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EXISTENCE OF SOLUTIONS FOR THREE-POINT BVPS
ARISING IN BRIDGE DESIGN

AMIT K. VERMA, MANDEEP SINGH

Abstract. This article deals with a class of three-point nonlinear boundary-
value problems (BVPs) with Neumann type boundary conditions which arises

in bridge design. The source term (nonlinear term) depends on the derivative

of the solution, it is also Lipschitz continuous. We use monotone iterative
technique in the presence of upper and lower solutions for both well order and

reverse order case. Under some sufficient conditions we prove existence results.

We also construct two examples to validate our results. These result can be
used to generate a user friendly package in Mathematica or MATLAB so that

solutions of nonlinear boundary-value problems can be computed.

1. Introduction

In the past few years, there has been much attention focused on multipoint BVPs
for nonlinear ordinary differential equations, see [1, 4, 6, 9, 16, 17]. Multipoint BVPs
have lots of applications in modern science and engineering.

It is observed [7] that a linear model is insufficient to explain the large oscillatory
behavior in suspension bridges also suspension bridges have other nonlinear behav-
iors such as traveling waves. If the roadbed of a suspension bridge is treated as a
one-dimensional vibrating beam the following equation is derived (see [7, Section
3])

utt + EIuxxxx + δut = −ku+ +W (x) + εf(x, t), (1.1)

u(0, t) = u(L, t) = uxx(0, t) = uxx(L, t) = 0. (1.2)

Thus the suspension bridge is seen as a beam of length L, with hinged ends, whose
downward deflection is measured by u(x, t), with a small viscous damping term,
subject to three separate forces; the stays, holding it up as nonlinear springs with
spring constant k, the weight per unit length of the bridge W (x) pushing it down,
and the external forcing term εf(x, t). The loadingW (x) would usually be constant.

If W is replaced by the term W (x) = W0 sin (x/L), an error of magnitude around
10% is introduced in the loading and little less in the steady-state deflection. Sec-
ond, if the forcing term is given by f(x, t) = f(t) sin (x/L) and general solutions of
(1.1)-(1.2), is of the form u(x, t) = y(t) sin (x/L). These no-nodal solutions were the
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most commonly observed type for low velocities on the Tacoma Narrows Bridge.
When this u(x, t) is substituted into (1.1), this results into the differential equation

− y′′(t) = f(t, y, y′) (1.3)

were f(t, y, y′) = δy′ + EI(π/L)4y + ky+ −W0 − εf(t), where y+ denotes y if y is
non-negative, and zero if y is negative.

Large size bridges are sometimes contrived with multi-point supports, which
gives rise to multi-point boundary condition.

In this paper we focus on monotone iterative technique related to upper and
lower solutions. Lot of aspects of this technique has been explored for two point
BVPs. When upper β0 and lower α0 solution are well ordered; i.e., β0 ≥ α0 lots
of results are available (see [10]-[11] and the references there in). When the upper
and lower solutions are in reverse order, that is β0 ≤ α0 some results are available
(see [3, 8, 14, 15] and the references there in).

As far as three-point BVPs are concerned, different techniques are used to prove
existence results. The case when source function is independent from first derivative
results are available. But there are very few results when the first order derivative
is involved explicitly in the nonlinear term f .

Guo et al [5] consider the three point BVPs

y′′(t) + f(t, y, y′) = 0, 0 < t < 1, (1.4)

y(0) = 0, y(1) = δy(η) (1.5)

where f is a nonnegative continuous function, δ > 0, η ∈ (0, 1) and αη < 1.
They used a new fixed point theorem in a cone. Bao et al [2] proved some existence
results for three-point BVPs (1.4)-(1.5). They used fixed point index method under
a non-well-ordered upper and lower solution condition.

Recently Singh et al [12, 13] used monotone iterative method with upper and
lower solutions when they are well ordered as well as reverse ordered, and proved
some existence results for a class of three point non-linear BVPs.

The aim of this article is to explore the monotone iterative method with up-
per and lower solutions (for both well order as well as reverse order case) for the
Neumann type nonlinear three point BVPs given by

y′′(t) + f(t, y, y′) = 0, 0 < t < 1, (1.6)

y′(0) = 0, y′(1) = δy′(η), (1.7)

where f ∈ C(I ×R,R), I = [0, 1], 0 < η < 1, 0 < δ < 1.
This article is organized in six sections. In Section 2 we discuss the correspond-

ing linear case of nonlinear three point BVPs and construct Green’s function. In
Sections 3 and 4 we discuss some other important Lemmas and maximum and anti-
maximum principles. In Section 5 we derive sufficient conditions which guarantee
the existence of solutions of nonsingular nonlinear three point BVPs for both case;
i.e., when upper and lower solutions are well ordered and also when reverse ordered.
Finally in Section 6 two examples are constructed to validate our results.

2. Linear Case and Green’s Function

This section deals with linear three-point BVPs with Neumann type conditions.
We construct Green’s function for these problems to be investigated in later sec-
tions.
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2.1. Construction of the Green’s function. Consider the corresponding linear
three-point BVPs as given by

Ly ≡ −y′′(t)− λy(t) = h(t), 0 < t < 1, (2.1)

y′(0) = 0, y′(1) = δy′(η) + b, (2.2)

where h ∈ C(I) and b is any constant. Based on the sign of λ we can divide the
construction of Green’s function into two cases. In one case λ > 0 we get Green’s
function in terms of cos and sin. In the case when λ < 0 we get Green’s function
in terms of cosh and sinh.

Lemma 2.1. Assume
(H0) λ ∈ (0, π2/4), sin(

√
λ)− δ sin(η

√
λ) > 0 and cos(

√
λ)− δ cos(η

√
λ) ≥ 0.

When λ > 0, Green’s function for the three-point BVPs

y′′(t) + λy(t) = 0, 0 < t < 1, (2.3)

y′(0) = 0, y′(1) = δy′(η), (2.4)

is

G(t, s) =



cos(
√
λt)(cos(

√
λ(s−1))−δ cos(

√
λ(s−η)))√

λ(sin(
√
λ)−δ sin(η

√
λ))

, 0 ≤ t ≤ s ≤ η,
cos(
√
λs)(cos(

√
λ(t−1))−δ cos(

√
λ(t−η)))√

λ(sin(
√
λ)−δ sin(η

√
λ))

, s ≤ t, s ≤ η,
cos(
√
λ(s−1)) cos(

√
λt)√

λ(sin(
√
λ)−δ sin(η

√
λ))
, t ≤ s, η ≤ s,

δ sin(η
√
λ) sin(

√
λ(s−t))+cos(

√
λs) cos(

√
λ(1−t))√

λ(sin(
√
λ)−δ sin(η

√
λ))

, η ≤ s ≤ t ≤ 1.

It can be checked that (H0) can be satisfied for some sub interval of λ ∈ (0, π2/4).

For a proof of the above lemma, see [12, Lemma 2.1].

Lemma 2.2. Let λ > 0. If y ∈ C2(I) is the solution of the three-point BVPs (2.1)
and (2.2), then it can be expressed as

y(t) =
b cos

√
λt√

λ(δ sin
√
λη − sin

√
λ)
−
∫ 1

0

G(t, s)h(s)ds. (2.5)

For a proof of the above lemma, see [12, Lemma 2.2].

Lemma 2.3. Assume
(H0′) λ < 0, sinh

√
|λ| − δ sinh

√
|λ|η > 0 and δ cosh

√
|λ|η − cosh

√
|λ| ≤ 0.

Then for λ < 0, the Green’s function of the three-point BVPs

y′′(t) + λy(t) = 0, 0 < t < 1,

y′(0) = 0, y′(1) = δy′(η)

is

G(t, s) =



cosh(
√
|λ|t)(δ cosh(

√
|λ|(s−η))−cosh(

√
|λ|(s−1)))√

|λ|(sinh(
√
|λ|)−δ sinh(η

√
|λ|))

, 0 ≤ t ≤ s ≤ η,
cosh(
√
|λ|s)(δ cosh(

√
|λ|(t−η))−cosh(

√
|λ|(t−1)))√

|λ|(sinh(
√
|λ|)−δ sinh(η

√
|λ|))

, s ≤ t, s ≤ η,

− cosh(
√
|λ|(s−1)) cosh(

√
|λ|t)√

|λ|(sinh(
√
|λ|)−δ sinh(η

√
|λ|))

, t ≤ s, η ≤ s,
δ sinh(η

√
|λ|) sinh(

√
|λ|(s−t))−cosh(

√
|λ|s) cosh(

√
|λ|(1−t))√

|λ|(sinh(
√
|λ|)−δ sinh(η

√
|λ|))

, η ≤ s ≤ t ≤ 1.
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It can be easily checked that (H0′) can be satisfied for some values of λ ∈ (−∞, 0).
For a proof of the above lemma, see [12, Lemma 2.3].

Lemma 2.4. Let λ < 0. If y ∈ C2(I) is a solution of the three-point BVPs (2.1)
and (2.2), then it is given by

y(t) =
b cosh

√
|λ|t√

|λ|(sinh(
√
|λ|)− δ sinh(η

√
|λ|))

−
∫ 1

0

G(t, s)h(s)ds. (2.6)

For a proof of the above lemma, see [12, Lemma 2.4].

3. Some inequalities

Lemma 3.1. Let λ ∈ (0, π2/4) and λ−M ≥ 0. Further if

(λ−M) cos
√
λ−N

√
λ sin

√
λ ≥ 0,

then for all t ∈ [0, 1]

(λ−M) cos
√
λt−N

√
λ sin

√
λt ≥ 0,

where M,N ∈ R+.

Proof. Using monotonicity of sin and cos, we derive that for all t ∈ [0, 1],

(λ−M) cos
√
λt−N

√
λ sin

√
λt ≥ (λ−M) cos

√
λ−N

√
λ sin

√
λ ≥ 0.

Which completes the proof. �

Lemma 3.2. If λ < 0 is such that M + λ ≤ 0, and

λ ≤ −M − N2

2
− N

2

√
N2 + 4M,

then for all t ∈ [0, 1],

(M + λ) cosh
√
|λ|t+N

√
|λ| sinh

√
|λ|t ≤ 0,

where M,N ∈ R+.

Proof. As

(M + λ) cosh
√
|λ|t+N

√
|λ| sinh

√
|λ|t ≤ [(M + λ) +N

√
|λ|] cosh

√
|λ|t.

We will have [(M + λ) +N
√
|λ|] cosh

√
|λ|t ≤ 0 for all t ∈ [0, 1] if

[(M + λ) +N
√
|λ|] ≤ 0.

The above inequality will be satisfied if

λ ≤ −M − N2

2
− N

2

√
N2 + 4M.

This completes the proof. �

Lemma 3.3. Let (H0) be satisfied. Then
(i) G(t, s) ≥ 0,

(ii) ∂G(t,s)
∂t ≤ 0 and

(iii) (λ−M)G(t, s) +N(sign y′)∂G(t,s)
∂t ≥ 0

for any t, s ∈ [0, 1] and M,N ∈ R+.
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Proof. The conditions assumed in (H0) ensure that G(t, s) ≥ 0. Since G(t, s) is the
solution of (2.3)–(2.4), we deduce that ∂G(t,s)

∂t ≤ 0. For part (iii) we prove that for
all t, s ∈ [0, 1],

(λ−M)G+N
∂G(t, s)
∂t

≥ 0.

Which can easily be deduced by using Lemmas 2.1, 2.2 and 3.1. �

Lemma 3.4. Assume (H0′). Then for any t, s ∈ [0, 1], we have
(i) G(t, s) ≤ 0,

(ii) ∂G(t,s)
∂t ≤ 0 and

(iii) (M + λ)G(t, s) +N(sign y′)∂G(t,s)
∂t ≥ 0 whenever we have M + λ−Nλ ≤ 0

where M,N ∈ R+.

Proof. Parts (i) and (ii) follow the analysis of Lemma 3.3. For part (iii), it will be
sufficient to prove that for all t, s ∈ [0, 1],

(M + λ)G(t, s) +N
∂G(t, s)
∂t

≥ 0.

Since G(t, s) is the the Green function for (2.1)–(2.2), we have

∂G(t, s)
∂t

≥ −λG(t, s).

The above inequality along with condition M + λ−Nλ ≤ 0 gives

(M + λ)G(t, s) +N
∂G(t, s)
∂t

≥ (M + λ−Nλ)G(t, s) ≥ 0.

�

4. Anti-maximum and maximum principle

Proposition 4.1. Let b ≥ 0, h(t) ∈ C[0, 1] be such that h(t) ≥ 0, and (H0) hold.
Then the solution of Ly = h and (2.2) is non-positive.

Proposition 4.2. Let b ≥ 0, h(t) ∈ C[0, 1] be such that h(t) ≥ 0 and (H0′) hold.
Then the solution of Ly = h and (2.2) is non-negative.

5. Existence results for nonlinear three-point BVP

In this section, we prove two existence results for the nonlinear three-point Neu-
mann type BVPs. On the basis of the order of upper and lower solutions, we divide
this section into the following subsections.

5.1. Reverse ordered case.

Definition 5.1. The functions α, β ∈ C2[0, 1] are called lower and upper solutions
for the class of three-point BVPs (1.6)-(1.7) if they satisfy the following inequalities:

−α′′(t) ≤ f(t, α, α′), 0 < t < 1,

α′(0) = 0, α′(1) ≤ δα′(η).

−β′′(t) ≥ f(t, β, β′), 0 < t < 1,

β′(0) = 0, β′(1) ≥ δβ′(η).
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The sequences (αn)n and (βn)n are defined by the following iterative schemes

α0 = α, −α′′n+1(t)− λαn+1(t) = f(t, αn, α′n)− λαn, (5.1)

α′n+1(0) = 0, α′n+1(1) = δα′n+1(η), (5.2)

β0 = β, −β′′n+1(t)− λβn+1(t) = f(t, βn, β′n)− λβn, (5.3)

β′n+1(0) = 0, β′n+1(1) = δβ′n+1(η), (5.4)

where λ 6= 0.

Theorem 5.2. Assume that (H0)and following hypothesis hold:

(H1) there exist α and β ∈ C2[0, 1] lower and upper solutions of (1.6) and (1.7)
such that for all t ∈ [0, 1], α ≥ β;

(H2) the function f : D → R is continuous on D := {(t, u, v) ∈ [0, 1] × R2 :
β(t) ≤ u ≤ α(t)};

(H3) there exist M ≥ 0 such that for all (t, u1, v), (t, u2, v) ∈ D

u1 ≤ u2 → f(t, u2, v)− f(t, u1, v) ≤M(u2 − u1);

(H4) there exist N ≥ 0 such that for all (t, u, v1), (t, u, v2) ∈ D

|f(t, u, v2)− f(t, u, v1)| ≤ N |v2 − v1|;

(H5) for all (t, u, v) ∈ D, |f(t, u, v)| ≤ ϕ(|v|), such that ϕ : R+ → R+ is contin-
uous and satisfies

max
t∈[0,1]

α− min
t∈[0,1]

β ≤
∫ ∞
l0

s ds

ϕ(s)

where l0 = sup[0,1][2|α(t)|].

Further if (λ−M) cos
√
λ−N

√
λ sin

√
λ ≥ 0 and for all t ∈ [0, 1]

f(t, β(t), β′(t))− f(t, α(t), α′(t))− λ(β − α) ≥ 0

then the sequences (αn) and (βn) defined by (5.1), (5.2) and (5.3), (5.4) converge
monotonically in C1([0, 1]) to the solutions v and u of the nonlinear boundary-value
problem (1.6) and (1.7), such that for all t ∈ [0, 1]

β ≤ u ≤ v ≤ α.

The proof of the above theorem can be divided into several small results stated
as follows.

Lemma 5.3. If αn is a lower solution of (1.6) and (1.7), αn+1 is defined by (5.1)
and (5.2) where λ ∈ (0, π2/4), then αn+1 ≤ αn.

Proof. Since y(t) = αn+1 − αn satisfies Ly ≥ 0, (2.2) with b ≥ 0, the result can be
concluded by Proposition 4.1. �

Proposition 5.4. Let (H0)–(H4) hold and (λ−M) cos
√
λ−N

√
λ sin

√
λ ≥ 0 then

the function αn defined by (5.1) and (5.2) are such that for all n ∈ N ,

(i) αn is a lower solution of (1.6)-(1.7); and
(ii) αn+1 ≤ αn.
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Proof. We prove it by recurrence. By Lemma 5.3 the claim holds for n = 0.
Let αn−1 is a lower solution of (1.6) and (1.7) and αn ≤ αn−1. Let y = αn−αn−1.

Then we have

−α′′n − f(t, αn, α′n) ≤ (λ−M)y +N(sign y′)y′.

Let (λ−M)y+N(sign y′)y′ = g. Now to show αn is a lower solution we have to show
that g ≤ 0. Since y is given by Lemma 2.2 with h(t) = α′′n−1 +f(t, αn−1, α

′
n−1) ≥ 0.

Thus to show g ≤ 0, it is enough to prove that

(λ−M) cos
√
λt−N

√
λ sin

√
λt ≥ 0,

(λ−M)G(t, s) +N
∂G(t, s)
∂t

≥ 0

for all t ∈ [0, 1]. Lemma 3.1 and Lemma 3.3 verify the existence of above two
inequalities. Thus αn+1 ≥ αn. �

Similarly we can prove the following result.

Proposition 5.5. Let (H0)–(H4) be true and (λ−M) cos
√
λ−N

√
λ sin

√
λ ≥ 0.

Then the function βn defined by (5.3)-(5.4) are such that for all n ∈ N
(i) βn is an upper solution of (1.6)-(1.7);
(ii) βn+1 ≥ βn.

Proposition 5.6. Let (H0)–(H4) hold, (λ−M) cos
√
λ−N

√
λ sin

√
λ ≥ 0 and for

all t ∈ [0, 1],

f(t, β(t), β′(t))− f(t, α(t), α′(t))− λ(β − α) ≥ 0 .

Then for all n ∈ N , the functions αn and βn defined by (5.1)-(5.2) and (5.3)-(5.4)
satisfy αn ≥ βn.

Proof. We define

hi(t) = f(t, βi, β′i)− f(t, αi, α′i)− λ(βi − αi), for all i ∈ N.
Now, for all i ∈ N , yi := βi − αi satisfies

−y′′i − λyi = f(t, βi−1, β
′
i−1)− f(t, αi−1, α

′
i−1)− λ(βi−1 − αi−1) = hi−1.

Claim 1. α1 ≥ β1. The function y1 = β1 − α1 is a solution of (2.1)-(2.2) with
h(t) = h0(t) ≥ 0 and b = 0, by Proposition 4.1, y1(t) ≤ 0; i.e., α1 ≥ β1.
Claim 2. Let n ≥ 2. If hn−2 ≥ 0 and αn−1 ≥ βn−1, then hn−1 ≥ 0 and αn ≥ βn.
First we will prove that, for all t ∈ [0, 1], the function hn−1 is non-negative, as we
have

hn−1 ≥ −[(λ−M)yn−1 +N(sign y′n−1)y′n−1].
Since yn−1 is a solution of (2.1)-(2.2) with h(t) = hn−2(t) ≥ 0, b = 0. Hence we
can proceed similar to the proof of Proposition 5.4 to show that hn−1 ≥ 0. Now
y′n(0) = 0 and y′n(1) = δy′(η); i.e., b = 0, we deduce from Proposition 4.1 that
yn ≤ 0; i.e., αn ≥ βn. �

Lemma 5.7. If f(t, y, y′) satisfies (H5), then there exists R > 0 such that any
solution of the differential inequality

−y′′(t) ≥ f(t, y, y′), 0 < t < 1, (5.5)

y′(0) = 0, y′(1) ≥ δy′(η) (5.6)

with y ∈ [β(t), α(t)] for all t ∈ [0, 1] satisfies ‖y′‖∞ ≤ R.



8 A. K. VERMA, M. SINGH EJDE-2014/173

Lemma 5.8. If f(t, y, y′) satisfies (H5), then there exists R > 0 such that any
solution of the differential inequality

−y′′(t) ≤ f(t, y, y′), 0 < t < 1, (5.7)

y′(0) = 0, y′(1) ≤ δy′(η) (5.8)

with y ∈ [β(t), α(t)] for all t ∈ [0, 1] satisfies ‖y′‖∞ ≤ R.

The proof of above two Lemmas are similar to the proof of [12, Lemma 3.2]
(Priory bound). Now we can complete the proof of Theorem 5.2.

Proof of Theorem 5.2. Consider (αn)n and (βn)n defined, respectively by (5.1)-
(5.2) and (5.3)-(5.4). By using the Propositions 5.4, 5.5 and 5.6 we deduce the
following inequality

α = α0 ≥ α1 ≥ · · · ≥ αn ≥ · · · ≥ βn ≥ · · · ≥ β1 ≥ β0 = β. (5.9)

Since (αn)n and (βn)n are monotonic in nature and bounded, they converge point-
wise to functions

v(t) = lim
n→∞

αn(t) and u(t) = lim
n→∞

βn(t)

which are such that for all n, αn ≥ u ≥ v ≥ βn. Using (5.1), (5.2) and (5.3),
(5.4) along with (5.9) and Lemma 5.8 we verify that (αn)n is equibounded and
equicontinuous in C1([0, 1]). Hence any subsequence (αnk

)k of (αn)n is also equi-
bounded and equicontinuous in C1([0, 1]) and from Arzela-Ascoli theorem we de-
duce that there exists a subsequence (αnkj

)j of (αnk
)k which converge in C1([0, 1]).

By monotonicity and uniqueness of the limit of the sequence (αn)n, we have αn → v
in C1([0, 1]). As any subsequence of (αn)n contains a subsequence (αnkj

)j which
converge in C1([0, 1]) to v it follows that αn → v in C1([0, 1]). In a similar way,
using Proposition 5.5 and Lemma 5.7 it can be proved that (βn)n converge to u in
C1([0, 1]).

The solution of the iterative schemes (5.1)-(5.2) and (5.3)-(5.4) can be written
by equations given in Lemmas 2.2 and 2.4 for corresponding h(t) given in terms
of nonlinear f . Now by using the uniform convergence of αn and βn and taking
Limit both sides we get solution of the nonlinear three point BVPs (1.6)-(1.7). This
proves existence of solution of the nonlinear three point BVPs (1.6)-(1.7). �

5.2. Well ordered case. We state our main result as Theorem 5.9. Proof here
again can be written as we did earlier for non well ordered case. We skip the proof
for brevity.

Theorem 5.9. Assume (H0′) and the following hypothesis hold:
(H1′) there exist α, β ∈ C2[0, 1] lower and upper solutions of (1.6)-(1.7) such that

α ≤ β;
(H2′) the function f : D̃ → R is continuous on D̃ := {(t, u, v) ∈ [0, 1] × R2 :

α(t) ≤ u ≤ β(t)};
(H3′) there exist M ≥ 0 such that for all (t, u1, v), (t, u2, v) ∈ D̃,

u1 ≤ u2 → f(t, u2, v)− f(t, u1, v) ≥ −M(u2 − u1);

(H4′) there exist N ≥ 0 such that for all (t, u, v1), (t, u, v2) ∈ D̃,

|f(t, u, v2)− f(t, u, v1)| ≤ N |v2 − v1|;
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(H5′) for all (t, u, v) ∈ D̃, |f(t, u, v)| ≤ ϕ(|v|); where ϕ : R+ → R+ is continuous
and satisfies

max
t∈[0,1]

β − min
t∈[0,1]

α ≤
∫ ∞
l0

s ds

ϕ(s)

where l0 = sup[0,1][2|β(t)|].

Let λ < 0 be such that λ ≤ min{−M,− M
1−N ,−M −

N2

2 −
N
2

√
N2 + 4M}, and for

all t ∈ [0, 1],
f(t, β(t), β′(t))− f(t, α(t), α′(t))− λ(β − α) ≥ 0

then the sequences (αn) and (βn) defined by (5.1)-(5.2) and (5.3)-(5.4) converges
monotonically in C1([0, 1]) to solution v and u of (1.6)-(1.7), such that for all
t ∈ [0, 1], α ≤ v ≤ u ≤ β.

6. Numerical illustrations

In this section we consider two examples and verify that conditions derived in
this paper can actually be verified and existence of solutions can be proved.

Example 6.1. Consider the nonlinear three-point BVPs given by

−y′′(t) =
10y3 − 9ey

′

90
, 0 < t < 1, (6.1)

y′(0) = 0, y′(1) = 0.6y′(0.9). (6.2)

where f(t, y, y′) = 10y3−9ey′

90 , δ = 0.6, η = 0.9. Here α = 1 and β = −1 are lower
and upper solutions. It is a non well ordered case.

The priory bound can be computed as follows. ϕ = (10 + 9e|v|)/90. |y′| ≤
√

1
5 ;

i.e., R =
√

1/5. The Lipschitz constants are computed as M = 1/3 and N =
eR/10 = 0.156395.

The inequality f(t, β(t), β′(t))− f(t, α(t), α′(t))− λ(β−α) ≥ 0 is satisfied when
λ ≥ 0.11111. Now we can find out a subinterval (0.44, 1.8) ⊂ (0.11111, 2.4674)
(approx) such that (λ−M) cos

√
λ−N

√
λ sin

√
λ ≥ 0 and inequalities in (H0) are

satisfied (cf. Figure 1).
Thus it is guaranteed that ∃ at least one λ ∈ (0.44, 1.8) such that sequences

generated by iterative scheme converge uniformly to a solution of the nonlinear
three point boundary value problem (6.1) and (6.2).

Example 6.2. Consider the nonlinear three-point BVPs

−y′′(t) =
[y′(t)]2

60
− 5y(t)− e2

18
, (6.3)

y′(0) = 0, y′(1) = 0.7y′(0.5). (6.4)

where f(t, y, y′) = [y′(t)]2

60 − 5y(t)− e2

18 , δ = 7/10, η = 1
2 .

This example has α = −(t2 + 1
2 ) and β = (t2 + 1

2 ) as lower and upper solutions;
i.e., we are in well ordered case. The priory bound can be computed as follows.
ϕ = 15

2 + e2

18 + |v|2
60 , |y′| ≤ 2e

3
32 ; i.e., R = 3e

1
20 . The Lipschitz constants are give by

M = 5 and N = R/30 = 0.105127.
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HΛ - 0.333333 L cosJ Λ N - 0.156395 Λ sinJ Λ N
sinJ Λ N - 0.6 sinJ0.9 Λ N
cosJ Λ N - 0.6 cosJ0.9 Λ N

0.5 1.0 1.5 2.0

-0.1

0.0

0.1

0.2

0.3

0.4

0.5

Figure 1. Plots of inequalities (H0) and (λ − M) cos
√
λ −

N sin
√
λ ≥ 0 for λ ∈ (0, π2/4)

Now we can find out at least one λ < 0 such that when

λ ≤ min
{
−M,− M

1−N
,−M − N2

2
− N

2

√
N2 + 4M

}
,

Assumption (H0′) is satisfied (cf. Figure 2), we get two monotonic sequences.
Thus for any λ < −5.58739 the solutions of the iterative scheme converge uni-

formly to the solution of the nonlinear three point boundar- value problem (6.3)
and (6.4).

0.7 coshK  Λ¤
2

O - coshJ  Λ¤ N

sinhJ  Λ¤ N - 0.7 sinhK  Λ¤
2

O

-20 -15 -10 -5

-40

-20

20

40

Figure 2. Plots of inequalities (H0′) for λ < 0
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