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A DENSITY-DEPENDENT PREDATOR-PREY MODEL OF
BEDDINGTON-DEANGELIS TYPE

HAIYIN LI, ZHIKUN SHE

Abstract. In this article, we study the dynamics of a density-dependent
predator-prey system of Beddington-DeAngelis type. We obtain sufficient

and necessary conditions for the existence of a unique positive equilibrium,

the global attractiveness of the boundary equilibrium, and the permanence of
the system, respectively. Moreover, we derive a sufficient condition for the lo-

cally asymptotic stability of the positive equilibrium by the Lyapunov function
theory and a sufficient condition for the global attractiveness of the positive

equilibrium by the comparison theory.

1. Introduction

The study of dynamics of predator-prey systems is one of the importan subjects
in mathematical ecology and mathematical biology. The basic predator-prey model
for a prey population density x(t) and a predator population density y(t) is

x′(t) = x(t)(a− bx(t))− f(x, y)y(t)

y′(t) = −dy(t) + hf(x, y)y(t)
(1.1)

where a is the intrinsic growth rate of the prey, b measures the intensity of intraspe-
cific action of the prey, h denotes the conversion coefficient, d denotes the predator’s
death rate, and the function f(x, y) is the predator’s functional response.

The above basic model has been extensively studied in the literature [7, 8, 14, 17,
22, 23, 24, 26, 27, 28]. Since one of the central goals of ecologists is to understand the
relationship between predator and prey, the predator’s functional response, as one
significant component of the predator-prey relationship, has also been considered
[3, 5, 6, 9, 21]. Beddington [3] and DeAngelis [6] originally proposed the predator-
prey system with the Beddington-DeAngelis functional response, described by the
model

x′(t) = x(t)(a− bx(t)− cy(t)
m1 +m2x(t) +m3y(t)

)

y′(t) = y(t)(−d+
fx(t)

m1 +m2x(t) +m3y(t)
).

(1.2)

Skalski and Gilliam [21] further presented the statistical evidence for predator-prey
systems that three predator-dependent functional response: Beddington-DeAngelis,
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Crowley-Martin and Hassell-Varley can provide better description of predator feed-
ing over a range of predator-prey abundances.

Moreover, certain environments confine the predator to be density dependent
and there are also considerable evidences that some predator species may be den-
sity dependence because of the environmental factors [1, 2]. Further, Kratina [12]
showed that predator dependence is important not only at very high predator den-
sities on per capita predation rate but also at low predator densities. So, it is not
enough to only require the prey to be density dependent and we also need to take
into account realistic levels of predator dependence.

In [18], the following model is used to describe the growth of a prey x(t) and a
predator y(t) with density dependence:

x′(t) = x(t)
(
a− bx(t)− cy(t)

m1 +m2x(t) +m3y(t)

)
y′(t) = y(t)

(
− d− ry(t) +

fx(t)
m1 +m2x(t) +m3y(t)

) (1.3)

where x(t) is the prey population density, y(t) is the predator population density,
r stands for predator density dependence rate, and the predator consumes prey
with functional response of the Beddington-DeAngelis type cx(t)y(t)

m1+m2x(t)+m3y(t) and

contributes to its growth with the rate fx(t)y(t)
m1+m2x(t)+m3y(t) . Note that compared

with the system (1.2), the system (1.3) contains not only bx2(t) (which stands for
intraspecific action of prey species) but also ry2(t) (which stands for intraspecific
action of predator species).

In this article, we investigate the dynamics of the model described by the dif-
ferential equations (1.3). We start with a sufficient and necessary condition for
the existence of a unique positive equilibrium by analyzing the corresponding loca-
tions of hyperbolic curves while the same condition was provided in [18] only as a
sufficient condition.

Then, by using the corresponding characteristic equations of the origin and the
boundary equilibrium, we analyze their locally asymptotic stability, respectively.
Additionally, we analyze the locally asymptotic stability of the positive equilibrium
by constructing a Lyapunov function.

Afterwards, based on a sufficient and necessary condition for the global attrac-
tiveness of the boundary equilibrium, we further obtain a sufficient and necessary
condition for the permanence of the system (1.3) by investigating types of the limit
set [10] instead of making use of the the persistence theory [11, 19, 25]. Note that
[18] does not consider the necessary condition for the global attractiveness of the
boundary equilibrium and thus can only provide a stronger, sufficient condition for
the permanence of the system. Here, the following definition of permanence is used.

Definition 1.1. The system (1.3) is said to be permanent if there exist positive
constants δ and ∆ with 0 < δ ≤ ∆ such that

min{lim inf
t→+∞

x(t), lim inf
t→+∞

y(t)} ≥ δ, max{lim sup
t→+∞

x(t), lim sup
t→+∞

y(t)} ≤ ∆

for all solutions (x(t), y(t)) of (1.3) with positive initial conditions.

Since the permanence of the system shows that the time evolution of the two
species eventually either forms a cyclic loop or attracts to the positive equilibrium,
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we finally derive a sufficient condition for assuring the global attractiveness of the
positive equilibrium by the comparison theorem.

The rest of this article is organized as follows. In Section 2, we obtain a suf-
ficient and necessary condition for the existence of a unique positive equilibrium
and analyze the local stability of the non-negative equilibria of the system (1.3). In
Section 3, we present a sufficient and necessary condition for the global attractive-
ness of the boundary equilibrium. In Section 4, we derive a sufficient and necessary
condition for the permanence of the system (1.3). In Section 5, we consider the
global attractiveness of the positive equilibrium by using the comparison theorem.
We conclude our discussions in Section 6.

2. Equilibria and their local stability

It is clear that for all parameter values, the system (1.3) has the equilibria
E0(0, 0) and E1(a

b , 0), denoted as the origin and the boundary equilibrium, respec-
tively. For studying the existence of positive equilibria, we analyze the following
two equations:

(a− bx)(m1 +m2x+m3y)− cy = 0

(−d− ry)(m1 +m2x+m3y) + fx = 0.
(2.1)

For the equation (a − bx)(m1 + m2x + m3y) − cy = 0, it is clear that (a/b, 0)
and (−m1/m2, 0) are on its corresponding curves and if c− am3 6= 0, (0, am1

c−am3
) is

also on its corresponding curves. In addition, when c−am3
bm3

6= m1
m2

, this equation is
a hyperbolic equation and its two asymptotic lines are x+ c−am3

bm3
= 0 and

y +
m2

m3
x+

bm1m3 − cm2

bm2
3

= 0.

Thus, the locations of its corresponding curves can be roughly shown from Figure 1.
When c−am3

bm3
= m1

m2
, the equation is equivalent to (m1+m2x)(am2−bm2x−bm3y) =

0.
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Figure 1. Curves of the hyperbolic equation (a−bx)(m1 +m2x+
m3y)− cy = 0.

For the equation (−d− ry)(m1 +m2x+m3y) + fx = 0, it is clear that (0,−d/r)
and (0,−m1/m3) are on its corresponding curves and if f − dm2 6= 0, ( dm1

f−dm2
, 0)

is also on its corresponding curves. In addition, when m1
m3
6= dm2−f

rm2
, this equation

is a hyperbolic equation and its two asymptotic lines are y + dm2−f
rm2

= 0 and
y + m2

m3
x + rm1m2+fm3

rm2
= 0. Thus, the locations of its corresponding curves can
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be roughly seen from Figure 2. When m1
m3

= dm2−f
rm2

, the equation is equivalent to
(m1 +m3y)(dm3 + rm2x+ rm3y) = 0.
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Figure 2. Curves of the hyperbolic equation (a−bx)(m1 +m2x+
m3y)− cy = 0.

Thus, by combining Figures 1 and 2 with the above discussions, we have the
following theorem.

Theorem 2.1. System (1.3) has a unique positive equilibrium E∗(x∗, y∗) if and
only if

(f − dm2)a/b > dm1 . (2.2)

Remark 2.2. In [18] it is used (f − dm2)a/b > dm1 as the sufficient condition of
the existence of a unique positive equilibrium.

Remark 2.3. From (2.2), we can easily see that the predator density dependent
rate r does not affect the existence of the positive equilibrium.

In the rest of this section, we study the stability of the non-negative equilibria
E0(0, 0), E1(a

b , 0) and E∗(x∗, y∗), respectively. For this, we first write the system
(1.3) as X

′
(t) = F (X(t)), where X(t) = (x(t), y(t)). Then, for an arbitrary but

the fixed point X
∗

= (x, y), we consider its corresponding characteristic equation
as follows.

Let G = ( ∂F
∂X(t)

)X
∗ , then

G =
[
a− 2bx− cq′x −cq′y

fq′x −d− 2ry + fq′y

]
X
∗
,

where

q(x, y) =
xy

m1 +m2x+m3y
, q′x =

y(m1 +m3y)
(m1 +m2x+m3y)2

,

q′y =
x(m1 +m2x)

(m1 +m2x+m3y)2
.

Thus, the characteristic equation of (1.3) at the point X
∗

is

|G− λI| =
∣∣∣∣a− 2bx− cq′x − λ −cq′y

fq′x −d− 2ry + fq′y − λ

∣∣∣∣ = P (λ, τ) = 0,

where

P (λ) = λ2 + P1λ+ P0, P1 = −a+ 2bx+ cq′x −R,
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P0 = (a− 2bx)R+ cq′x(d+ 2ry), R = fq′y − d− 2ry.

Based on the characteristic equation of the point E0, we have:

Theorem 2.4. The equilibrium E0(0, 0) is unstable.

Proof. The characteristic equation of (1.3) at the point E0 is

|G− λI|(0,0) = (λ− a)(λ+ d) = 0.

Clearly, λ = −d is a negative eigenvalue and λ = a is a positive eigenvalue, implying
that E0 is an unstable saddle. �

Additionally, based on the characteristic equation of the point E1, we have:

Theorem 2.5. The equilibrium E1(a
b , 0) is

(i) unstable if (f − dm2)a/b > dm1;
(ii) locally asymptotically stable if (f − dm2)a/b < dm1.

Proof. Since the characteristic equation of (1.3) at the point E1 is (λ + a)
[
λ −

( af
m1b+m2a−d)

]
= 0, it follows that λ = −a and λ = af

m1b+m2a−d are two eigenvalues.
(i) If (f − dm2)a/b > dm1, λ = af

m1b+m2a − d is positive and E1 is a unstable
saddle.

(ii) If (f − dm2)a/b < dm1, then λ = af
m1b+m2a − d is negative, implying that E1

is a locally asymptotically stable node. �

Remark 2.6. If (f − dm2)a/b = dm1, we can easily prove that E1(a
b , 0) is linearly

neutrally stable. But, whether E1(a
b , 0) is stable when (f − dm2)a/b = dm1 is

unknown. However, we can prove that when (f − dm2)a/b = dm1, E1(a
b , 0) is

globally attractive, which will be discussed in Section 3.

Further, instead of considering the negativeness of the real parts of the eigen-
values [18], we analyze the locally asymptotically stable analysis of E∗(x∗, y∗) by
constructing a Lyapunov function for its linearization as follows.

Let

x(t) = x∗ + u(t)

y(t) = y∗ + v(t),

then the linearization of (1.3) is

u′(t) = Au(t)− Cv(t)

v′(t) = −Dv(t) + Fu(t),
(2.3)

where

A = a− 2bx∗ − cy∗(m1 +m3y
∗)

(m1 +m2x∗ +m3y∗)2
, C =

cx∗(m1 +m2x
∗)

(m1 +m2x∗ +m3y∗)2

D = d+ 2ry∗ − fx∗(m1 +m2x
∗)

(m1 +m2x∗ +m3y∗)2
, F =

fy∗(m1 +m3y
∗)

(m1 +m2x∗ +m3y∗)2
.

(2.4)

Clearly, C and F are positive. Therefore, by the construction of a Lyapunov func-
tion, we have the following result for the positive equilibrium E∗(x∗, y∗).
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Theorem 2.7. If (2.2) holds and

|F − C| < min{2D,−2A}, (2.5)

then the equilibrium (0, 0) of the system (2.3) is locally asymptotically stable, imply-
ing that the positive equilibrium E∗(x∗, y∗) of (1.3) is locally asymptotically stable.

Proof. For proving the locally asymptotic stability of the equilibrium (0, 0) of the
system (2.3), it it sufficient to consider the existence of a strict Lyapunov function.

Letting W (t) = u2(t) + v2(t), the time derivative of W (t) is

W ′(t) = 2Au2(t)− 2Dv2(t) + 2(F − C)u(t)v(t).

Clearly, W (t) ≥ 0 and W (t) = 0 if and only if u(t) = v(t) = 0. In addition, if
u(t) = v(t) = 0, then W ′(t) = 0. Moreover,

W ′(t) ≤ 2Au2(t)− 2Dv2(t) + 2|F − C||u(t)||v(t)|
≤ [2A+ |F − C|]u2(t) + (−2D + |F − C|)v2(t).

From (2.2) and (2.5), we have that: if u2(t) + v2(t) > 0, then W ′(t) < 0. Thus,
W (t) is a strict Lyapunov function. Due to the Lyapunov stability theorem [16],
the equilibrium (0, 0) of the system (2.3) is locally asymptotically stable, implying
that the positive equilibrium E∗(x∗, y∗) of the system (1.3) is locally asymptotically
stable. �

3. Global attractiveness of the boundary equilibrium

From Theorem 2.5, if (f−dm2)a/b < dm1, E1 is locally attractive. However, for
the qualitative analysis, it is far from enough. So, in this section, we try to derive a
sufficient and necessary condition for assuring the global attractiveness of E1. For
this, the following lemma is first introduced.

Lemma 3.1. Let S = {(x, y) : x > 0, y > 0} and S = {(x, y) : x ≥ 0, y ≥ 0}.
Then, the sets S and S are both invariant sets.

Proof. Since x = 0 and y = 0 are both solutions to the system (1.3), due to the
uniqueness of the solution to the system (1.3), the lemma directly holds. �

Then, based on Lemma 3.1, we have the following result on the global attrac-
tiveness of E1.

Theorem 3.2. For any solution (x(t), y(t)) of (1.3) with x(0) > 0 and y(0) > 0,
limt→+∞(x(t), y(t)) = (a

b , 0) if and only if

(f − dm2)a/b ≤ dm1. (3.1)

Proof. For proving the necessity, we consider the following two cases:
Case 1: (f − dm2)a/b < dm1. First, we want to prove that limt→+∞ y(t) = 0.

Due to Lemma 3.1, x′(t) ≤ ax(t) − bx2(t). Then, by considering the comparison
equation

p′(t) = ap(t)− bp2(t), p(0) = x(0) > 0,

we have that x(t) ≤ p(t) for all t ≥ 0, and limt→+∞ p(t) = a
b . Thus, there exists

a sufficiently small positive constant ε with (f − dm2)(a
b + ε) < dm1 such that for
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this ε, there exists a Tε > 0 such that x(t) < a
b + ε for all t > Tε. Substituting it

into the second equation of the system (1.3), we get that for all t > Tε,

y′(t) ≤
[ (f − dm2)(a

b + ε)− dm1

m1 +m2(a
b + ε)

]
y(t)− ry2(t).

So, let us consider the comparison equation

q′(t) =
[ (f − dm2)(a

b + ε)− dm1

m1 +m2(a
b + ε)

]
q(t)− rq2(t), q(Tε) = y(Tε) > 0,

whose solution is

q(t) =
Fq′(Tε)eF (t−Tε)

1 + rq′(Tε)eF (t−Tε)
,

where

F =
(f − dm2)(a

b + ε)− dm1

m1 +m2(a
b + ε)

, q′(Tε) =
q(Tε)

F − rq(Tε)
.

Clearly, by the comparison theorem, we have that y(t) ≤ q(t) for all t ≥ T . In
addition, since (f−dm2)(a

b +ε) < dm1, then F < 0, implying that limt→+∞ q(t) = 0
and thus limt→+∞ y(t) = 0.

Second, we want to prove that x(t) → a
b as t → +∞, that is, to prove that for

any ε1 ∈ (0, a
b ), there exists a T0 > 0 such that for all t > T0, −ε1 < x(t)− a

b < ε1.
Since limt→+∞ y(t) = 0, from Lemma 3.1, for any given ε1 ∈ (0, a

b ), there exists
a T1 > 0 such that for all t ≥ T1, 0 < y(t) < bm1

2c ε1. Thus, for all t ≥ T1, we have(
a− bε1

2
)
x(t)− bx2(t) ≤ x′(t) ≤ ax(t)− bx2(t). (3.2)

Let us consider the comparison equation

p̃′(t) =
(
a− bε1

2
)
p̃(t)− bp̃2(t), p̃(T1) = x(T1) > 0.

Since a > bε1, we have limt→+∞ p̃(t) = a
b −

ε1
2 . In addition, we have that for all

t ≥ T1, p̃(t) ≤ x(t) ≤ p(t).
Since limt→+∞ p(t) = a

b , for the above ε1, there exists a T2 > 0 such that for
all t > T2, p(t) ≤ a

b + ε1. Similarly, since limt→+∞ p̃(t) = a
b −

ε1
2 , for the above

ε1, there exists a T3 > 0 such that for all t > T3, p̃(t) − a
b + ε1

2 > − ε1
2 . Thus,

letting T0 = max{T1, T2, T3}, for all t > T0, −ε1 < x(t) − a
b < ε1, implying that

limt→+∞ x(t) = a
b .

(2) (f − dm2)a/b = dm1. First, we want to prove that limt→+∞ y(t) = 0.
Similarly, for an arbitrary ε2 > 0, there exists Tε2 > 0 such that x(t) < a

b + ε2 for
all t > Tε2 . Thus, due to Lemma 3.1, for all t > Tε2 ,

y′(t) < −dy(t)− ry2(t) +
fx(t)

m1 +m2x(t)
y(t)

< y(t)
( f(a

b + ε2)
m1 +m2(a

b + ε2)
− d
)
− ry2(t)

=
ε2(f − dm2)

m1 +m2(a
b + ε2)

y(t)− ry2(t).

So, let us consider the comparison equation

q̃′(t) =
ε2(f − dm2)

m1 +m2(a
b + ε2)

q̃(t)− rq̃2(t), q̃(Tε2) = y(Tε2) > 0,
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whose solution is q̃(t) = F eq′(Tε2 )eF (t−Tε2 )

1+req′(Tε2 )eF (t−Tε2 ) , where F = ε2(f−dm2)
m1+m2( a

b +ε2) and q̃′(T ) =
eq(Tε2 )

F−req(Tε2 ) . Clearly, by the comparison theorem, we have that y(t) ≤ q̃(t) for all
t ≥ Tε2 . In addition, since (f − dm2)a/b = dm1, then F > 0, implying that
limt→+∞ q̃(t) = ε2(f−dm2)

r(m1+m2( a
b +ε2)) .

Thus, for the above ε2, there exists a T ′ > 0 such that for all t ≥ T ′,

q̃(t)− ε2(f − dm2)
r(m1 +m2(a

b + ε2))
< ε2.

Letting T ′0 = max{Tε2 , T
′
1}, then for all t > T ′0, y(t) < ε2(f−dm2)

r(m1+m2( a
b +ε2)) + ε2 <

f−dm2+r(m1+m2
a
b )

r(m1+m2
a
b ) ε2, implying that limt→+∞ y(t) = 0. The proof of limt→+∞ x(t) =

a
b is similar to the case (f − dm2)a/b < dm1.

For proving the sufficiency, we assume that (f − dm2)a/b > dm1 and try to
derive a contradiction. Due to the assumption that (f − dm2)a/b > dm1, system
(1.3) has a unique positive equilibrium (x∗, y∗), which is also a solution to (1.3),
contradicting with limt→+∞(x∗, y∗) = (a

b , 0). Thus, condition (3.1) must hold. �

Remark 3.3. In [18] it is only provided f < dm2 as a sufficient condition for the
globally asymptotic stability of E1(a

b , 0).

Remark 3.4. From Theorems 2.5 and 3.2, we can directly derive that E1(a
b , 0) is

a saddle if and only if (f − dm2)a/b > dm1.

4. Permanence analysis

From Theorem 3.2, (f−dm2)a/b ≤ dm1 is a sufficient condition for the predator
to be extinctive. In this section, we will like to derive a sufficient and necessary
condition for the permanence (or equivalently, the extinction).

Firstly, we introduce the following boundedness result for (1.3).

Lemma 4.1. All solutions of (1.3) with positive initial conditions are bounded for
t ≥ 0.

Proof. Due to Lemma 3.1, for all t > 0, x′(t) ≤ ax(t)− bx2(t). Similar to the proof
of Theorem 3.2, there exists a T > 0 such that for all t > T , x(t) ≤ a

b + 1, implying
that x(t) is bounded for all t ≥ 0.

Letting ω(t) = f
c x(t) + y(t), we have

dω(t)
dt
≤ −dy(t) +

af

c
x(t) = −dω(t) +

(a+ d)f
c

x(t).

Clearly, there exist M > 0 and T1 > 0 such that for all t ≥ T1,

dω(t)
dt
≤M − dω(t).

Let dp(t)
dt = M − dp(t) with p(T1) = ω(T1), then ω(t) ≤ p(t) for all t ≥ T1 and

limt→+∞ p(t) ≤ M
d . Thus, there exists a T2 > max{T, T1} such that for all t > T2,

ω(t) ≤ p(t) ≤ M
d + 1, implying that y(t) is bounded for all t ≥ 0. �

Secondly, based on Lemma 4.1 and [16, Lemma 4.1], we have the following
property about the ω-limit set.
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Lemma 4.2. For any point in S = {(x, y) : x > 0, y > 0}, its ω-limit set is
nonempty, compact, connected, and invariant.

Thirdly, by Lemma 4.1, Lemma 4.2 and Poincaré-Bendixson theorem [10], we
have the following theorem describing the possible types of the ω-limit set of any
initial point in S = {(x(0), y(0)) : x(0) > 0, y(0) > 0}.

Theorem 4.3. If (f − dm2)a/b > dm1, then for any initial point in S, its ω-limit
set consists of either only the positive equilibrium E∗ or a closed orbit.

Proof. For any point (x0, y0) in S, let (x(t), y(t)) be the orbit of the system (1.3)
with (x(0), y(0)) = (x0, y0). By Lemma 4.2 and Poincaré-Bendixson theorem [10],

(a) the ω-limit set of (x0, y0) consists of a single point p which is a equilibrium
point such that limt→+∞(x(t), y(t)) = p, or

(b) the ω-limit set of (x0, y0) is a closed orbit, or
(c) the ω-limit set of (x0, y0) consists of equilibrium points together with their

connecting orbits. Each such orbit approaches an equilibrium point as
t→ +∞ and t→ −∞.

In addition, it is clear that if (f − dm2)a/b > dm1, system (1.3) has only three
equilibria E0, E1 and E∗ in the first quadrant. Moreover, by the proof of Theo-
rem 2.4, E0 is a saddle; by the proof of Theorem 2.5, if (f − dm2)a/b > dm1, E1 is
also a saddle.

So, for the above case (a), the ω-limit set consists of only the equilibrium E∗.
Moreover, we can prove that the above case (c) cannot occur as follows.

First, we can prove that the ω-limit set cannot contain E0 and E∗ together.
Otherwise, there exists an orbit γ0(t) connecting E0 and E∗. Since E0 is a saddle,
limt→+∞ γ0(t) = E0, contradicting with the fact that (0, y(t)) is the unique orbit
of the system (1.3) with limt→+∞(0, y(t)) = E0.

Second, we assume that the ω-limit set consists of E0 and E1 together with
their connecting orbit (x(t), 0) with 0 < x(t) < a/b, limt→−∞(x(t), 0) = E0 and
limt→+∞(x(t), 0) = E1, and try to derive a contradiction as follows.

Since E0 is a saddle, there exists a constant δ > 0 such that the orbit (x(t), y(t))
infinitely enters and then leaves the region {(x, y) : x2 +y2 ≤ δ}. Let tn be the n-th
time instant for the orbit to enter the region. Due to Lemma 4.1, {(x(tn), y(tn))}
is a bounded sequence. Thus, there exist a subsequence {(x(tnk

), y(tnk
)} and a

(x̄, ȳ) such that limk→+∞(x(tnk
), y(tnk

)) = (x̄, ȳ) and ȳ 6= 0, contradicting with the
assumption that the ω-limit set consists of E0 and E1 together with their connecting
orbit (x(t), 0).

Third, we can similarly prove that the ω-limit set cannot consist of E1 and E∗

together with their connecting orbit.
Fourth, the ω-limit set cannot consist of E0 and a homoclinic orbit since (0, y(t))

is the unique orbit of the system (1.3) with limt→+∞(0, y(t)) = E0.
Fifth, the ω-limit set cannot consist of E1 and a homoclinic orbit since (x(t), 0)

with 0 < x(t) < a/b is the unique orbit of the system (1.3) with limt→+∞(x(t), 0) =
E1.

Sixth, assume that the ω-limit set contains E∗ and a homoclinic orbit. Then,
there exists at least one positive equilibrium inside the region enclosed by the homo-
clinic orbit, contradicting with the result that E∗ is the unique positive equilibrium.

Thus, we have proved that if (f − dm2)a/b > dm1, then for any point in S, its
ω-limit set consists of either only the positive equilibrium E∗ or a closed orbit. �
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Finally, based on Theorems 4.3 and 3.2 and Definition 1.1, we have the following
result for the permanence of the system (1.3).

Theorem 4.4. System (1.3) is permanent if and only if (f−dm2)a/b > dm1 (i.e.,
positive equilibria exist).

Proof. Due to Theorem 4.3 and Definition 1.1, if (f − dm2)a/b > dm1, then the
system (1.3) is permanent. In addition, due to Theorem 3.2 and Definition 1.1, if
(f − dm2)a/b ≤ dm1, the system (1.3) is not permanent. Thus, the sufficiency and
necessity are both proved. �

Remark 4.5. By Theorem 4.4, the predator density dependent rate r does not
affect the permanence of the system (1.3).

5. Permanent coexistence to the positive equilibrium

From Theorems 4.3 and 4.4, the permanence of the system shows that the time
evolution of the two species eventually either forms a cyclic loop or attracts to
the positive equilibrium. In this section, we try to use the comparison theorem to
provide a sufficient condition for the global asymptotic stability of E∗(x∗, y∗).

Let the initial point be in the set S = {(x, y) : x > 0, y > 0}. We need the
following preparations by iteratively making use of the comparison theorem.

Similar to the proof in Theorem 3.2, for an arbitrary sufficiently small ε′1 > 0,
there exists a T1 such that for all t ≥ T1,

x(t) <
a

b
+ ε′1. (5.1)

Let A1 = a
b + ε′1. In addition, from the first equation of the system (1.3), we can

also obtain that: for all t > 0,

x′(t) > ax(t)− bx2(t)− c

m3
x(t).

When a > c
m3

, for any given ε′1,B > 0 with ε′1,B < min{ε′1, 1
b (a− c

m3
)}, there exists

a T2 > T1 such that for all t > T2,

x(t) >
1
b

(a− c

m3
)− ε′1,B > 0. (5.2)

Let B1 = 1
b (a− c

m3
)− ε′1,B .

From the second equation of the system (1.3), we can obtain that: for all t > 0,
y′(t) < y(t)[ f

m2
− d − ry(t)]. Due to the condition (2.2), f > dm2 directly holds.

Thus, similar to the proof of the second case in Theorem 3.2, for the above ε′1, there
exists a T3 > T2 such that for all t > T3,

y(t) <
1
r

(
f

m2
− d) + ε′1. (5.3)

Let C1 = 1
r ( f

m2
− d) + ε′1. In addition, by using the inequalities (5.2) and (5.3) for

the second equation of (1.3), we also obtain that: for all t > T3

y′(t) > y(t)[−d− ry(t) +
fB1

m1 +m2B1 +m3C1
].
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If fB1
m1+m2B1+m3C1

> d, similar to the proof of the second case in Theorem 3.2,
for any given ε′1,D > 0 with ε′1,D < min{ε′1, 1

r

(
fB1

m1+m2B1+m3C1
− d
)
, there exists a

T4 > T3 such that for all t > T4,

y(t) >
1
r

( fB1

m1 +m2B1 +m3C1
− d
)
− ε′1,D > 0. (5.4)

Let D1 = 1
r

(
fB1

m1+m2B1+m3C1
− d
)
− ε′1,D. Therefore, for system (1.3), we have

B1 < x(t) < A1, D1 < y(t) < C1, t ≥ T4.

Provided that a > c
m3

and fB1
m1+m2B1+m3C1

> d, by using (5.1) and (5.4) in the
first equation of (1.3), we obtain

x′(t) < ax(t)− bx2(t)− cD1x(t)
m1 +m2A1 +m3D1

, t > T4.

If a > c
m3

holds, then a > cD1
m1+m2A1+m3D1

. Similarly, for the above ε′1, there exists
a T5 > T4 such that for all t > T5,

x(t) <
1
b

(
a− cD1

m1 +m2A1 +m3D1

)
+ ε′1. (5.5)

Let A2 = 1
b

(
a − cD1

m1+m2A1+m3D1

)
+ ε′1. Clearly, A2 < A1. In addition, by using

(5.2) and (5.3) in the first equation of (1.3), we have

x′(t) > ax(t)− bx2(t)− cx(t)C1

m1 +m2B1 +m3C1
, t > T4.

When a > c
m3

holds, then a > cC1
m1+m2B1+m3C1

. Similarly, for any given ε′2,B > 0
with ε′2,B < min{ε′1, ε′1,B ,

1
b

(
a− cC1

m1+m2B1+m3C1

)
}, there exists a T6 > T5 such that

for all t > T6,

x(t) >
1
b

(
a− cC1

m1 +m2B1 +m3C1

)
− ε′2,B > 0. (5.6)

Let B2 = 1
b

(
a− cC1

m1+m2B1+m3C1

)
− ε′2,B . Clearly, B2 > B1.

Moreover, provided that a > c
m3

and fB1
m1+m2B1+m3C1

> d, by using the inequal-
ities (5.1) and (5.4) in the second equation of the system (1.3), we obtain

y′(t) < y(t)[
fA1

m1 +m2A1 +m3D1
− d− ry(t)], t > T4.

If fB1
m1+m2B1+m3C1

> d holds, then fA1
m1+m2A1+m3D1

> d. Similarly, for the above ε′1,
there exists a T7 > T6 such that for all t > T7,

y(t) <
1
r

( fA1

m1 +m2A1 +m3D1
− d
)

+ ε′1, (5.7)

Let C2 = 1
r

(
fA1

m1+m2A1+m3D1
−d
)

+ ε′1. So C2 < C1. In addition, by using (5.2) and
(5.3) in the second equation of (1.3), we have

y′(t) > y(t)[−d− ry(t) +
fB1

m1 +m2B1 +m3C1
], t > T4.

Similarly, for any given ε′2,D > 0, ε′2,D < min{ε′1, ε′1,D,
1
r

(
fB1

m1+m2B1+m3C1
− d

)
},

there exists a T8 > T7 such that for all t > T8,

y(t) >
1
r

( fB1

m1 +m2B1 +m3C1
− d
)
− ε′2,D, (5.8)
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Let D2 = 1
r

(
fB1

m1+m2B1+m3C1
− d
)
− ε′2,D. So it has D2 > D1.

Thus, combining the above discussions, we have

B1 < B2 < x(t) < A2 < A1, D1 < D2 < y(t) < C2 < C1, t ≥ T8.

By repeating the above procedure, we can get five sequences {Tn}+∞n=1, {An}∞n=1,
{Cn}∞n=1, {Bn}∞n=1 and {Dn}∞n=1. Here, by defining ∆(x, y) to be m1 +m2x+m3y,
then for all n ≥ 2, An, Cn, Bn and Dn have the following expressions

An =
1
b

(a− cDn−1

∆(An−1, Dn−1)
) + ε′1, Bn =

1
b

(a− cCn−1

∆(Bn−1, Cn−1)
)− ε′n,B ,

Cn =
1
r

(
fAn−1

∆(An−1, Dn−1)
− d) + ε′1, Dn =

1
r

(
fBn−1

∆(Bn−1, Cn−1)
− d)− ε′n,D,

respectively, satisfying

0 < ε′n,B < min{ε′1, ε′n−1,B ,
1
b

(a− cCn−1

∆(Bn−1, Cn−1)
)}

0 < ε′n,D < min{ε′1, ε′n−1,D,
1
r

(
fBn−1

∆(Bn−1, Cn−1)
− d)}

0 < B1 < B2 < · · · < Bn < x(t) < An < · · · < A2 < A1, t ≥ T4n

0 < D1 < D2 < · · · < Dn < y(t) < Cn < · · · < C2 < C1, t ≥ T4n.

(5.9)

Clearly, {An} and {Cn} are bounded decreasing sequences and {Bn} and {Dn}
are bounded increasing sequences. Thus, there exist A, C, B and D such that
limt→+∞An = A, limt→+∞ Cn = C, limt→+∞Bn = B and limt→+∞Dn = D. In
addition, from the formula (5.9), A ≥ B and C ≥ D.

Further, from the expressions of An, Cn, Bn and Dn, we obtain

An −Bn = ε′1 + ε′n,B +
(
cm1(Cn−1 −Dn−1) + cm2

[
An−1(Cn−1 −Dn−1)

+Dn−1(An−1 −Bn−1)
])
/
(
b∆(Bn−1, Cn−1)∆(An−1, Dn−1)

)
.

Thus, when n→ +∞, we have

A−B =
cm1(C −D) + cm2[A(C −D) +D(A−B)]

b∆(B,C)∆(A,D)
+ ε′1 + ε′n,B . (5.10)

Similarly, we can obtain

Cn −Dn = ε′1 + ε′n,D +
(
fm1(An−1 −Bn−1) + fm3

[
An−1(Cn−1 −Dn−1)

+Dn−1(An−1 −Bn−1)
])
/
(
r∆(Bn−1, Cn−1)∆(An−1, Dn−1)

)
.

Thus, when n→ +∞, we have

C −D =
f(m1 +m3D)(A−B) + (ε′1 + ε′n,D)r∆(B,C)∆(A,D)

r∆(B,C)∆(A,D)− fm3A
. (5.11)

Putting (5.11) in (5.10), we have

A−B ≤
∣∣∣∣ 2( cr(m1+m2A)

b[r∆(B,C)∆(A,D)−fm3A]
+ 1)

1− c
b∆(B,C)∆(A,D)

[ f(m1+m2A)(m1+m3D)

r∆(B,C)∆(A,D)−fm3A
+m2D]

∣∣∣∣ε′1.
Then, by the arbitrariness of ε′1, we have A = B.
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Similarly, by equation (5.11) and the relation A = B, we have

C −D ≤
∣∣∣ 2r∆(B,C)∆(A,D)
r∆(B,C)∆(A,D)− fm3A

∣∣∣ε′1.
Then, by the arbitrariness of ε′1, we have C = D.

Combining the above preparations, we can prove the following theorem.

Theorem 5.1. If (2.2) and the following condition

am3 > c,

f
bm3

(am3 − c)
m1 + m2

bm3
(am3 − c) + m3

rm2
(f − dm2)

> d (5.12)

hold, then for any solution (x(t), y(t)) of (1.3) with the positive initial condition in
S, limt→+∞(x(t), y(t)) = E∗; this implies that the positive equilibrium E∗ of (1.3)
is globally attractive.

Proof. The condition (5.12) can assure that a > c
m3

and fB1
m1+m2B1+m3C1

> d.
Thus, provided that the condition (2.2) holds, from the above preparations and
the formula (5.9), for any solution (x(t), y(t)) of the system (1.3) with the positive
initial condition in S, there exist A and C such that limt→+∞(x(t), y(t)) = (A,C).

Since (A,C) is the unique ω-limit point of (x(0), y(0)), due to the property of
the ω-limit set, (A,C) must be an equilibrium in the set S = {(x, y) : x ≥ 0, y ≥ 0}.
Further, due to Theorem 2.4, the condition (2.2) and Theorem 3.2, this equilibrium
must be the positive equilibrium E∗. �
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Figure 3. Four phase diagrams of system (5.13).

Example 5.2. Let a = 2, b = 16, c = 1, d = 0.01, r = 3, f = 2, m1 = 1, m2 = 2
and m3 = 3, then system (1.3) becomes

x′ = x[2− 16x− y

1 + 2x+ 3y
],

y′ = y[− 1
100
− 3y +

2x
1 + 2x+ 3y

].
(5.13)

Clearly, (f−dm2)a/b−dm1 ≈ 0.238, am3−c = 5,
f

bm3
(am3−c)

m1+
m2
bm3

(am3−c)+
m3

rm2
(f−dm2)

−d ≈
0.102. Thus, the conditions (2.2) and (5.12) hold. By Theorem 5.1, the positive
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equilibrium point E∗ = (0.123, 0.055) of (5.13) is globally attractive, which can also
be seen from Figure 3. Note that in Figure 3, the four phase diagrams start from
initial points (0.2, 0.1), (0.05, 0.01), (0.1, 0.1) and (0.18, 0.04), respectively, and all
approach E∗ = (0.123, 0.055) as t→ +∞.

Remark 5.3. The conditions for global attractiveness of the positive equilibrium
provided in Theorem 5.1 depend only on parameters, while the conditions in [18]
depend on parameters and on the positive equilibrium (x∗, y∗). That additionally
need requires solving numerically for (x∗, y∗) in equations (2.1).

6. Conclusion

In this paper, we further investigated the dynamics of a density-dependent
predator-prey system developed by Li and Takeuchi [18] and obtained the following
results:

(1) The system has a unique positive equilibrium if and only if (f −dm2)a/b >
dm1;

(2) The boundary equilibrium E1(a
b , 0) is a saddle if and only if (f−dm2)a/b >

dm1. Moreover, E1(a
b , 0) is global attractive if and only if (f − dm2)a/b ≤

dm1;
(3) The system is permanent if and only if (f − dm2)a/b > dm1.

In addition, we have provided a sufficient condition for locally asymptotic stability
of E∗(x∗, y∗) by constructing a Lyapunov function and a sufficient condition for
global attractiveness of E∗(x∗, y∗) by making use of the comparison theorem.

Further, we derived that the predator density dependent rate r does not affect
the existence of a positive equilibrium and the permanence (or equivalently, the
extinction) of the system (1.3). However, whether r will affect locally asymptotic
stability of E∗(x∗, y∗) and global attractiveness of E∗(x∗, y∗) is still an unsolved
problem, which will be our future work. It is also interesting to:

(1) provide weaker conditions for global attractiveness of the positive equilib-
rium;

(2) derive conditions to assure the (unique) existence of periodic orbits [4, 15,
13];

(3) analyze bifurcations [13, 19, 20, 28] about the stability of the positive equi-
librium.
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