\Omega w v \, dx = 0 \quad \text{for all } v \in H^1_0(\Omega),
\]
with \(w \neq 0 \) and \(w \leq 0 \), which is a contradiction, as \(a \) is not the first eigenvalue.
Hence, we conclude that \(\{u_n\} \) must be bounded in \(H^1_0(\Omega) \).
\[
\square
\]
In the subcritical case, \(1 \leq \theta < 2^* \), we can easily know according to the lemma above, \(I_{\lambda, \mu} \) satisfies the (PS) condition at every level.

Lemma 2.4. Let \(\lambda_1 < a \) and \(\theta = 2^* \). For each \(\lambda, \mu > 0 \), \(I_{\lambda, \mu} \) satisfies the (PS) condition at level \(c \) with \(c < \frac{1}{N} b^{\frac{2-N}{2}} S^{N/2} \).
Proof. Let \(\{u_n\} \subset H_0^1(\Omega) \) be a sequence satisfying
\[
I_{\lambda,\mu}(u_n) \to c \quad \text{and} \quad |I'_{\lambda,\mu}(u_n), v| \leq \epsilon_n \|v\|_p, \quad \forall v \in H_0^1(\Omega),
\]
with \(\epsilon_n \to 0 \) as \(n \to \infty \). By Lemma 2.3 we obtain that \(\{u_n\} \) is bounded. Thus, by passing to a subsequence, we have
\[
u_n \to u \quad \text{in} \quad H_0^1(\Omega),
\]
\[u_n \to u \quad \text{in} \quad L^p, \quad \forall 1 \leq s < 2^*,
\]
\[u_n \to u \quad \text{a.e. in} \quad \Omega.
\]
Since \(\{u_n^+\} \) is bounded in \(H_0^1(\Omega) \), from the Gagliardo-Nirenberg inequality it follows that \(\{u_n^+\} \) is also bounded in \(L^{2^*} \). By passing to a subsequence again, we have \(u_n^+ \to u^+ \) in \(L^{2^*} \). Hence, we obtain by [11, Lemma 2.3] that
\[
-\Delta u - \mu \Delta_q u = -\lambda |u|^{r-2}u + au + b(u^+)^{2^*-1}, \quad \text{in} \quad \Omega
\]
\[u = 0 \quad \text{on} \quad \partial \Omega,
\]
Thus, by (2.18) we have
\[
I_{\lambda,\mu}(u) = \left(\frac{\mu}{q} - \frac{\mu}{2} \right) \|u\|_q^q + \left(\frac{\lambda}{r} - \frac{\lambda}{2} \right) \int_\Omega |u|^r dx + \left(\frac{b}{2} - \frac{b}{2^*} \right) \int_\Omega (u^+)^{2^*} dx \geq 0.
\]
Set \(w_n = u_n - u \). It is easy to check that
\[
|u_n^+ - u^+|^s \leq |(u_n - u)^+|^s = |w_n^+|^s, \quad 1 \leq s \leq 2^*.
\]
By (2.16) and the Brezis-Lieb Lemma, we have
\[
\|w_n\|^2 + \mu \|w_n\|_q^q + \lambda \|w_n\|^r = a\|w_n\|^2_2 - b\|u_n^+ - u^+\|_2^{2^*}
\]
\[= \|u_n\|^2 - \|u\|^2 + \mu (\|u_n\|_q^q - \|u\|_q^q) + \lambda (\|w_n\|_r - \|u\|_r)
\]
\[- a(|u_n|_2^2 - |u|^2) - b(|w_n|_2^2 - |u|^2) + o_n(1)
\]
\[= \langle I'_{\lambda,\mu}(u_n), u_n \rangle - \langle I'_{\lambda,\mu}(u), u \rangle + o(1),
\]
which implies that
\[
\lim_{n \to \infty} \left[\|w_n\|^2 + \mu \|w_n\|_q^q + \lambda \|w_n\|^r - a\|w_n\|^2_2 - b\|u_n^+ - u^+\|_2^{2^*} \right] = 0.
\]
Moreover, by (2.17) we have \(w_n \to 0 \) in \(L^r \) and \(L^2 \). Thus, we have from (2.20) and (2.21) that
\[
\|w_n\|^2 + \mu \|w_n\|_q^q = b\|w_n^+ - u^+\|_2^{2^*} + o(1) \leq b\|w_n^+\|_2^{2^*} + o(1).
\]
Without loss of generality, we assume that
\[
\|w_n\|^2 = d + o(1), \quad \|w_n\|_q^q = h + o(1).
\]
By (2.22), (2.23) and Sobolev inequality, we obtain
\[
d \geq S \left(\frac{d + \mu h}{b} \right)^{2/2^*} \geq S b^{-2/2^*} d^{2/2^*}.
\]
If \(d = 0 \), then we complete the proof. Otherwise, (2.24) implies that
\[
d \geq S^{N/2} b^{2-N}.
\]
Then by (2.10), (2.19) and the Brezis-Lieb Lemma, we conclude
\[c \geq c - I_{\lambda,\mu}(u) = I_{\lambda,\mu}(u_n) - I_{\lambda,\mu}(u) + o(1) \]
\[= \frac{1}{2} \|u_n\|^2 - \|u\|^2 + \frac{\mu}{q} \|u_n\|_q^q - \|u\|_q^q \]
\[+ \frac{\lambda}{r} (|u_n|^r - |u|^r) - \frac{a}{2} (|u_n|^2 - |u|^2) - \frac{b}{2^*} (|u_n|_2^2 - |u|_2^2) + o(1) \] (2.26)
\[= \frac{1}{2} \|w_n\|^2 + \frac{\mu}{q} \|w_n\|_q^q + \frac{\lambda}{r} |w_n|^r - \frac{a}{2} |w_n|^2 - \frac{b}{2^*} |u_n|_2^2 - |u_n|_2^2 + o(1). \]
Let \(n \to \infty \) in (2.26), we obtain by (2.22), (2.23), (2.25) and \(w_n \to 0 \) in \(L^r \) and \(L^2 \) that
\[c \geq \frac{d}{2} + \frac{\mu h}{q} - \frac{d + \mu h}{2^{*}} \]
\[= \left(\frac{1}{2} - \frac{1}{2^{*}} \right) d + \left(\frac{\mu}{q} - \frac{\mu}{2^{*}} \right) h \]
\[\geq \left(\frac{1}{2} - \frac{1}{2^{*}} \right) d \]
\[\geq \frac{1}{N} S^{N/2} b^{\frac{2-N}{2}}, \]
which is a contradiction. \(\square \)

3. Main result

Firstly, we consider the existence of the nonnegative solution of (1.1). Define the functional \(I_{\lambda,\mu}^+ : H_0^1(\Omega) \to \mathbb{R} \) as follows
\[I_{\lambda,\mu}^+(u) = \frac{1}{2} \|u\|^2 + \frac{\mu}{q} \|u\|_q^q + \frac{\lambda}{r} \int_{\Omega} (u^+)^r dx - \frac{a}{2} \int_{\Omega} (u^+)^2 dx - \frac{b}{\theta} \int_{\Omega} (u^+)^\theta dx. \] (3.1)
It follows that \(I_{\lambda,\mu}^+ \in C^1 \) and the critical points \(u_+ \) of \(I_{\lambda,\mu}^+ \) satisfy \(u_+ \geq 0 \) and so are critical points of \(I_{\lambda,\mu} \) as well, actually, \((I_{\lambda,\mu}^+)'(u_+)[(u_+)^-] = -\|(u_+)^-\|^2 - \mu\|(u_+)^-\|_q^q = 0. \)

Similar to the proofs of Lemma 2.3 and Lemma 2.4, we can show that \(I_{\lambda,\mu}^+ \) satisfies the (PS) condition.

Lemma 3.1. Let \(2 < \theta \leq 2^* \). If \(\lambda, \mu > 0 \), then \(I_{\lambda,\mu}^+ \) satisfies the (PS) condition at level \(c \) with \(c < \frac{1}{N} S^{N/2} b^{\frac{2-N}{2}} \).

Lemma 3.2. The trivial solution \(u \equiv 0 \) is a local minimizer for \(I_{\lambda,\mu}^+ \), for all \(\lambda, \mu > 0 \).

Proof. It suffices to show that \(0 \) is a local minimizer of \(I_{\lambda,\mu}^+ \) in the topology (see [3]). For \(u \in C_0^1(\Omega) \), we have
\[I_{\lambda,\mu}^+(u) = \frac{1}{2} \|u\|^2 + \frac{\mu}{q} \|u\|_q^q + \frac{\lambda}{r} \int_{\Omega} (u^+)^r dx - \frac{a}{2} \int_{\Omega} (u^+)^2 dx - \frac{b}{\theta} \int_{\Omega} (u^+)^\theta dx \]
\[\geq \frac{\lambda}{r} \int_{\Omega} (u^+)^r dx - \frac{a}{2} \int_{\Omega} (u^+)^2 dx - \frac{b}{\theta} \int_{\Omega} (u^+)^\theta dx \]
\[\geq \left(\frac{\lambda}{r} - \frac{a}{2} |u|_C^2 - \frac{b}{\theta} |u|_C^\theta \right) \int_{\Omega} (u^+)^r dx \geq 0 \]
whenever
\[\frac{a}{2} |u|_{C^0}^{2-r} + \frac{b}{\theta} |u|_{C^0}^{\theta-r} \leq \frac{\lambda}{r}. \]

Lemma 3.3. There exists \(t_0 > 0 \) such that \(I_{\lambda,\mu}^+(t_0\varphi_1) \leq 0 \), for all \(\lambda, \mu \) in a bounded set.

Proof. Let \(\varphi_1 \) be the positive eigenfunction associated to \(\lambda_1 \), for \(t > 0 \), we have
\[
I_{\lambda,\mu}^+(t\varphi_1) = \frac{t^2}{2} \|\varphi_1\|^2 + \frac{t^q \mu}{q} \|\varphi_1\|_q^q + \frac{t^r \lambda}{r} \int_\Omega \varphi_1^r dx - \frac{t^2}{2} \int_\Omega \varphi_1^2 dx - \frac{t^\theta \mu}{\theta} \int_\Omega \varphi_1^\theta dx
\]
\[
= \frac{t^2}{2} (\lambda_1 - a) \int_\Omega \varphi_1^2 dx + \frac{t^q \mu}{q} \|\varphi_1\|_q^q + \frac{t^r \lambda}{r} \int_\Omega \varphi_1^r dx - \frac{t^\theta \mu}{\theta} \int_\Omega \varphi_1^\theta dx.
\]
Since \(\lambda_1 < a \) and \(q, r < \theta \), there exists a choice of \(t_0 > 0 \) such that \(I_{\lambda,\mu}^+(t_0\varphi_1) \leq 0 \) for \(\lambda, \mu \) in a bounded set. \(\square \)

Define
\[c_{\lambda,\mu}^+ = \inf_{\gamma \in \Gamma^+} \sup_{t \in [0,1]} I_{\lambda,\mu}^+(\gamma(t)), \]
where
\[\Gamma^+ = \{ \gamma \in \mathcal{C}([0,1], \gamma(0) = 0, \gamma(1) = t_0\varphi_1) \}. \]

On the other hand, by the proof of Lemma 3.3 we obtain
\[I_{\lambda,\mu}^+(t\varphi_1) \leq \frac{t^q \mu}{q} \|\varphi_1\|_q^q + \frac{t^r \lambda}{r} \int_\Omega \varphi_1^r dx. \]

Then, if \(\lambda \) and \(\mu \) are small enough, \(c_{\lambda,\mu}^+ < \frac{1}{N} S^{N/2} \bar{\varepsilon}_{N}^{N} \), consequently, by means of the Mountain Pass Theorem, \(c_{\lambda,\mu}^+ \) is a critical value of \(I_{\lambda,\mu}^+ \). Thus, we have the following result.

Lemma 3.4. Let \(N > 2, 1 < \min\{q, r\} \leq \max\{q, r\} < 2 < \theta \leq 2^* \) and \(\lambda_1 < a \). If \(\lambda, \mu \) are small enough, then (1.1) has at least a nontrivial positive solution.

To obtain the negative solution, consider the functional \(I_{\lambda,\mu}^- : H^1_0(\Omega) \rightarrow \mathbb{R} \) given by
\[
I_{\lambda,\mu}^-(u) = \frac{1}{2} \|u\|^2 + \frac{\mu}{q} \|u\|_q^q + \frac{\lambda}{r} \int_\Omega (u^-)^r dx - \frac{a}{2} \int_\Omega (u^-)^2 dx. \tag{3.2}
\]
Again, \(I_{\lambda,\mu}^- \in C^1 \) and the critical points \(u^- \) of \(I_{\lambda,\mu}^- \) satisfy \(u^- \leq 0 \) and so are critical points of \(I_{\lambda,\mu} \) as well. We will apply once again the mountain pass theorem to obtain a critical point of \(I_{\lambda,\mu}^- \).

Lemma 3.5. The trivial solution \(u \equiv 0 \) is a local minimizer for \(I_{\lambda,\mu}^- \), for all \(\lambda, \mu > 0 \).

Proof. It suffices to show that \(0 \) is a local minimizer of \(I_{\lambda,\mu}^- \) in the topology. For \(u \in C^1_0(\Omega) \), we have
\[
I_{\lambda,\mu}^-(u) = \frac{1}{2} \|u\|^2 + \frac{\mu}{q} \|u\|_q^q + \frac{\lambda}{r} \int_\Omega (u^-)^r dx - \frac{a}{2} \int_\Omega (u^-)^2 dx
\]
\[\geq \frac{\lambda}{r} \int_\Omega (u^-)^r dx - \frac{a}{2} \int_\Omega (u^-)^2 dx. \]
\[\geq \left(\frac{\lambda}{r} - \frac{a}{2} \right) \int_{\Omega} (u^-)^r \, dx \geq 0 \]

whenever \(\frac{a}{2} |u|^{2-r} \leq \lambda/r \).

Lemma 3.6. There exists \(t_0 > 0 \) such that \(I_{\lambda,\mu}^-(-t_0 \varphi_1) \leq 0 \), for all \(\lambda, \mu \) in a bounded set.

Proof. For \(t > 0 \), we have
\[
I_{\lambda,\mu}^-(-t \varphi_1) = \frac{t^2}{2} \| \varphi_1 \|^2 + \frac{t^q \mu}{q} \| \varphi_1 \|^q + \frac{t^r \lambda}{r} \int_{\Omega} \varphi_1^r \, dx - \frac{t^2 a}{2} \int_{\Omega} \varphi_1^2 \, dx
\]
\[
= \frac{t^2}{2} (\lambda_1 - a) \int_{\Omega} \varphi_1^2 \, dx + \frac{t^q \mu}{q} \| \varphi_1 \|^q + \frac{t^r \lambda}{r} \int_{\Omega} \varphi_1^r \, dx.
\]

Since \(\lambda_1 < a \) and \(r, q < 2 \), there exists a choice of \(t_0 > 0 \) which proves the lemma.

As in the nonnegative solution case, we obtain a critical value
\[
c_{\lambda,\mu}^- = \inf_{\gamma \in \Gamma^-} \sup_{t \in [0, 1]} I_{\lambda,\mu}^- (\gamma(t)),
\]
where
\[
\Gamma^- = \{ \gamma \in C([0, 1] : \gamma(0) = 0, \gamma(1) = -t_0 \varphi_1) \}.
\]

Similar to the proof of Lemma 3.5, we obtain the estimate
\[
c_{\lambda,\mu}^- \leq \max_{s \in [0, 1]} I_{\lambda,\mu}^- (-s t_0 \varphi_1) \leq \frac{t^2 \mu}{q} \| \varphi_1 \|^q + \frac{t^r \lambda}{r} \int_{\Omega} \varphi_1^r \, dx,
\]
which implies that if \(\lambda, \mu \) are small enough, then we obtain the estimate \(c_{\lambda,\mu}^- < \frac{1}{N} S^{N/2} b^{2-N} \), consequently, by the Mountain Pass Theorem, \(c_{\lambda,\mu}^- \) is a critical value of \(I_{\lambda,\mu}^- \). Hence, we obtain another important result.

Lemma 3.7. Let \(N > 2 \), \(1 < \min\{q, r\} \leq \max\{q, r\} < 2 < \theta \leq 2^* \) and \(\lambda_1 < a \). If \(\lambda, \mu \) small enough, then (1.1) has at least a nontrivial negative solution.

For \(W_k \) and \(V_{k,m} \) are as in Section 2, we now consider the existence of the third solution.

Lemma 3.8. There exist \(\alpha > 0 \) and \(\rho > 0 \) such that
\[
I_{\lambda,\mu}(u) \geq \alpha
\]
whenever \(u \in W_k \) and \(\|u\| = \rho \).

Proof. If \(u \in W_k \), then
\[
I_{\lambda,\mu}(u) = \frac{1}{2} \|u\|^2 + \frac{a}{q} \|u\|_q^q + \frac{\lambda}{r} \int_{\Omega} |u|^r \, dx - \frac{a}{2} \int_{\Omega} |u|^2 \, dx - \frac{b}{\theta} \int_{\Omega} (u^+)^\theta \, dx
\]
\[
\geq \frac{1}{2} \|u\|^2 - \frac{a}{2} \int_{\Omega} |u|^2 \, dx - \frac{b}{\theta} \int_{\Omega} (u^+)^\theta \, dx
\]
\[
\geq \left(\frac{1}{2} - \frac{a}{2 \lambda_k + 1} \right) \|u\|^2 - \frac{b}{\theta} \|u\|_\theta^\theta
\]
\[
\geq \|u\|^2 \left(A - B \|u\|^{\theta-2} \right),
\]
with \(A, B > 0 \). Then it suffices to take \(\rho < (A/B)^{\frac{1}{\theta-2}} \).
Lemma 3.9. Given $\lambda_0 > 0$ and $\mu_0 > 0$, there exist $m_0 \in \mathbb{N}$ and $R > \rho$ such that

$$I_{\lambda, \mu}(u) \leq \frac{\mu}{q} \|u\|_q^q + \frac{\lambda}{r} \int_{\Omega} |u|^r dx,$$

whenever $u \in \partial Q_m$, where $Q_m = (B_R \cap V_k^m) \oplus [0, R \varphi_{k+1}^m]$, $m \geq m_0$, $\lambda \leq \lambda_0$ and $\mu \leq \mu_0$. Henceforth ∂ means the boundary relative to subspace V_k^m.

Proof. Let m be large enough and $a_k < a$ such that

$$\lambda_k + c_k m^{2-N} \leq a_k < a. \quad (3.3)$$

For $u \in V_k^m$, by Lemma 2.1 and (3.3) one can obtain

$$I_{\lambda, \mu}(u) = \frac{1}{2} \|u\|^2 + \frac{\mu}{q} \|u\|_q^q + \frac{\lambda}{r} \int_{\Omega} |u|^r dx - \frac{a}{2} \int_{\Omega} |u|^2 dx - \frac{b}{\theta} \int_{\Omega} (u^+)^\theta dx$$

$$\leq \left(\frac{1}{2} \frac{\mu}{q} \|u\|_q^q + \frac{a}{2} \right) \|u\|^2 + \frac{\mu}{q} \|u\|_q^q + \frac{\lambda}{r} \int_{\Omega} |u|^r dx - \frac{b}{\theta} \int_{\Omega} (u^+)^\theta dx \quad (3.4)$$

$$\leq \frac{\mu}{q} \|u\|_q^q + \frac{\lambda}{r} \int_{\Omega} |u|^r dx,$$

and

$$I_{\lambda, \mu}(\xi \varphi_{k+1}^m) = \frac{\xi^2}{2} \|\varphi_{k+1}^m\|^2 + \frac{\mu \xi^q}{q} \|\varphi_{k+1}^m\|_q^q + \frac{\lambda \xi^r}{r} \int_{\Omega} |\varphi_{k+1}^m|^r dx$$

$$- a \frac{\xi^2}{2} \int_{\Omega} |\varphi_{k+1}^m|^2 dx - \frac{b \xi^\theta}{\theta} \int_{\Omega} ((\varphi_{k+1}^m)^+)^\theta dx \quad (3.5)$$

$$\leq \xi^2 \left(\frac{\mu \xi^q}{q} \|\varphi_{k+1}^m\|_q^q + \frac{\lambda \xi^r}{r} \int_{\Omega} |\varphi_{k+1}^m|^r dx - \frac{b \xi^\theta}{\theta} \int_{\Omega} ((\varphi_{k+1}^m)^+)^\theta dx. \right.$$

Since $\varphi_{k+1}^m \to \varphi_{k+1}$ in $W_0^{1,2}(\Omega)$ as $m \to \infty$, φ_{k+1} changes of sign, and $\theta > 2$, q, r, there exist $m_0 \in \mathbb{N}$ and $R > 0$ such that

$$I_{\lambda, \mu}(R \varphi_{k+1}^m) \leq 0 \quad \forall m \geq m_0. \quad (3.6)$$

Then combining (2.2), (3.4) and (3.6) leads to

$$I_{\lambda, \mu}(u) \leq \frac{\mu}{q} \|u\|_q^q + \frac{\lambda}{r} \int_{\Omega} |u|^r dx, \quad (3.7)$$

whenever $u \in V_k^m \cup (V_k^m \oplus R \varphi_{k+1}^m)$. By (3.5), there exists $\beta > 0$ satisfying

$$I_{\lambda, \mu}(\xi \varphi_{k+1}^m) \leq \beta, \quad (3.8)$$

for all $\xi \geq 0$ and $m \geq m_0$. Since $a > \lambda_k$, we may take $R > 0$ such that

$$I_{\lambda, \mu}(u) \leq \left(\frac{1}{2} \frac{a}{2 \lambda_k} \right) \|u\|^2 + \frac{\mu}{q} \|u\|_q^q + \frac{\lambda}{r} \int_{\Omega} |u|^r dx$$

$$\leq -\beta + \frac{\mu}{q} \|u\|_q^q + \frac{\lambda}{r} \int_{\Omega} |u|^r dx. \quad (3.9)$$

Hence, by (2.2), (3.8) and (3.9) we obtain

$$I_{\lambda, \mu}(u + \xi \varphi_{k+1}^m) = I_{\lambda, \mu}(u) + I_{\lambda, \mu}(\xi \varphi_{k+1}^m) \leq \frac{\mu}{q} \|u\|_q^q + \frac{\lambda}{r} \int_{\Omega} |u|^r dx \quad (3.10)$$

for all $m \geq m_0$ and $u \in \partial(B_R \cap V_k^m)$. Thus, by (3.7) and (3.10), we complete the proof. \[\square\]
Proof of Theorem 1.1. For the subcritical case, if $\theta < 2^* - 1$, α is given by Lemma 3.8. Take λ and μ small enough in order that

$$\frac{\mu}{q} \|u\|_q^q + \frac{\lambda}{r} \int \Omega |u|^r dx < \alpha$$

for all $u \in \partial Q_m$. Then by Lemma 3.9 we have

$$I_{\lambda, \mu}(u) < \alpha$$

whenever $u \in \partial Q_m$ and $m \geq m_0$. Applying the Linking Theorem, $I_{\lambda, \mu}$ possesses a critical point u at level $c_{\lambda, \mu}$, where

$$c_{\lambda, \mu} = \inf_{\Gamma} \max_{u \in Q_m} I_{\lambda, \mu}(\eta(u)),$$

$$\Gamma = \{ \eta \in C(Q_m, W^{1,p}_0(\Omega)); \eta = \text{Id} \text{ on } \partial Q_m \}.$$

Finally, since $c_{\lambda, \mu} \geq \alpha$, $I_{\lambda, \mu}(u) \geq \alpha > 0$ and $c_{\lambda, \mu}^\pm \to 0$ as $\lambda, \mu \to 0$. Hence, if λ, μ are small enough $c_{\lambda, \mu}^\pm < \alpha \leq c_{\lambda, \mu}$, and we know that u may be neither of the critical points found above for $I_{\lambda, \mu}^+$ and $I_{\lambda, \mu}^-$; that is, u is the third solution of (1.1). Thus, combining Lemmas 3.4 and 3.7, we conclude that (1.1) has at least three nontrivial solutions. \square

Proof of Theorem 1.2. For the critical case, $\theta = 2^*$. Consider the family of functions taken from [1]:

$$u_\epsilon = C_N \epsilon^{(N-2)/2} \left(\epsilon^2 + |x|^2 \right)^{(N-2)/2}, \quad \epsilon > 0,$$

where

$$C_N = (N(N - 2))^{(N-2)/4}.$$

Let $u_\epsilon^m = \eta u_\epsilon$, where η is given as section 2, and $Q_\epsilon^m = (B_R \cap V_k^m) \oplus [0, Ru_\epsilon^m]$. Replacing u_ϵ^m by φ_k^{m-1} in Lemma 3.7, we obtain

$$I_{\lambda, \mu}(u) \leq \frac{\mu}{q} \|u\|_q^q + \frac{\lambda}{r} \int \Omega |u|^r dx, \quad \forall u \in \partial Q_\epsilon^m$$

whenever m is large. Hence, to conclude the proof of Theorem 1.2 it remains to show that

$$\sup_{u \in Q_\epsilon^m} I_{\lambda, \mu}(u) < \frac{1}{N} S^{N/2} b^{2-N}$$

for all ϵ, λ and μ small enough. Let

$$J(u) = \frac{1}{2} \|u\|^2 - \frac{a}{2} \int \Omega |u|^2 dx - \frac{b}{2^*} \int \Omega (u^+)^{2^*} dx.$$

Then, we have

$$I_{\lambda, \mu}(u) = J(u) + \frac{\lambda}{r} \int \Omega |u|^r dx + \frac{\mu}{q} \|u\|_q^q.$$

It is sufficient to prove that there exist $m_0 > 0$ and $\epsilon_0 > 0$ such that

$$\sup_{u \in Q_\epsilon^m} J(u) < \frac{1}{N} S^{N/2} b^{2-N}$$

for all $m \geq m_0$ and $\epsilon < \epsilon_0$. It is not difficult to obtain the following expressions [2]:

$$\int \Omega |\nabla u_\epsilon^m|^2 dx = S^{N/2} + O(\epsilon^{N-2}),$$

(3.12)
\[
\int_{\Omega} |u_\epsilon^m|^2 dx = S^{N/2} + O(\epsilon^N). \tag{3.13}
\]

Moreover, we obtain
\[
\int_{\Omega} |u_\epsilon^m|^2 dx = \int_{B(0,1/m)} |u_\epsilon|^2 dx + O(\epsilon^{N-2})
\geq \int_{B(0,\epsilon)} \frac{C_N^2 \epsilon^{N-2}}{|x|^2} + \int_{\epsilon < |x| < 1/m} \frac{C_N^2 \epsilon^{N-2}}{|x|^2} dx + O(\epsilon^{N-2}) = \begin{cases}
\epsilon^2 \ln \epsilon + O(\epsilon^2), & \text{if } N = 4, \\
\epsilon^2 + O(\epsilon^{N-2}), & \text{if } N \geq 5,
\end{cases}
\tag{3.14}
\]

where \(d\) is a positive constant. If \(N = 4\), according to (3.12), (3.13) and (3.14), one has
\[
\frac{\|u_\epsilon^m\|^2 - a\|u_\epsilon^m\|^2}{\|u_\epsilon^m\|^2} \leq \frac{S^2 - ad\epsilon |\ln \epsilon| + O(\epsilon^2)}{(S^2 + O(\epsilon^4))^{1/2}} = S - ad\epsilon |\ln \epsilon| S^{-1} + O(\epsilon^2) < S,
\]
for \(\epsilon > 0\) sufficiently small. And similarly, if \(N \geq 5\), we obtain
\[
\frac{\|u_\epsilon^m\|^2 - a\|u_\epsilon^m\|^2}{\|u_\epsilon^m\|^2} \leq \frac{S^{N/2} - ad\epsilon + O(\epsilon^{N-2})}{(S^{N/2} + O(\epsilon^N))^{2/2^*}} = S - ad\epsilon S^{2-N}/2 + O(\epsilon^{N-2}) < S,
\]
for \(\epsilon > 0\) sufficiently small. Let \(u = v + tu_\epsilon^m \in Q_m^\ast\). By simple computation, we obtain
\[
\max_{\epsilon \geq 0} J(tu_\epsilon^m) = \frac{b^{2-N}}{N} \left(\frac{\|u_\epsilon^m\|^2 - a\|u_\epsilon^m\|^2}{\|u_\epsilon^m\|^2} \right)^{N/2} < \frac{1}{N} S^{N/2} b^{2-N}. \tag{3.15}
\]

Fix \(m_0 > 0\) such that \(\lambda_k + c_k m_0^{2-N} \leq \sigma < a\). Then, for \(m \geq m_0\), we obtain
\[
J(v) = \frac{1}{2} \|v\|^2 - \frac{a}{2} \int_{\Omega} |v|^2 dx - \frac{b}{2} \int_{\Omega} (v^+)^2 dx
\leq \frac{1}{2} \|v\|^2 - \frac{a}{2} |v|^2 \leq \frac{\sigma}{2} \|v\|^2 - \frac{a}{2} |v|^2 \leq 0.
\tag{3.16}
\]

From (3.15) and (3.16), we obtain
\[
J(u) = J(v + tu_\epsilon^m) = J(v) + J(tu_\epsilon^m) \leq J(tu_\epsilon^m) < \frac{1}{N} S^{N/2} b^{2-N}.
\]
So, (3.11) holds.

Letting \(\mu \to 0\) in Theorem 1.1 and Theorem 1.2, we easily show that Theorems 1.1 and 1.2 extend the main results in Paiva and Presoto [12].

Acknowledgments. The authors want to thank the anonymous referees for their valuable comments and suggestions. This work is supported by Natural Science Foundation of Jiangsu Province (BK2011407) and Natural Science Foundation of China (11271364 and 10771212).
References

[8] C. He, G. Li; The existence of nontrivial solution to the p-q-Laplacian problem with nonlinearity asymptotic to \(u^{q-1} \) at infinity in \(\mathbb{R}^N \), Nonlinear Anal. 68 (2008), 1100-1119.

Dandan Yang
School of Mathematical Science, Huaiyin Normal University, Huaian, Jiangsu 223300, China
E-mail address: ydd423@sohu.com

Chuanzhi Bai
School of Mathematical Science, Huaiyin Normal University, Huaian, Jiangsu 223300, China
E-mail address: czbai@hytc.edu.cn