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PROPERTIES OF SOLUTIONS TO NEUMANN-TRICOMI
PROBLEMS FOR LAVRENT’EV-BITSADZE EQUATIONS

AT CORNER POINTS

MAKHMUD A. SADYBEKOV, NURGISSA A. YESSIRKEGENOV

Abstract. We consider the Neumann-Tricomi problem for the Lavrent’ev-

Bitsadze equation for the case in which the elliptic part of the boundary is part
of a circle. For the homogeneous equation, we introduce a new class of solutions

that are not continuous at the corner points of the domain and construct

nontrivial solutions in this class in closed form. For the nonhomogeneous
equation, we introduce the notion of an n-regular solution and prove a criterion

for the existence of such a solution.

1. Introduction

Let Ω ⊂ R2 be a finite domain bounded for y < 0 by the characteristics AC :
x+ y = 0 and BC : x− y = 1 of the Lavrent’ev-Bitsadze equation

sgn(y)uxx + uyy = f(x, y) (1.1)

and for y > 0 by the circular arc σδ = {(x, y) : (x−1/2)2+(y+δ)2 = 1/4+δ2, y > 0}.

Neumann-Tricomi problem (problem N-T). Find a solution of (1.1) with the
boundary condition

u|AC = 0, (1.2)
∂u

∂n

∣∣
σδ

= 0, (1.3)

where ∂
∂n = (x − 1/2)∂x + (y + δ)∂y. We assume that the classical transmission

conditions

u(x,+0) = u(x,−0), uy(x,+0) = uy(x,−0), 0 < x < 1, (1.4)

hold for the solution on the line y = 0, of type change of the equation. Along with
problem N–T, consider the adjoint problem.
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Problem N-T*. Find a solution of the equation

sgn(y)υxx + υyy = g(x, y) (1.5)

with the boundary condition

υ|BC = 0, (1.6)
∂υ

∂n
|σδ = 0. (1.7)

Here we also assume that the transmission conditions

υ(x,+0) = υ(x,−0), υy(x,+0) = υy(x,−0), 0 < x < 1, (1.8)

are satisfied.
Bitsadze [1, p. 34-37] proved the existence and uniqueness of regular solution of

Neumann-Tricomi problem. The completeness of eigenfunctions of the Neumann-
Tricomi problem for a degenerate equation of mixed type in the elliptic part of
the domain was investigated by Moiseev and Mogimi [7]. Also, they showed that
a system of functions consisting of sums of Legendre functions is complete. The
existence and uniqueness of a strong solution of the Tricomi problem (where instead
of (1.3), it was given by condition u|σ = 0) for the Lavrent’ev-Bitsadze equation
were studied in [3, 4, 5].

In [8] the spectral methods of solving boundary value problems for mixed-type
differential equations of second order in a 3D domain were studied. Existence and
uniqueness of a solution of the Lavrent’ev–Bitsadze problem was proved.

In [11] we proved a criterion for the strong solvability of the Neumann-Tricomi
problem in L2. It was shown that if the elliptic part of the domain coincides with
the semi-circle, then the Neumann-Tricomi problem in the classical domain is not
strongly solvable in L2.

In [10] for the Tricomi problem it was studied properties of solutions at corner
points. Also, it was given a criterion for the existence of n-regular solution.

Relation between the uniqueness of solution of the problem and the order of
smoothness (or features) of solutions is well-known and it is a particularly evident
in problems for degenerate equations [9] and mixed-type equations [1].

In this paper, we introduce new classes of solutions of the Neumann-Tricomi
problem depending on the behavior at the corner points and study their properties.

2. Main results

We say that a function h(x, y) belongs to the class Cα,βA,B(Ω) if and only if |x|α|1−
x|βh(x, y) ∈ C(Ω). As usual, Ω1 = Ω ∩ {y > 0} and Ω2 = Ω ∩ {y < 0}. A solution
of the problem is understood as a function in the class C2(Ω1)∩C2(Ω2)∩C1(Ω)∩
C1(σδ).

We denote the angle at which the curve σδ approaches the line of change of type
satisfies

γδ = arccot(2δ), 0 < γδ < π. (2.1)

Theorem 2.1. There are infinitely many solutions uk(x, y) ∈ C−αk,αkA,B (Ω)∩C1(σδ)
to the homogeneous problem N-T (f ≡ 0). These solutions are given by the relations

uk(x, y) =

{
Re
(

1−x+iy
(1−x)2+y2 − 1

)αk + Im
(

1−x+iy
(1−x)2+y2 − 1

)αk for y > 0,(
1

1−x−y − 1
)αk for y < 0;

(2.2)
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where
αk = π(1 + 4k)/(4γδ), k = 0, 1, . . . (2.3)

In addition, uk(x, y) /∈ L2(Ω) for k ≥ 1, and u0(x, y) ∈ L2(Ω) only if

γδ > π/4. (2.4)

Theorem 2.2. There are infinitely many solutions υk(x, y) ∈ Cαk,−αkA,B (Ω)∩C1(σδ)
to the homogeneous problem N-T* (g ≡ 0), where αk is given by relation (2.3).
These solutions are given by the formulas

υk(x, y) =

{
Re
(
x+iy
x2+y2 − 1

)αk + Im
(
x+iy
x2+y2 − 1

)αk for y > 0,(
1

x−y − 1
)αk for y < 0;

(2.5)

in addition, υk(x, y) /∈ L2(Ω) for k ≥ 1, and υ0(x, y) ∈ L2(Ω) only under condition
(2.4).

Proof of Theorem 2.1. 1. We denote

w(x, y) =
( 1− x+ iy

(1− x)2 + y2
− 1
)αk

,

then u(x, y) = Rew(x, y) + Imw(x, y), y > 0. For y > 0 and f = 0 equation (1.1)
can be written as

uxx + uyy = 0.
By a direct calculation, we have

wxx = αk(αk − 1)
( 1− x+ iy

(1− x)2 + y2
− 1
)αk−2

× (1− x)4 + 4(1− x)3yi− 6(1− x)2y2 − 4(1− x)y3i+ y4

((1− x)2 + y2)4

+ αk

( 1− x+ iy

(1− x)2 + y2
− 1
)αk−1 2(1− x)3 + 6(1− x)2yi− 6(1− x)y2 − 2y3i

((1− x)2 + y2)3 ,

wyy = αk(αk − 1)
( 1− x+ iy

(1− x)2 + y2
− 1
)αk−2

× −(1− x)4 − 4(1− x)3yi+ 6(1− x)2y2 + 4(1− x)y3i− y4

((1− x)2 + y2)4

+ αk

( 1− x+ iy

(1− x)2 + y2
− 1
)α−1−2(1− x)3 − 6(1− x)2yi+ 6(1− x)y2 + 2y3i

((1− x)2 + y2)3 .

Thus, wxx + wyy = 0, since (1− x)2 + y2 6= 0 in Ω1, hence,

Re(wxx + wyy) + Im(wxx + wyy) = 0⇒ uxx + uyy = 0.

For y < 0 and f = 0 equation (1.1) can be written as

uxx − uyy = 0.

By a direct calculation, from (2.2), for y < 0 we have

uxx(x, y) = αk(αk − 1)
( 1

1− x− y
− 1
)αk−2 1

(1− x− y)4

+ αk

( 1
1− x− y

− 1
)αk−1 2

(1− x− y)3
,
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uyy(x, y) = αk(αk − 1)
( 1

1− x− y
− 1
)αk−2 1

(1− x− y)4

+ αk

( 1
1− x− y

− 1
)αk−1 2

(1− x− y)3
.

Thus, uxx− uyy = 0, since x+ y 6= 1 in Ω2. The function in (2.2) satisfies equation
(1.1) for both y > 0 and y < 0.

2. By (2.2), for y < 0,

u(x, y) =
( 1

1− x− y
− 1
)αk

=
( x+ y

1− x− y

)αk
,

we have
u|AC = u|x+y=0 =

( x+ y

1− x− y

)αk ∣∣∣
x+y=0

= 0,

since αk > 0. Thus, function in (2.2) satisfies the boundary condition (1.2) in the
hyperbolic part of the domain.

The contour σδ has the form

2yδ = (1− x)− (1− x)2 − y2.

Thus, boundary condition (1.3) can be written as

∂u

∂n
|(1−x)−(1−x)2−y2=2yδ = 0.

By definition (2.1) for the number γδ, we have

∂u

∂n
|σδ =

( αky
αk−1

2(sin γδ)αk((1− x)2 + y2)αk

)
(cos(αkγδ)− sin(αkγδ)).

By the definition of αk in (2.3), we obtain

αk =
π
4 + πk

γδ
⇒ cos(αkγδ)− sin(αkγδ) = 0.

Thus,
∂u

∂n

∣∣
σδ

= 0.

The function in (2.2) satisfies the boundary condition (1.3).
3. To check conditions (1.4), from the representation of (2.2), we obtain

u(x,−0) = u(x,+0) =
( 1

1− x
− 1
)αk

,

uy(x,−0) = uy(x,+0) = αk

( 1
1− x

− 1
)αk−1 1

(1− x)2
,

and conditions (1.4) are satisfied.
As a result, function in (2.2) is solution of the homogeneous Problem N-T. It is

easy to see that function in (2.2) belongs to the class C−αk,αkA,B (Ω) ∩ C1(σδ).
Next, we prove the final statement of theorem 2.1.

‖uk‖2L2(Ω) =
∫∫

Ω

|uk(x, y)|2 dx dy <∞. (2.6)

Note that∫∫
Ω

|uk(x, y)|2 dx dy =
∫∫

Ω2

|uk(x, y)|2 dx dy +
∫∫

Ω1

|uk(x, y)|2 dx dy,
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Ω2

|uk(x, y)|2 dx dy =
∫∫

Ω2

∣∣∣( x+ y

1− (x+ y)

)2αk
∣∣∣ dx dy

<

∫∫
Ω2

(
1− (x+ y)

)−2αk dx dy.

Using the change of variables x+ y = ξ, x− y = η, we obtain∫∫
Ω2

|uk(x, y)|2 dx dy < 1
2

∫∫
Ω2

(1− ξ)−2αkdξdη =
1
2

∫ 1

0

dη

∫ η

0

(1− ξ)−2αkdξ

=
1

2(2αk − 1)

∫ 1

0

(
(1− η)1−2αk − 1

)
dη <∞

for 1− 2αk > −1, ⇔ αk < 1.
By using the change of variables x = r2+r cosϕ

1+2r cosϕ+r2 , y = r sinϕ
1+2r cosϕ+r2 in Ω1, we

obtain∫∫
Ω1

|uk(x, y)|2 dx dy =
∫∫

Ω1

r2αk(1 + sin 2αkϕ)r
(1 + 2r cosϕ+ r2)2

dr dϕ

=
∫ γδ

0

(1 + sin 2αkϕ)dϕ
∫ ∞

0

r2αk+1dr

(1 + 2r cosϕ+ r2)2
<∞

for 2αk + 1 + 1− 4 < 0 ⇔ αk < 1.
Thus, ratio (2.6) is satisfied for αk < 1. Taking into account the definition of αk

in (2.3), it is easy to see that ratio (2.6) is satisfied only for k = 0, and
π

4γδ
< 1 ⇔ γδ >

π

4
.

�

Theorem 2.2 can be proved in a similar way; so we omit its proof.
Let us proceed to the analysis of the nonhomogeneous problem N-T and N-T*.

An n-regular solution of Problem N-T (N-T*) is defined as a solution,

u(x, y) ∈ C2(Ω1) ∩ C2(Ω2) ∩ C1(Ω) ∩ C1(σδ) ∩ C−n,0A,B (Ω)

(υ(x, y) ∈ C2(Ω1) ∩ C2(Ω2) ∩ C1(Ω) ∩ C1(σδ) ∩ C0,−n
A,B (Ω)).

The following theorems hold for the nonhomogeneous Problems N-T and N-T*.

Theorem 2.3. The solution of Problem N-T is n-regular for any right-hand side
f(x, y) ∈ C(Ω) if and only if

γδ < π/(4n), n = 1, 2, . . . (2.7)

The solution is n-regular for arbitrary approach angles γδ only if the right-hand side
of (1.1) satisfies the conditions∫∫

Ω

υk(x, y)f(x, y) dx dy = 0, k = 0, . . . , j0, (2.8)

where υk are the functions given by (2.5), j0 = [nγδ/π− 1/4], and [z] is the integer
part of z. In this case, the number of conditions (2.8) depends on the angle γδ, and
their maximum number is equal to n (as γδ → π).
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Theorem 2.4. Condition (2.7) is necessary and sufficient for the n-regularity of
the solution of Problem N-T* for any right-hand side g(x, y) ∈ C(Ω); for arbitrary
approach angles γδ, the right-hand side of (1.5) satisfies the relations∫∫

Ω

uk(x, y)g(x, y) dx dy = 0, k = 0, . . . , j0, (2.9)

where the uk are the functions given by (2.2) and j0 = [nγδ/π − 1/4]. In this case,
the number of conditions (2.9) depends on the angle γδ, and their maximum number
is equal to n (as γδ → π).

Remark 2.5. Conditions (2.8) and (2.9) with k ≥ 1 are not orthogonality condi-
tions in L2(Ω), and for k ≥ 0 they are orthogonality conditions only if inequality
(2.4) holds. This immediately follows from theorems 2.1 and 2.2.

Proof of Theorem 2.3. Set u(x, y) = τ(x) and uy(x, 0) = ν(x). In the hyperbolic
part of the domain Ω2, we consider the Cauchy-Goursat problem

−uxx + uyy = f(x, y), u|AC = 0, uy(x, 0) = ν(x).

The solution of this problem has the form [12, p.121]:

u(x, y) =
∫ x+y

0

ν(t)dt− 1
2

∫ x+y

0

dξ1

∫ x−y

ξ1

f
(ξ1 + η1

2
,
ξ1 − η1

2
)
dη1.

Then we obtain the main relation

τ(x) =
∫ x

0

ν(t)dt− 1
2

∫ x

0

dξ1

∫ x

ξ1

f
(ξ1 + η1

2
,
ξ1 − η1

2
)
dη1, 0 < x < 1.

It is convenient to represent it in the form

τ(
x1

1 + x1
) = x1

∫ 1

0

ν(x1θ/(1 + x1θ))
(1 + x1θ)2

dθ + F1

( x1

1 + x1

)
, 0 < x1 <∞, (2.10)

where
F1(x) = −1

2

∫ x

0

dξ1

∫ x

ξ1

f
(ξ1 + η1

2
,
ξ1 − η1

2
)
dη1.

We apply the Mellin transform F (s) =
∫∞

0
xs−1f(x)dx to both sides of relation

(2.10). By using the formula [2, p. 269]∫ ∞
0

xs−1dxx

∫ ∞
0

u(xθ)υ(θ)dθ =
∫ ∞

0

xsu(x)dx
∫ ∞

0

x−s−1υ(x)dx,

for u(x1) = ν(x1/(1+x1))
(1+x1)2 and

υ(x) =

{
1 for 0 ≤ x < 1,
0 for x > 1,

from (2.10), we obtain the relation

τ(s) = −1
s
ν(s) + F1(s). (2.11)

Here

τ(s) =
∫ ∞

0

xs−1τ
( x

1 + x

)
dx, ν(s) =

∫ ∞
0

xs−1x
ν(x/(1 + x))

(1 + x)2
dx, (2.12)

F1(s) =
∫ ∞

0

xs−1F1

( x

1 + x

)
dx. (2.13)
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In the elliptic part Ω1, we consider the problem

uxx + uyy = f(x, y),
∂u

∂n

∣∣
σδ

= 0, u(x, 0) = τ(x).

By making the change of variables

x =
r2 + r cosϕ

1 + 2r cosϕ+ r2
, y =

r sinϕ
1 + 2r cosϕ+ r2

, (2.14)

by using the Mellin transform, and by solving the resulting problem, we obtain

ν(s) = tan(sγδ)sτ(s)−
∫ γδ

0

u2(s, t)f(s, t)dt, (2.15)

where

f(s, ϕ) =
∫ ∞

0

rs−1 r2

(1 + 2r cosϕ+ r2)2
f
( r2 + r cosϕ

1 + 2r cosϕ+ r2
,

r sinϕ
1 + 2r cosϕ+ r2

)
dr,

(2.16)

u2(s, ϕ) = cos sϕ+ sin sϕ
sin sγδ
cos sγδ

, (2.17)

and the functions τ(s) and ν(s) are defined in (2.12).
Now from relations (2.11) and (2.15), we obtain

ν(s) =
[

tan(sγδ)sF1(s)−
∫ γδ

0

u2(s, t)f(s, t)dt
]
[1 + tan(sγδ)]−1, (2.18)

τ(s) =
[
sF1(s) +

∫ γδ

0

u2(s, t)f(s, t)dt
]
[s(1 + tan(sγδ))]−1. (2.19)

First, let us analyze definitions (2.12) of the functions τ(s) and ν(s) and their
relationship with the original functions τ(x) and ν(x). By making the obvious
change of variables t = x/(1 + x), we reduce relation (2.12) to the form

τ(s) =
∫ 1

0

ts−1(1− t)−s−1τ(t)dt, ν(s) =
∫ 1

0

ts(1− t)−sν(t)dt.

Hence, it follows that if the function τ(s) is continuous on the interval (−1, 0), then
the function τ(t) is continuous at the point t = 0 and has a zero of order ≥ 1 there.

As a result, by taking into account the definitions of the functions τ(x) and
ν(x), for the n-regularity of the solution, the right-hand sides in relations (2.18)
and (2.19) should be continuous for −n < s < 0, whence we obtain γδ < π/(4n).
Consequently, condition (2.7) is necessary and sufficient for the n-regularity of the
solution of the Neumann-Tricomi problem for any right-hand side f(x, y) ∈ C(Ω).

The proof of first part of Theorem 2.3 is completed. Now let us proceed to
the proof of properties of solutions for arbitrary approach angles γδ. Suppose that
condition (2.7) fails. It follows that, for s = −αk = −π(1 + 4k)/(4γδ) ∈ (−n, 0),
for k = 0, . . . , j0, and for j0, which is defined in the statement of the theorem, the
denominator in relations (2.18) and (2.19) is zero. Therefore, for the n-regularity,
it is necessary and sufficient that the numerator is zero at these points as well,(

sF1(s) +
∫ γδ

0

u2(s, t)f(s, t)dt
)∣∣∣
s=−αk

= 0. (2.20)
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In this equation, we take into account relation (2.13) and the following property of
the Mellin transform [6, p.567]: if

g(s) =
∫ ∞

0

xs−1f(x) dx,

then

sg(s) = −
∫ ∞

0

xs−1xf ′(x) dx.

Now, by setting s = −αk, by returning to the variables x and y according to
formulas (2.14), and by taking into account relations (2.3), (2.5), (2.16), and (2.17),
we find that condition (2.20) can be represented in the form∫∫

Ω−
υk(x, y)f(x, y)dxdy +

∫∫
Ω+

υk(x, y)f(x, y)dxdy

=
∫∫

Ω

υk(x, y)f(x, y)dxdy = 0.

Here k = 0, . . . , j0; moreover, the number of such k (by the definition of j0) cannot
exceed n. �

Theorem 2.4 can be proved in a similar way, we omit its proof.

Conclusion. In this article, it has been shown that the number of solutions of the
homogeneous Neumann-Tricomi problem admitting a feature at the corner points
of the domain, depends on the order of the singularity and depends on the order of
the singularity and on the values of approach angles of an elliptic part of boundary
of the domain to the line change of type. We have shown that for what angles of
approach a singular solution of homogeneous Neumann-Tricomi problem belongs to
the space L2. In case of Neumann-Tricomi problem, unlike Tricomi problem in space
L2, only the value of angle at point A solves everything and the angle of approach
at point B does not react [11]. Also, we have obtained conditions of existence
of n-regular solutions for the nonhomogeneous Neumann-Tricomi problem. These
conditions have been formulated in terms of orthogonality of the function in the
right hand side of the equation to the corresponding singular solutions of its adjoint
homogeneous problem.

Acknowledgements. The authors are grateful to Professor T. Sh. Kalmenov
for his support and attention to this work. This work has been supported by
Committee of Science of Ministry of Education and Science of the Republic of
Kazakhstan (grant number 0743).

References

[1] A. V. Bitsadze; On the problem of equations of mixed type. Trudy Mat. Inst. Steklov., 41
(1953), pp. 3-59.

[2] A. Erd’elyi, W. Magnus, F. Oberherhettinger, F. G. Tricomi; Tablititsy integral’nykh preo-

brazovaninii. T. 1. Preobrazovaniya Fur’e, Laplasa, Mellina (Tables of Integral Transforms.
Vol. 1. Fourier, Laplace, Mellin Transforms). Moscow: Nauka, 1969.

[3] T. Sh. Kalmenov, A. B. Bazarbekov; A Criterion for the Strong Solvability of a Tricomi
Problem for the Lavrent’ev-Bitsadze Equation. Dokl. Akad. Nauk SSSR, 261 (2) (1981), pp.

265-268.

[4] T. Sh. Kalmenov, A. B. Bazarbekov; A Criterion for the Strong Solvability of a Tricomi
Problem for the Lavrent’ev-Bitsadze Equation in Lp. Differential Equations, 18 (2) (1982),

pp. 268-280.



EJDE-2014/193 SOLUTIONS TO NEUMANN-TRICOMI PROBLEMS 9

[5] T. Sh. Kalmenov, M. A. Sadybekov, N.E. Erzhanov; A Criterion for the Strong Solvability of

the Tricomi Problem for the Lavrent’ev-Bitsadze Equation. The General Case. Differential

Equations, 29 (5) (1993), pp. 870-875.
[6] M. A. Lavrent’ev, B. V. Shabat; Metody therii funktsii kompleksnogo premennogo (Methods

of the Theory of Functions of a Complex Variable). Moscow, 1967.

[7] E. I. Moiseev, M. Mogimi; On the Completeness of Eigenfunctions of the Neumann-Tricomi
Problem for a Degenerate Equation of Mixed Type. Differential Equations, 41 (12) (2005),

pp. 1789-1791.

[8] E. I. Moiseev, P. V. Nefedov; Tricomi problem for the Lavrent’ev–Bitsadze equation in a 3D
domain. Integral Transforms and Special Functions, 23 (10) (2012), pp. 761-768.

[9] L. S. Pulkina; Certain nonlocal problem for a degenerate hyperbolic equation. Mathematical

Notes, 51 (3) (1992), pp. 286-290.
[10] A. V. Rogovoy; Properties of solutions of the Tricomi problem for the Lavrent’ev-Bitsadze

equation at corner points. Differential Equations, 49 (12) (2013), pp. 1650-1654.
[11] M. A. Sadybekov, N. A. Yessirkegenov; Strong solvability criterion of Neumann-Tricomi

problem in L2 for the Lavrent’ev-Bitsadze equation. Mathematical Journal, 47 (1) (2013),

pp. 63-72.
[12] M. M. Smirnov; Uravneniya smeshannogo tipa (Equations of Mixed Type). Moscow: Vyssh.

Shkola (1985).

Makhmud A. Sadybekov

Institute of Mathematics and Mathematical Modeling, 125 Pushkin str., 050010 Almaty,
Kazakhstan

E-mail address: makhmud-s@mail.ru

Nurgissa A. Yessirkegenov

Institute of Mathematics and Mathematical Modeling, 125 Pushkin str., 050010 Almaty,

Kazakhstan.
Al-Farabi Kazakh national university, 71 ave. Al-Farabi, 050040 Almaty, Kazakhstan

E-mail address: nurgisa@hotmail.com


	1. Introduction
	Neumann-Tricomi problem (problem N-T)
	Problem N-T*.

	2. Main results
	Conclusion
	Acknowledgements

	References

