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EXISTENCE AND UNIQUENESS OF SOLUTIONS TO
PARABOLIC FRACTIONAL DIFFERENTIAL EQUATIONS

WITH INTEGRAL CONDITIONS

TAKI-EDDINE OUSSAEIF, ABDELFATAH BOUZIANI

Abstract. In this article, we establish sufficient conditions for the existence

and uniqueness of a solution, in a functional weighted Sobolev space, for par-

tial fractional differential equations with integral conditions. The results are
established by applying the energy inequality method, and the density of the

range of the operator generated by the problem.

1. Introduction

Fractional differential equations (FDEs) are generalizations of differential equa-
tions of integer order to an arbitrary order. These generalizations play a cru-
cial role in engineering, physics and applied mathematics. Therefore, they have
generated a lot of interest from engineers and scientist in recent years. Since
FDEs have memory, nonlocal relations in space and time, and complex phenom-
ena can be modeled by using these equations. Indeed, we can find numerous
applications in viscoelasticity, electro-chemistry, signal processing, control theory,
porous media, fluid flow, rheology, diffusive transport, electrical networks, electro-
magnetic theory, probability, signal processing, and many other physical processes
[18, 19, 20, 23, 30]. For recent developments in fractional differential and in par-
tial differential equations, see the monograph by Kilbas et al [24], and the articles
[1, 2, 3, 5, 6, 13, 14, 16, 17, 22, 25, 31, 32].

A large number of problems in modern physics and technology are stated using
nonlocal conditions for partial differential equations, which are described using in-
tegral conditions. Integral boundary conditions receive a lot of attention because of
their applications in population dynamics, blood flow models, chemical engineering
and cellular systems; see for example [8, 9, 10, 11, 12, 28, 29].

The existence and uniqueness of solutions to initial and boundary-value problems
for fractional differential equations has been extensively studied by many authors;
see for example [2, 3, 4, 6, 7, 21, 26]. Some of the existence and uniqueness results
have been obtained by using the well-known Lax-Milgram theorem, and by fixed
point theorems [26, 15, 33].

2000 Mathematics Subject Classification. 35D05, 35K15, 35K20, 35B45, 35A05.
Key words and phrases. Partial fractional differential equation; energy inequality;

integral condition; existence; uniqueness.
c©2014 Texas State University - San Marcos.

Submitted June 11, 2014. Published August 25, 2014.

1



2 T.-E. OUSSAEIF, A. BOUZIANI EJDE-2014/179

A suitable variational formulation is the starting point of many numerical meth-
ods, such as finite element methods and spectral methods. Thus the construction
of a variational formulation is essential, and relies strongly on the choice of spaces
and their norms. Motivated by this, we extend and generalize the study for PDEs
with integral conditions to the study of fractional PDEs with integral conditions.
Also we expand the works in classical problems of fractional PDEs to non stan-
dard problems. Also we extend the application of the energy inequality method
for obtaining existence and uniqueness of solutions in functional weighted Sobolev
spaces.

2. Preliminaries

Let Γ(·) denote the gamma function. For any positive integer 0 < α < 1, the
Caputo derivative are the Riemann Liouville derivative are, respectively, defined as
follows:

(i) The left Caputo derivatives:

C
0 ∂

α
t u(x, t) :=

1
Γ(1− α)

∫ t

0

∂u(x, τ)
∂τ

1
(t− τ)α

dτ . (2.1)

(ii) The left Riemann-Liouville derivatives:

R
0 ∂

α
t u(x, t) :=

1
Γ(1− α)

∂

∂t

∫ t

0

u(x, τ)
(t− τ)α

dτ. (2.2)

Many authors consider the Caputo’s version to be natural because it allows
the handling of inhomogeneous initial conditions in a easier way. Then the two
definitions (2.1) and (2.2) are linked by the following relationship, which can be
verified by a direct calculation:

R
0 ∂

α
t u(x, t) = C

0 ∂
α
t u(x, t) +

u(x, 0)
Γ(1− α)tα

. (2.3)

In the rectangular domain Ω = (0, 1)×(0, T ), with T <∞, we consider the equation

Lv = C
0 ∂

α
t v(x, t)− ∂

∂x

(
a(x, t)

∂v

∂x

)
= F (x, t), (2.4)

with the initial data
`u = v(x, 0) = φ(x), x ∈ (0, 1), (2.5)

Neumann boundary condition

∂v

∂x
(0, t) = µ(t), (2.6)

and the integral condition∫ 1

0

v(x, t)dx = m(t), t ∈ (0, T ), (2.7)

where F , φ, µ and m are known functions.
We shall assume that the function φ satisfies a compatibility conditions with

(2.6) and (2.7), i.e.,

dφ(0)
dx

= µ(0),
∫ 1

0

φ(x) dx = m(0).
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Since the boundary conditions are inhomogeneous, we construct a function

U(x, t) = x
(
1− 3

2
x
)
µ(t) + 3x2m(t),

and introduce a new function ṽ(x, t) = v(x, t)− U(x, t). Then problem (2.4)–(2.7)
can be formulated as

Lṽ = C
0 ∂

α
t ṽ(x, t)− ∂

∂x

(
a(x, t)

∂v

∂x

)
= F (x, t)− LU = F̃ (x, t), (2.8)

`ṽ = ṽ(x, 0) = φ(x)− `U = ϕ(x), x ∈ (0, 1), (2.9)

∂ṽ

∂x
(0, t) = 0, (2.10)∫ 1

0

ṽ(x, t)dx = 0, t ∈ (0, T ), (2.11)

where ϕ satisfies a compatibility conditions with (2.10) and (2.11).
Again, introducing a new function u(x, t) = ṽ(x, t)−ϕ(x) and using (2.3), prob-

lem (2.8)-(2.11) can be formulated as

Lu = R
0 ∂

α
t u(x, t)− ∂

∂x

(
a(x, t)

∂u

∂x

)
= F̃ (x, t) +

∂

∂x

(
a(x, t)

dϕ(x)
dx

)
= f(x, t), (2.12)

`u = u(x, 0) = 0, x ∈ (0, 1), (2.13)
∂u

∂x
(0, t) = 0, (2.14)∫ 1

0

u(x, t)dx = 0, t ∈ (0, T ). (2.15)

Next we introduce the function spaces that we need in our investigation. L2(0, 1)
and L2(0, T, L2(0, 1)) be the standard function spaces. We denote by C0(0, 1) the
vector space of continuous functions with compact support in (0.1). Since such
functions are Lebesgue integrable with respect to dx, we can define on C0(0, 1) the
bilinear form given by

(u,w) =
∫ 1

0

=xu · =xw dx, (2.16)

where =xu =
∫ x

0
u(ξ, ·)dξ. The previous bilinear form (2.16) is considered as a

scalar product on C0(0, 1) for which C0(0, 1) is not complete.

Definition 2.1 ([8]). We denote by B2(0, 1) a completion of C0(0, 1), under the
scalar product (2.16) which is denoted (, ·, )B2(0,1). It is called the (Bouziani) space
of square integrable primitive functions on (0, 1). The norm of function u inB2(0, 1),
is the non-negative number

‖u‖B2(0,1) =
√

(u · u)B2(0,1) = ‖=xu‖L2(0,1).

For u ∈ L2(0, 1), we have the inequality

‖u‖2B2(0,1) 6
1
2
‖u‖2L2(0,1). (2.17)

We denote by L2(0, T, B2(0, 1)) := B2(Ω) the space of functions which are square
integrable in the Bochner sense, with the scalar product

(u,w)L2(0,T,B2(0,1)) =
∫ T

0

((u, ·), (w, ·))B2(0,1)dt. (2.18)
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Since the space B2(0, 1) is a Hilbert space, it can be shown that L2(0, T, B2(0, 1))
is a Hilbert space as well. Let C∞(0, T ) denote the space of infinitely differen-
tiable functions on (0, T ) and C∞0 (0, T ) denote the space of infinitely differentiable
functions with compact support in (0, T ).

Definition 2.2 ([27]). For any real σ > 0, we define the semi-norm

|u|2RHσ0 (Ω) := ‖R0 ∂σt u‖2L2(Ω),

and the norm

‖u‖RHσ0 (Ω) :=
(
‖u‖2L2(Ω) + |u|2RHσ0 (Ω)

)1/2

. (2.19)

Then we define RHσ
0 (Ω) as the closure of C∞0 (Ω) with respect to the norm ‖ ·

‖RHσ0 (Ω).

Definition 2.3. For any real σ > 0, we define the semi-norm:

|u|2RBσ0 (Ω) := ‖R0 ∂σt (=xu)‖2L2(Ω),

and the norm

‖u‖RBσ0 (Ω) :=
(
‖u‖2B2(Ω) + |u|2RBσ0 (Ω)

)1/2

. (2.20)

Then we define RBσ0 (Ω) as the closure of C∞0 (Ω) with respect to the norm ‖·‖RBσ0 (Ω).

Lemma 2.4 ([27]). If 0 < p < 1, 0 < q < 1, u(x, 0) = 0, t > 0, then
R
0 ∂

p+q
t u(x, t) = R

0 ∂
p
t u(x, t) · R0 ∂

q
t u(x, t) = R

0 ∂
q
t u(x, t) · R0 ∂

p
t u(x, t).

Lemma 2.5 ([26]). For any real σ > 0, the space RHσ
0 (Ω) with respect to the norm

(2.20) is complete.

3. Energy estimates and uniqueness of solution

The a priori estimate method, also called the energy-integral method, is one of
the most efficient functional analysis methods and an important technique for solv-
ing partial differential equations with integral conditions. It has been successfully
used in proving the existence, uniqueness, and continuous dependence of the solu-
tions of PDE’s. This method is essentially based on the construction of multipliers
for each specific problem, which provides a priori estimate from which it is possible
to establish the solvability of the problem.

Our proof is based on an energy inequality and the density of the range of the
operator generated by the abstract formulation of the problem. First we introduce
the needed function spaces, and then prove the existence and the uniqueness for
solution of (2.12)-(2.15) as a solution of the operator equation

Lu = f. (3.1)

Here L = (L, `), with domain E consisting of functions u ∈ L2(0, T, L2(0, 1)) :=
L2(Ω) such that R0 ∂

σ
t u, ux, uxx ∈ L2(Ω) and u satisfies condition (2.15); the opera-

tor L is considered from E to L2(Ω), where E is a Banach space (it can be verified
using Lemma 2.5) consisting of all functions u(x, t) having a finite norm

‖u‖2E = ‖u‖2RBσ0 (Ω),

and L2(Ω) is the Hilbert space consisting of all elements f for which the norm
L2(Ω) is finite.
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Theorem 3.1. Let a(x, t)− 1
2
∂2a(x,t)
∂x2 − ε

2 > 0, where ε� 1. Then for any function
u ∈ E and we have the inequality

‖u‖E ≤ c‖Lu‖L2(Ω) (3.2)

where c is a positive constant independent of u.

Proof. Multiplying (2.12) by Mu =
∫ 1

x
(
∫ ξ

0
u(η, t)dη)dξ and integrating over Ωτ ,

where Ωτ = (0, 1)× (0, τ), we obtain∫
Ωτ
Lu ·Mudxdt =

∫
Ωτ

R
0 ∂

α
t u(x, t)

(∫ 1

x

(∫ ξ

0

u(η, t)dη
)
dξ
)
dx dt

−
∫

Ωτ

∂

∂x
(a(x, t)

∂u

∂x
)
(∫ 1

x

(∫ ξ

0

u(η, t)dη
)
dξ
)
dx dt

=
∫

Ωτ
f(x, t)

(∫ 1

x

(∫ ξ

0

u(η, t)dη
)
dξ
)
dx dt

(3.3)

integrating by parts each term of the left-hand side of (3.3), and using conditions
(2.13) -(2.15), and Lemma 2.4, we obtain∫

Ωτ

R
0 ∂

α
t u(x, t)

(∫ 1

x

(
∫ ξ

0

u(η, t)dη)dξ
)
dx dt

=
∫

Ωτ

R
0 ∂

α
t

(∫ x

0

u(ξ, t)dξ
)(∫ x

0

u(ξ, t)dξ
)
dx dt

=
∫

Ωτ

(R
0
∂
α
2
t (
∫ x

0

u(ξ, t)dξ)
)2

dx dt.

(3.4)

and

−
∫

Ωτ

∂

∂x

(
a(x, t)

∂u

∂x

)( ∫ 1

x

(∫ ξ

0

u(η, t)dη
)
dξ
)
dx dt

= −
∫ τ

0

(∫ 1

x

(∫ ξ

0

u(η, t)dη
)
dξ
)(
a(x, t)

∂u

∂x

)∣∣x=1

x=0
dt

−
∫

Ωτ
a(x, t)

∂u

∂x

(∫ x

0

u(ξ, t)dξ
)
dx dt

= −
∫ τ

0

(∫ x

0

u(ξ, t)dξ
)

(a(x, t)u(x, t))
∣∣x=1

x=0
dt

+
∫

Ωτ

∂a

∂x
u(x, t)(

∫ x

0

u(ξ, t)dξ) dx dt+
∫

Ωτ
a(x, t)(u(x, t))2 dx dt

=
1
2

∫ τ

0

∂a

∂x

(∫ x

0

u(ξ, t)dξ
)2∣∣x=1

x=0
dt− 1

2

∫
Ωτ

∂2a

∂x2

(∫ x

0

u(ξ, t)dξ
)2

dx dt

+
∫

Ωτ
a(x, t)(u(x, t))2 dx dt

=
∫

Ωτ
a(x, t)(u(x, t))2 dx dt− 1

2

∫
Ωτ

∂2a

∂x2

(∫ x

0

u(ξ, t)dξ
)2

dx dt.

(3.5)
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Using the Cauchy inequality with ε and integrating by parts the right hand side,
we can estimate∫

Ωτ
f(x, t)

(∫ 1

x

(∫ ξ

0

u(η, t)dη
)
dξ
)
dx dt

= −
∫ τ

0

(∫ 1

x

(∫ ξ

0

u(η, t)dη
)
dξ
)(∫ x

0

f(ξ, t)dξ)
∣∣x=1

x=0
dt

+
∫

Ωτ

(∫ x

0

f(ξ, t)dξ
)(∫ x

0

u(ξ, t)dξ
)
dx dt

6
ε

2

∫
Ωτ

(∫ x

0

u(ξ, t)dξ
)2

dx dt+
1
2ε

∫
Ωτ

(∫ x

0

f(ξ, t)dξ
)2

dx dt

6
ε

2

∫
Ωτ

(u(x, t))2 dx dt+
1
2ε

∫
Ωτ

(f(x, t))2 dx dt.

(3.6)

Substituting (3.4)-(3.6) into (3.3), we obtain∫
Ωτ

(R
0
∂
α
2
t (
∫ x

0

u(ξ, t)dξ)
)2

dx dt+
∫

Ωτ
a(x, t)(u(x, t))2 dx dt

6
ε

2

∫
Ωτ

(u(x, t))2 dx dt+
1
2ε

∫
Ωτ

(f(x, t))2 dx dt

+
1
2

∫
Ωτ

∂2a

∂x2

(∫ x

0

u(ξ, t)dξ
)2

dx dt

6
∫

Ωτ

(1
2
∂2a

∂x2
+
ε

2
)
(u(x, t))2 dx dt+

1
2ε

∫
Ωτ

(f(x, t))2 dx dt.

Since a(x, t)− 1
2
∂2a(x,t)
∂x2 − ε

2 > 0, we obtain∫
Ωτ

(R
0
∂
α
2
t

(∫ x

0

u(ξ, t)dξ
))2

dx dt+
∫

Ωτ
(u(x, t))2 dx dt

6
1
2ε

∫
Ωτ

(f(x, t))2 dx dt,

(3.7)

from (2.7), we have∫
Ωτ

(∫ x

0

u(ξ, t)dξ
)2

dx dt 6
1
2

∫
Ωτ

(u(x, t))2 dx dt,

then, (3.7) becomes∫
Ωτ

(R
0
∂
α
2
t

(∫ x

0

u(ξ, t)dξ
))2

dx dt+ 2
∫

Ωτ

(∫ x

0

u(ξ, t)dξ
)2

dx dt

6
∫

Ωτ

(R
0
∂
α
2
t

(∫ x

0

u(ξ, t)dξ
))2

dx dt+
∫

Ωτ
(u(x, t))2 dx dt

6
1
2ε

∫
Ωτ

(f(x, t))2 dx dt.

So, we obtain∫
Ωτ

(R
0
∂
α
2
t

(∫ x

0

u(ξ, t)dξ
))2

dx dt+
∫

Ωτ

(∫ x

0

u(ξ, t)dξ
)2

dx dt

6
1
2ε

∫
Ωτ

(f(x, t))2 dx dt,

(3.8)
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The right-hand side of (3.8) is independent of τ , hence replacing the left-hand side
by its upper bound with respect to τ from 0 to T , we obtain the desired inequality,
where c = (1/(2ε))1/2. �

Proposition 3.2. The operator L from E to F admits a closure.

Theorem 3.1 is valid for strong solutions; i.e., we have the inequality

‖u‖B ≤ c‖Lu‖F , ∀u ∈ D(L). (3.9)

Hence we obtain

Corollary 3.3. A strong solution of (2.12)-(2.15) is unique if it exists, and depends
continuously on F ∈ F .

Corollary 3.4. The range R(L) of the operator L is closed in F , and R(L) = R(L).

4. Existence of solutions

To show the existence of solutions, we prove that R(L) is dense in L2(Ω) for all
u ∈ E and for arbitrary f ∈ L2(Ω).

Theorem 4.1. Let the conditions of Theorem 3.1 be satisfied. if, for ω ∈ L2(Ω)
and for all u ∈ E, we have ∫

Ω

Lu.ω dx dt = 0, (4.1)

then ω vanishes almost everywhere in Ω, this implies that (2.12)-(2.15) admits a
unique solution u = L−1F.

Proof. The scalar product in F is defined by

(Lu, ω)L2(Ω) =
∫

Ω

Luω dx dt, (4.2)

then (4.1) can be written as∫
Ω

R
0 ∂

α
t u(x, t) · ω dx dt =

∫
Ω

∂

∂x

(
a(x, t)

∂u

∂x

)
· ω dx dt. (4.3)

If we put

u(x, t) = =t(z(x, τ)) =
∫ t

0

z(x, τ) dτ,

where z, ∂z∂x ,
∂
∂x

(
a∂=t(z(x,τ))

∂x

)
, R

0 ∂
α
t z ∈ L2(Ω) and z satisfies the same conditions

(2.13)-(2.15). As a result of (4.3), we obtain the equality∫
Ω

R
0 ∂

α
t (=t(z(x, τ))) · ω dx dt =

∫
Ω

∂

∂x
(a(x, t)

∂=t(z(x, τ))
∂x

)ω dx dt. (4.4)

In terms of the given function ω, and from the equality (4.4) we give the function
ω in terms of z as

ω =
∫ 1

x

(∫ ξ

0

(=t(z(η, τ) dτ))dη
)
dξ. (4.5)

So, ω ∈ L2(Ω).
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Replacing ω in (4.4) by its representation (4.5) and integrating by parts each
term of (4.4) and by taking the condition of z, we obtain∫

Ω

R
0 ∂

α
t (=t(z(x, τ))) · ω dx dt

=
∫

Ω

(R
0
∂
α/2
t

(∫ x

0

=t(z(ξ, τ) dτ)dξ
))2

dx dt,

(4.6)

and ∫
Ω

∂

∂x
(a
∂=t(z(x, τ))

∂x
)ω dx dt

=
∫

Ω

∂

∂x

(
a
∂=t(z(x, τ))

∂x

)(∫ 1

x

(
∫ ξ

0

(=t(z(η, τ) dτ))dη)dξ
)
dx dt

=
∫ T

0

(∫ 1

x

(∫ ξ

0

(=t(z(η, τ) dτ))dη
)
dξ
)(
a
∂=t(z)
∂x

)∣∣x=1

x=0
dt

+
∫

Ω

(
a
∂=t(z)
∂x

)((∫ x

0

(=t(z(ξ, τ) dτ))dξ
))

dx dt

=
∫ T

0

(
a

∫ x

0

(=t(z(ξ, τ) dτ))dξ
)(
=t(z)

)∣∣x=1

x=0
dt

−
∫

Ω

=t(z)
(∫ x

0

=t(z)
)
dx dt−

∫
Ω

a(=t(z))2 dx dt

= −1
2

∫ T

0

∂a

∂x

(∫ x

0

=t(z)
)2∣∣x=1

x=0
dt+

1
2

∫
Ω

∂2a

∂x2

(∫ x

0

=t(z)
)2

dx dt

−
∫

Ω

a(=t(z))2 dx dt

=
1
2

∫
Ω

∂2a

∂x2

(∫ x

0

=t(z(ξ, τ) dτ)dξ
)2

dx dt−
∫

Ω

a(x, t)(=t(z))2 dx dt.

By combining the above expression and (4.6), we obtain∫
Ω

(R
0
∂
α
2
t

(∫ x

0

=t(z(ξ, τ) dτ)dξ
))2

dx dt

=
1
2

∫
Ω

∂2a

∂x2

(∫ x

0

=t(z(ξ, τ) dτ)dξ
)2

dx dt−
∫

Ω

a(x, t)(=t(z))2 dx dt,

(4.7)

estimated the right-hand side of (4.7), we obtain∫
Ω

(R
0
∂
α/2
t

(∫ x

0

=t(z(ξ, τ) dτ)dξ
))2

dx dt

=
1
2

∫
Ω

∂2a

∂x2

(∫ x

0

=t(z(ξ, τ) dτ)dξ
)2

dx dt−
∫

Ω

a(x, t)
(
=t(z)

)2
dx dt

6
1
2

∫
Ω

[1
2
∂2a

∂x2
− a(x, t)

]
(=tz(ξ, τ) dτ)2 dx dt,

since a(x, t)− 1
2
∂2a(x,t)
∂x2 − ε

2 > 0, we obtain∫
Ω

(R
0
∂
α
2
t

(∫ x

0

=t(z(ξ, τ) dτ)dξ
))2

dx dt
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6
1
2

∫
Ω

[1
2
∂2a

∂x2
− a(x, t)

]
(=tz(ξ, τ) dτ)2 dx dt 6 0.

And thus z = 0 in Ω, then ω = 0 in Ω. This completes the proof. �
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