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BLOW-UP OF SOLUTIONS TO SYSTEMS OF NONLINEAR
INEQUALITIES WITH SINGULARITIES ON UNBOUNDED SETS

EVGENY GALAKHOV, OLGA SALIEVA, LIUDMILA UVAROVA

Abstract. We establish conditions for the blow-up of solutions to several

systems of nonlinear differential inequalities, with singularities on unbounded

sets.

1. Introduction

In recent years, many mathematicians study global solvability of nonlinear par-
tial differential equations and inequalities with singular coefficients. Here nonlinear
terms can depend both on the values of the unknown function and on its derivatives.
This problem is not only interesting in its own right but also has important mathe-
matical and physical applications. Thus, Liouville type theorems on nonexistence of
positive solutions to nonlinear equations in the whole space or in the half-space can
be used to obtain a priori estimates of solutions to respective problems in bounded
domains [1, 2]. On the other hand, the class under consideration includes, in par-
ticular, Hamilton–Jacobi and Korteweg–de Vries equations that play an important
role in contemporary mathematical physics [11, 12].

In [3]–[14] and their references, sharp necessary conditions for existence of global
solutions to different classes of second-order elliptic equations with gradient terms
were obtained. The proofs are based either on ODE techniques for radially sym-
metric solutions or on the nonlinear capacity method, which was suggested in [10]
and extensively developed in [9].

In this article we obtain sufficient conditions for nonexistence of solutions for sev-
eral classes of systems of inequalities that have singular coefficients on unbounded
sets, such as straight lines and planes, as well as smooth curves and surfaces in
RN . Here we obtain nonexistence results in natural functional classes, that is, as-
suming only minimal local integrability properties, unlike our previous paper [7]
where lower bounds for local integrals were required. Some further related results
for scalar inequalities were included into [8].

The main results of the paper are formulated in section 2. In section 3, a nonex-
istence theorem is proven for a system of higher-order elliptic inequalities with a
nonlinearity dependent only on the values of the unknown function u, and in sec-
tion 4, a similar result is obtained for a system of inequalities with a nonlinearity
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containing |Du|. In sections 5 and 6, the respective statements are extended to
systems of second-order elliptic inequalities with a nonlinear principal part.

2. Main results

We assume that the set S satisfies a geometrical condition which is based on an
idea from our paper [7], and modified according to our problem setting and func-
tional classes under consideration. To formulate it, we need some extra notation.

Let ε > 0 and x ∈ RN . Denote ρ(x) = dist(x, S),

Bε(0) = {x ∈ RN : |x| ≤ ε},
and

Sε = {x ∈ RN : ρ(x) < ε}.
For R > 0, introduce the set

SR = SR \ S1/R ∩BR(0).

Now we can formulate our assumption on S.
(H1) Suppose that there exists a family of functions ξR ∈ C2k

0 (RN \S; [0, 1]) such
that

ξR(x) =

{
0 (x ∈ S1/(2R) ∪ (RN \ S2R)),
1 (x ∈ SR \ S1/R)

(2.1)

and there exists a constant c > 0 such that

|DαξR(x)| ≤ cρ−|α| (x ∈ RN ). (2.2)

Example 2.1. We can consider as the set S a hyperplane S = Πn = {x =
(x1, . . . , xn) ∈ RN : xn = 0}. In that case we can choose ξR(x) = ξ̃R(xn), where

ξ̃R(xn) =

{
0 (|xn| ≤ 1

2R or |xn| ≥ 2R),
1 ( 1

R ≤ |xn| ≤ R)

See Figure 1.
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Figure 1. The function ξ̃R(xn)

Further we assume that the set S satisfies assumption (H1). We formulate our
first result for a system of nonlinear elliptic inequalities

−∆pu ≥ a(x)vq1 (x ∈ RN \ S),

−∆qv ≥ b(x)up1 (x ∈ RN \ S),

u(x), v(x) ≥ 0 (x ∈ RN \ S),

(2.3)
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where p, q, p1, q1 > 1, p − 1 < p1, q − 1 < q1, a, b ∈ C(RN \ S) are nonnegative
functions such that a(x) ≥ a0ρ

−α|x|β , b(x) ≥ b0ρ−γ |x|δ for x ∈ RN \ S, a0, b0 > 0,
α, β, γ, δ ∈ R, ρ(x) = dist(x, S). Introduce the quantities

σ1 =
(|α| − β)(q − 1) + (|γ| − δ − q)q1)(p− 1)− pp1q1

p1q1 − (p− 1)(q − 1)
,

σ2 =
(|γ| − δ)(p− 1) + (|α| − β − p)p1)(q − 1)− qp1q1

p1q1 − (p− 1)(q − 1)
.

(2.4)

Theorem 2.2. Let N + min{σ1, σ2} ≤ 0. Then system (2.3) has no nontrivial
(nonzero) solution.

Example 2.3. For a system of inequalities (2.3) with p = q = 2:

−∆u ≥ a(x)vq1 (x ∈ RN \ S),

−∆v ≥ b(x)up1 (x ∈ RN \ S),

u(x), v(x) ≥ 0 (x ∈ RN \ S),

(2.5)

the quantities defined in (2.4) take the form

σ1 =
(α− β + (γ − δ − 2)q1)− 2p1q1

p1q1 − 1
,

σ2 =
(γ − δ + (α− β − 2)p1)− 2p1q1

p1q1 − 1
.

(2.6)

Further we consider the system

−∆pu ≥ a(x)|Dv|q1 (x ∈ RN \ S),

−∆qv ≥ b(x)|Du|p1 (x ∈ RN \ S).
(2.7)

For this system one has the following result.

Theorem 2.4. Let

max{(p− 1)(α(q − 1) + q1(β + 1)), (q − 1)(β(p− 1) + p1(α+ 1))}
≥ N(p1q1 − (p− 1)(q − 1))− p1q1.

Then system (2.7) has no nontrivial (non-constant) solution.

We also consider the systems of higher-order differential inequalities

(−∆)ku ≥ a(x)|Dv|q (x ∈ RN \ S),

(−∆)lv ≥ b(x)|Du|p (x ∈ RN \ S)
(2.8)

and
(−∆)ku ≥ a(x)vq (x ∈ RN \ S),

(−∆)lv ≥ b(x)up (x ∈ RN \ S),

u ≥ 0, v ≥ 0 (x ∈ RN ),

(2.9)

where k, l ∈ N, p, q > 1.
For system (2.8), there holds the following theorem.

Theorem 2.5. Let

max
{
|α|+ β + (|γ|+ δ + 2l − 1 + (2k − 1)p)q,
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|γ|+ δ + (|α|+ β + 2k − 1 + (2l − 1)q)p
}
≥ N(pq − 1).

Then system (2.8) has no nontrivial (non-constant) solution.

For system (2.9), one has

Theorem 2.6. Let

max
{
|α|+ β + (|γ|+ δ + 2l + 2kp)q, |γ|+ δ + (|α|+ β + 2k + 2lq)p

}
≥ N(pq − 1).

Then system (2.9) has no nontrivial (nonzero) solution.

3. Proof of Theorem 2.2

Suppose that there exists (u, v) – a nontrivial solution of system (2.3). Let
ϕR ∈ C∞0 (RN ; R+) be a family of test functions to be specified below.

Multiplying the first inequality (2.3) by uλεϕR and the second one by vλεϕR,
where uε = u+ ε, vε = v + ε, ε > 0 and max{1− p, 1− q} < λ < 0, we obtain∫

a(x)vq1uλεϕR dx ≤ cλ
∫
|Du|puλ−1

ε ϕR dx+
∫
|Du|p−1|DϕR|uλε dx, (3.1)∫

b(x)up1vλεϕR dx ≤ cλ
∫
|Dv|qvλ−1

ε ϕR dx +
∫
|Dv|q−1|DϕR|vλε dx. (3.2)

Application of Young’s inequality to the first terms on the right-hand sides of the
obtained relations results in∫

a(x)vq1uλεϕR dx+
c|λ|
2

∫
|Du|puλ−1

ε ϕR dx ≤ cλ
∫
|DϕR|p

ϕp−1
R

uλ+p−1
ε dx, (3.3)∫

b(x)up1vλεϕR dx+
c|λ|
2

∫
|Dv|qvλ−1

ε ϕR dx ≤ dλ
∫
|DϕR|q

ϕq−1
R

vλ+q−1
ε dx, (3.4)

where the constants cλ and dλ depend only on p, q, and λ. Further, multiplying
each differential inequality (2.3) by ϕR and integrating by parts, we arrive at∫

a(x)vq1ϕR dx ≤
(∫
|Du|puλ−1

ε ϕR dx
) p−1

p
(∫ |DϕR|p

ϕp−1
R

u(1−λ)(p−1)
ε dx

)1/p

,

(3.5)∫
b(x)up1ϕR dx ≤

(∫
|Dv|qvλ−1

ε ϕR dx
) q−1

q
(∫ |DϕR|q

ϕq−1
R

v(1−λ)(q−1)
ε dx

)1/q

. (3.6)

Combining (3.3)–(3.6) and taking ε→ 0, we obtain a priori estimates∫
a(x)vq1ϕR dx ≤ Dλ

(∫ |DϕR|p
ϕp−1
R

uλ+p−1 dx
) p−1

p
(∫ |DϕR|p

ϕp−1
R

u(1−λ)(p−1) dx
)1/p

,

(3.7)∫
b(x)up1ϕR dx ≤ Eλ

(∫ |DϕR|q
ϕq−1
R

vλ+q−1 dx
) q−1

q
(∫ |DϕR|q

ϕq−1
R

v(1−λ)(q−1) dx
)1/q

,

(3.8)

where Dλ, Eλ > 0 depend only on p, q, and λ.
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Applying the Hölder inequality with exponent r to the first integral on the right-
hand side of (3.7), we obtain(∫ |DϕR|p

ϕp−1
R

uλ+p−1 dx
) p−1

p

≤
(∫

b(x)u(λ+p−1)rϕR dx
) p−1

pr
(∫

b−
r′
r (x)

|DϕR|pr
′

ϕpr
′−1

R

dx
) p−1
pr′
,

(3.9)

where 1
r + 1

r′ = 1.
Choosing the exponent r so that (λ+ p− 1)r = p1, from (3.7) and (3.9) we have∫
a(x)vq1ϕR dx ≤ Dλ

(∫
b(x)up1ϕR dx

) p−1
pr
(∫

b−
r′
r (x)

|DϕR|pr
′

ϕpr
′−1

R

dx
) p−1
pr′

×
(∫ |DϕR|p

ϕp−1
R

u(1−λ)(p−1) dx
)1/p

.

(3.10)

Applying the Hölder inequality with exponent y > 1 to the last integral on the
right-hand side of (3.10), we obtain∫

|DϕR|p

ϕp−1
R

u(1−λ)(p−1) dx ≤
(∫

b(x)u(1−λ)(p−1)yϕR dx
)1/y

×
(∫

b−
y′
y (x)

|DϕR|py
′

ϕpy
′−1

R

dx
)1/y′

,

(3.11)

where 1
y + 1

y′ = 1.
Choosing y in (3.11) so that (1−λ)(p−1)y = p1 and taking into account (3.10),

we reach the estimate∫
a(x)vq1ϕR dx ≤ Dλ

(∫
b(x)up1ϕR dx

) p−1
pr
(∫

b−
r′
r (x)

|DϕR|pr
′

ϕpr
′−1

R

dx
) p−1
pr′

×
(∫

b(x)up1ϕR dx
) 1
py
(∫

b−
y′
y (x)

|DϕR|py
′

ϕpy
′−1

R

dx
) 1
py′ ;

i.e., ∫
a(x)vq1ϕR dx

≤ Dλ

(∫
b(x)up1ϕR dx

) p−1
pr + 1

py
(∫

b−
r′
r (x)

|DϕR|pr
′

ϕpr
′−1

R

dx
) p−1
pr′

×
(∫

b−
y′
y (x)

|DϕR|py
′

ϕpy
′−1

R

dx
) 1
py′
,

(3.12)

where the exponents r and y are chosen so that
1
y

+
1
y′

= 1, (1− λ)(p− 1)y = p1,

1
r

+
1
r′

= 1, (λ+ p− 1)r = p1.

(3.13)

Note that such choice of r and y is possible due to our hypotheses on p and p1

provided that λ < 0 is small enough in absolute value. Similarly, choosing s and z
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such that
1
z

+
1
z′

= 1, (1− λ)(q − 1)z = q1,

1
s

+
1
s′

= 1, (λ+ q − 1)s = q1,

(3.14)

and estimating the right-hand side of (3.8) by the Hölder inequality, we obtain∫
b(x)up1ϕR dx

≤ Eλ
(∫

a(x)vq1ϕR dx
) q−1

qs + 1
qz
(∫

a−
s′
s (x)

|DϕR|qs
′

ϕqs
′−1

R

dx
) q−1
qs′

×
(∫

a−
z′
z (x)

|DϕR|qz
′

ϕqz
′−1

R

dx
) 1
qz′
.

(3.15)

Combining (3.12) and (3.15), we finally arrive at(∫
a(x)vq1ϕR dx

)1−mn

≤ DλE
N
λ

(∫
a−

s′
s (x)

|DϕR|qs
′

ϕqs
′−1

R

dx
)n(q−1)

qs′
(∫

a−
z′
z (x)

|DϕR|qz
′

ϕqz
′−1

R

dx
) n
qz′

×
(∫

b−
r′
r (x)

|DϕR|pr
′

ϕpr
′−1

R

dx
) p−1
pr′
(∫

b−
y′
y (x)

|DϕR|py
′

ϕpy
′−1

R

dx
) 1
py′

(3.16)

and(∫
b(x)up1ϕR dx

)1−mn

≤ EλDm
λ

(∫
b−

r′
r (x)

|DϕR|pr
′

ϕpr
′−1

R

dx
)m(p−1)

pr′
(∫

b−
y′
y (x)

|DϕR|py
′

ϕpy
′−1

R

dx
) m
py′

×
(∫

a−
s′
s (x)

|DϕR|qs
′

ϕqs
′−1

R

dx
) q−1
qs′
(∫

a−
z′
z (x)

|DϕR|qz
′

ϕqz
′−1

R

dx
) 1
qz′
,

(3.17)

n :=
p− 1
pr

+
1
py
, m :=

q − 1
qs

+
1
qz
. (3.18)

Simple calculations taking into account (3.13) and (3.14) give explicit values of m
and n, namely,

m =
q − 1
q1

, n =
p− 1
p1

. (3.19)

Our assumptions imply that the exponent on the left-hand side of (3.16), (3.17) is
such that

1−mn =
p1q1 − (p− 1)(q − 1)

p1q1
> 0.

Thus from (3.17) and our assumptions on a and b we have∫
(SR\S1/R)∩BR(0)

a(x)vq1 dx ≤ CRN+σ1 ,∫
(SR\S1/R)∩BR(0)

b(x)up1 dx ≤ CRN+σ2 .

(3.20)
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Taking R → ∞ in (3.20), under condition N + min{σ1, σ2} ≤ 0 we come to a
contradiction, which completes the proof of Theorem 2.2.

4. Proof of Theorem 2.4

Multiplying inequalities (2.7) by the test function ϕR ∈ C1
0 (RN ; [0, 1]) and inte-

grating by parts, we obtain∫
RN

a(x)|Dv|q1ϕR(x) dx ≤
∫

RN
(|Du|p−2Du,DϕR) dx,∫

RN
b(x)|Du|p1ϕR(x) dx ≤

∫
RN

(|Dv|q−2Dv,DϕR) dx,

which because of relations

(|Du|p−2Du,DϕR) ≤ |Du|p−1|DϕR|, (|Dv|q−2Dv,DϕR) ≤ |Dv|q−1|DϕR|

and the Hölder inequality, results in∫
RN

a(x)|Dv|q1ϕR(x) dx

≤
(∫

RN
b(x)|Du|p1ϕR(x) dx

) p−1
p1

×
(∫

RN
b−

p−1
p1−p+1 (x)|DϕR|

p1
p1−p+1ϕ

1− p1
p1−p+1

R (x) dx
) p1−p+1

p1
,

(4.1)

∫
RN

b(x)|Du|p1ϕR(x) dx

≤
(∫

RN
a(x)|Dv|q1ϕR(x) dx

) q−1
q1

×
(∫

RN
a−

q−1
q1−q+1 (x)|DϕR|

q1
q1−q+1ϕ

1− q1
q1−q+1

R (x) dx
) q1−q+1

q1
.

(4.2)

Substituting (4.1) into (4.2) and vice versa, we obtain(∫
RN

a(x)|Dv|q1ϕR(x) dx
)1− (p−1)(q−1)

p1q1

≤
(∫

RN
a−

q−1
q1−q+1 (x)|DϕR|

q1
q1−q+1ϕ

1− q1
q1−q+1

R (x) dx
) (p−1)(q1−q+1)

p1q1

×
(∫

RN
b−

p−1
p1−p+1 (x)|DϕR|

p1
p1−p+1ϕ

1− p1
p1−p+1

R (x) dx
) p1−p+1

p1
,

(∫
RN

b(x)|Du|p1ϕR(x) dx
)1− (p−1)(q−1)

p1q1

≤
(∫

RN
a−

q−1
q1−q+1 (x)|DϕR|

q1
q1−q+1ϕ

1− q1
q1−q+1

R (x) dx
) q1−q+1

q1

×
(∫

RN
b−

p−1
p1−p+1 (x)|DϕR|

p1
p1−p+1ϕ

1− p1
p1−p+1

R (x) dx
) (q−1)(p1−p+1)

p1q1 ;
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i. e., ∫
RN

a(x)|Dv|q1ϕR(x) dx

≤
(∫

RN
a−

q−1
q1−q+1 (x)|DϕR|

q1
q1−q+1ϕ

1− q1
q1−q+1

R (x) dx
) (p−1)(q1−q+1)
p1q1−(p−1)(q−1)

×
(∫

RN
b−

p−1
p1−p+1 (x)|DϕR|

p1
p1−p+1ϕ

1− p1
p1−p+1

R (x) dx
) q1(p1−p+1)
p1q1−(p−1)(q−1)

,

(4.3)

∫
RN

b(x)|Du|p1ϕR(x) dx

≤
(∫

RN
a−

q−1
q1−q+1 (x)|DϕR|

q1
q1−q+1ϕ

1− q1
q1−q+1

R (x) dx
) p1(q1−q+1)
p1q1−(p−1)(q−1)

×
(∫

RN
b−

p−1
p1−p+1 (x)|DϕR|

p1
p1−p+1ϕ

1− p1
p1−p+1

R (x) dx
) (q−1)(p1−p+1)
p1q1−(p−1)(q−1)

.

(4.4)

Choosing test function ϕR ∈ C1
0 (RN ; [0, 1]) so that

ϕR(x) =

{
1 (|x| ≤ R),
0 (|x| ≥ 2R),

and

|DϕR(x)| ≤ cR−1 (x ∈ RN ), (4.5)

we obtain ∫
BR(0)

a(x)|Dv|q1 dx ≤ cRN−
(p−1)((|α|+β)(q−1)+q1(|γ|+δ+1))+p1q1

p1q1−(p−1)(q−1) ,∫
BR(0)

b(x)|Du|p1 dx ≤ cRN−
(q−1)((|γ|+δ)(p−1)+p1(|α|+β+1))+p1q1

p1q1−(p−1)(q−1) .

Taking R→∞, we complete the proof similarly to Theorem 2.2.

5. Proof of Theorem 2.5

Multiplying inequalities (2.8) by the test function ϕR ∈ C2k−1
0 (RN ; [0, 1]) and

integrating by parts, we obtain∫
RN

a(x)|Dv|qϕR(x) dx ≤
∫

RN
(Du,D((−∆)k−1ϕR)) dx,∫

RN
b(x)|Du|pϕR(x) dx ≤

∫
RN

(Dv,D((−∆)l−1ϕR)) dx,

which by relations

(Du,D((−∆)k−1ϕR)) ≤ |Du| · |D((−∆)k−1ϕR)|,

(Dv,D((−∆)l−1ϕR)) ≤ |Dv| · |D((−∆)l−1ϕR)|,
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and the Hölder inequality, results in∫
RN

a(x)|Dv|qϕR(x) dx

≤
(∫

RN
b(x)|Du|pϕR(x) dx

)1/p

×
(∫

RN
b−

1
p−1 (x)|D((−∆)k−1ϕR)|

p
p−1ϕ

− 1
p−1

R (x) dx
) p−1

p

,

(5.1)

∫
RN

b(x)|Du|pϕR(x) dx

≤
(∫

RN
a(x)|Dv|qϕR(x) dx

)1/q

×
(∫

RN
a−

1
q−1 (x)|D((−∆)l−1ϕR)|

q
q−1ϕ

− 1
q−1

R (x) dx
) q−1

q

.

(5.2)

Substituting (5.1) into (5.2) and vice versa, we obtain(∫
RN

a(x)|Dv|qϕR(x) dx
)1− 1

pq

≤
(∫

RN
a−

1
q−1 (x)|D((−∆)l−1ϕR)|

q
q−1ϕ

− 1
q−1

R (x) dx
) q−1

pq

×
(∫

RN
b−

1
p−1 (x)|D((−∆)k−1ϕR)|

p
p−1ϕ

− 1
p−1

R (x) dx
) p−1

p

,

(∫
RN

b(x)|Du|pϕR(x) dx
)1− 1

pq

≤
(∫

RN
a−

1
q−1 (x)|D((−∆)l−1ϕR)|

q
q−1ϕ

− 1
q−1

R (x) dx
) q−1

q

×
(∫

RN
b−

1
p−1 (x)|D((−∆)k−1ϕR)|

p
p−1ϕ

− 1
p−1

R (x) dx
) p−1

pq

;

i.e., ∫
RN

a(x)|Dv|qϕR(x) dx

≤
(∫

RN
a−

1
q−1 (x)|D((−∆)l−1ϕR)|

q
q−1ϕ

− 1
q−1

R (x) dx
) q−1
pq−1

×
(∫

RN
b−

1
p−1 (x)|D((−∆)k−1ϕR)|

p
p−1ϕ

− 1
p−1

R (x) dx
) (p−1)q

pq−1
,

(5.3)

∫
RN

b(x)|Du|pϕR(x) dx

≤
(∫

RN
a−

1
q−1 (x)|D((−∆)l−1ϕR)|

q
q−1ϕ

− 1
q−1

R (x) dx
) p(q−1)

pq−1

×
(∫

RN
b−

1
p−1 (x)|D((−∆)k−1ϕR)|

p
p−1ϕ

− 1
p−1

R (x) dx
) p−1
pq−1

.

(5.4)
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Denote K = max{k, l}. Choosing the test function ϕR ∈ C2K−1
0 (RN ; [0, 1]) so

that

ϕR(x) =

{
1 (|x| ≤ R),
0 (|x| ≥ 2R),

and
|DµϕR(x)| ≤ cR−1 (x ∈ RN ; 0 ≤ |µ| ≤ 2K − 1), (5.5)

we have ∫
BR(0)

a(x)|Dv|q dx ≤ cRN−
|α|+β+(|γ|+δ+2l−1+(2k−1)p)q

pq−1 ,∫
BR(0)

b(x)|Du|p dx ≤ cRN−
|γ|+δ+(|α|+β+2k−1+(2l−1)q)p

pq−1 .

Taking R→∞, we complete the proof similarly to Theorems 2.2 and 2.4.

6. Proof of Theorem 2.6

Multiplying inequalities (2.9) by the test function ϕR ∈ C2K
0 (RN ; [0, 1]), where

K = max{k, l}, and integrating by parts, we obtain∫
RN

a(x)vqϕR(x) dx ≤
∫

RN
u · (−∆)kϕR dx,∫

RN
b(x)upϕR(x) dx ≤

∫
RN

v · (−∆)lϕR dx.

Taking into account that

u · (−∆)kϕR ≤ u · |(−∆)kϕR)|,

v · (−∆)lϕR ≤ v · |(−∆)lϕR)|
and using the Hölder inequality, we arrive at∫

RN
a(x)vqϕR(x) dx ≤

(∫
RN

b(x)upϕR(x) dx
)1/p

×
(∫

RN
b−

1
p−1 (x)|(−∆)kϕR|

p
p−1ϕ

− 1
p−1

R (x) dx
) p−1

p

,

(6.1)

∫
RN

b(x)upϕR(x) dx ≤
(∫

RN
a(x)vqϕR(x) dx

)1/q

×
(∫

RN
a−

1
q−1 (x)|(−∆)lϕR|

q
q−1ϕ

− 1
q−1

R (x) dx
) q−1

q

.

(6.2)

Substituting (6.1) into (6.2) and vice versa, we obtain(∫
RN

a(x)vqϕR(x) dx
)1− 1

pq ≤
(∫

RN
a−

1
q−1 (x)|(−∆)lϕR|

q
q−1ϕ

− 1
q−1

R (x) dx
) q−1

pq

×
(∫

RN
b−

1
p−1 (x)|(−∆)kϕR|

p
p−1ϕ

− 1
p−1

R (x) dx
) p−1

p

,

(∫
RN

b(x)upϕR(x) dx
)1− 1

pq ≤
(∫

RN
a−

1
q−1 (x)|(−∆)lϕR|

q
q−1ϕ

− 1
q−1

R (x) dx
) q−1

q

×
(∫

RN
b−

1
p−1 (x)|(−∆)kϕR|

p
p−1ϕ

− 1
p−1

R (x) dx
) p−1

pq

;
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i.e., ∫
RN

a(x)vqϕR(x) dx

≤
(∫

RN
a−

1
q−1 (x)|(−∆)lϕR|

q
q−1ϕ

− 1
q−1

R (x) dx
) q−1
pq−1

×
(∫

RN
b−

1
p−1 (x)|(−∆)kϕR|

p
p−1ϕ

− 1
p−1

R (x) dx
) (p−1)q

pq−1
,

(6.3)

∫
RN

b(x)upϕR(x) dx

≤
(∫

RN
a−

1
q−1 (x)|(−∆)lϕR|

q
q−1ϕ

− 1
q−1

R (x) dx
) p(q−1)

pq−1

×
(∫

RN
b−

1
p−1 (x)|(−∆)kϕR|

p
p−1ϕ

− 1
p−1

R (x) dx
) p−1
pq−1

.

(6.4)

Choosing the test function ϕR ∈ C2K
0 (RN ; [0, 1]) so that

ϕR(x) =

{
1 (|x| ≤ R),
0 (|x| ≥ 2R)

and estimate (5.5) holds, we obtain∫
BR(0)

a(x)|Dv|q dx ≤ cRN−
|α|+β+(|γ|+δ+2l+2kp)q

pq−1 ,∫
BR(0)

b(x)|Du|p dx ≤ cRN−
|γ|+δ+(|α|+β+2k+2lq)p

pq−1 .

Taking R→∞, we complete the proof similarly to Theorems 2.2, 2.4 and 2.5.
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