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PRODUCT MEASURABILITY WITH APPLICATIONS TO A
STOCHASTIC CONTACT PROBLEM WITH FRICTION

KENNETH L. KUTTLER, MEIR SHILLOR

Abstract. A new product measurability result for evolution equations with
random inputs, when there is no uniqueness of the ω-wise problem, is estab-

lished using results on measurable selection theorems for measurable multi-

functions. The abstract result is applied to a general stochastic system of
ODEs with delays and to a frictional contact problem in which the gap be-

tween a viscoelastic body and the foundation and the motion of the foundation
are random processes. The existence and uniqueness of a measurable solution

for the problem with Lipschitz friction coefficient, and just existence for a

discontinuous one, is obtained by using a sequence of approximate problems
and then passing to the limit. The new result shows that the limit exists and

is measurable. This new result opens the way to establish the existence of

measurable solutions for various problems with random inputs in which the
uniqueness of the solution is not known, which is the case in many problems

involving frictional contact.

1. Introduction

This article establishes the product measurability of solutions to evolution equa-
tions having random coefficients, that is, the various operators occurring in the
equations are assumed to be stochastic processes depending on the random vari-
able ω that belongs to a probability space (Ω,F , P ). In many problems described by
nonlinear partial differential equations and inclusions, this is an important gener-
alization. We apply our theory to a system of ordinary delay-differential equations
involving inputs that are stochastic processes and to a problem of frictional contact
between a viscoelastic body and a reactive foundation. In the latter problem the
gap between the body and the foundation in the reference configuration is assumed
to be a random process, and so is the speed of the foundation.

This abstract result, Theorem 1, opens the way to study a host of models set as
differential inclusions or equations that arise in many applications in which some
of the input parameters are naturally random or known with some uncertainty,
which is the case in most applied continuous systems. This general result on the
measurability of the solution is based on the use of theorems on measurable multi-
functions. This approach allows one to essentially consider the problem for one fixed
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value of the random variable ω and then to conclude the existence of a measurable
solution. A related contact problem for the vibrations of a Gao beam when the gap
is random has been studied in [13], however since the setting there was simpler, the
result was obtained directly. This abstract result applies directly to the stochastic
Navier-Stokes equations studied in [4].

From the applied point of view, it is natural to allow various parameters in the
problem to be random variables or stochastic processes. However, such generaliza-
tions lead to the difficulty of showing that the solutions are measurable, although
showing measurability is relatively straightforward when the ω-wise problems ob-
tained by fixing ω has a unique solution. Our approach is more general and it does
not require the uniqueness of the solution of the problem with fixed ω. In addi-
tion, we do not make any special assumptions on the underlying probability space
(Ω,F , P ), in contrast to what was done in the important paper [4] in the case of the
Navier-Stokes equations. However, we use the same measurable selection theorem
for measurable multi-functions but in a very different context.

The main application of Theorem 1 in this work is to a stochastic version of a
model for the dynamic frictional contact between a viscoelastic body and a reactive
foundation when the coefficient of friction is slip-rate dependent, that was studied in
[15]. The problem without stochastic input but with reactive foundation and slip-
rate independent friction coefficient was first studied in [20] and then in [10, 11]
where the static case was considered, and since then in many papers with models of
various degrees of complexity, see, e.g., [2, 7, 12, 14, 16, 17, 24] and the references
therein. General references about various versions of related contact problems with
friction are, e.g. [5, 6, 8, 21, 22, 25] and the references therein. In addition to adding
stochastic inputs, we also present an improved result for the case when the friction
coefficient is a discontinuous function of the slip-rate or even a graph, than in our
earlier papers [14, 17]. These methods open the way to study a variety of contact
problems in which the various parameters and inputs are random. We foresee that
it will be used in a number of publications.

Following the Introduction, the main theorem, Theorem 1, is formulated and
proved in Section 2. It provides a general approach that allows one to use standard
techniques for evolution equations and inclusions for fixed value of the random vari-
able ω. The main constraints are that one must start with measurable functions
and that subsequences converge weakly to weakly continuous functions, which is
usually the case in evolution problems. An application of the theorem to the mea-
surability of the solutions of systems of ordinary differential equations or inclusions
with delays, when some of the inputs are random, is provided in Section 3. The
contact problem with random gap and sliding rate is studied in Section 4, where
the problem data is given, too. Subsection 4.1 provides an abstract form of the
problem, and contains some results from the literature on compact sets in function
spaces. To deal with the friction term, which is a set-inclusion, the problem is reg-
ularized in Subsection 4.2 and the Galerkin method is used to obtain approximate
measurable solutions. Then, by obtaining the necessary a priori estimates, we pass
to the limit and obtain the unique measurable solution of the problem in the case
when the coefficient of friction is a Lipschitz function of the slip-rate. Finally, in
Subsection 4.3 the case when the friction coefficient is discontinuous, has a jump
from a static value to a dynamic value when relative motion commences, is studied.
In this case the uniqueness of the solution is not known, and seems to be unlikely.
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Using the new tools, we establish the existence of a measurable solution to the
problem. As noted above, this is an improvement of the result in [15].

2. The measurable selection theorem

In this section we study the problem of obtaining product measurable solutions
to evolution equations in the context when either there is no uniqueness to the
non-stochastic problem obtained by fixing a given ω in the probability space, or
uniqueness is not known. This is of considerable interest because there are many
important problems in which the existence of solutions is known but not their
uniqueness. This often occurs when weak limits are used to obtain existence but
there is insufficient monotonicity to show uniqueness. For example, the equations
describing a vibrating purely elastic Gao beam appear to fail to have uniqueness, see
[13]. Another well known example is the three-dimensional Navier-Stokes equations
for an incompressible viscous fluid with Dirichlet boundary conditions in a bounded
domain.

We make essential use of the ideas of measurable multi-functions having values
in a complete separable metric space, i.e., a Polish space, [9, Vol. 1, p.141].

Definition 2.1. Let X be a Polish space and let (Ω,F) be a measurable space and
let F : Ω → 2X be a multi-function assumed to have values that are non-empty
and closed sets. Then, F is said to be measurable if for every open set U in 2X ,

F−(U) = {ω : F (ω) ∩ U 6= ∅} ∈ F .

The multi-function is said to be strongly measurable if for every closed set C in 2X ,

F−(C) = {ω : F (ω) ∩ C 6= ∅} ∈ F .

One can show that strong measurability implies measurability and that mea-
surability is sufficient to obtain the existence of a measurable selection, which is
a function γ(ω) that is F measurable and γ(ω) ∈ F (ω) for each ω. In the case
when the values of F are compact sets, it can be shown that the two versions of
measurability are equivalent (the proof can be found in [9, Vol. 1, p.143]).

We now introduce some notation. We describe randomness by a probability space
(Ω,F , P ), where Ω is the sample space with elements ω, F is a given σ-algebra of
subsets of Ω, and P is the probability measure on F . The usual Borel σ-algebra
of open sets in [0, T ] is denoted by B([0, T ]) and P = µL is the usual Lebesgue
measure. Next, C = C(α, . . . , β) denotes a positive constant that depends only on
the problem data and on α, . . . , β , whose value may change from place to place.
Also, C0,1([0, T ]) denotes the Hölder space with γ = 1, so that the norm is

‖f‖0,1 = sup
t∈[0,T ]

|f(t)|+ sup
{ |f(t)− f(s)|

|t− s|
: s 6= t

}
.

The following abstract theorem is the main result in this work.

Theorem 2.2. Let V be a reflexive separable Banach space with dual V ′, and let
p, p′ be such that p > 1 and 1

p + 1
p′ = 1, and ω ∈ Ω. Let the functions t→ un(t, ω),

for n ∈ N, be in Lp
′
([0, T ];V ′) and (t, ω)→ un(t, ω) be B([0, T ])×F ≡ P measurable

into V ′. Suppose there is a set of measure zero N ⊆ Ω such that if ω /∈ N , then

sup
t∈[0,T ]

‖un(t, ω)‖V ′ ≤ C(ω), (2.1)
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for all n. Also, suppose for each ω /∈ N , each subsequence of {un} has a further
subsequence that converges weakly in Lp

′
([0, T ];V ′) to v(·, ω) ∈ Lp′

([0, T ];V ′) such
that the function t→ v(t, ω) is weakly continuous into V ′.

Then, there exists a product measurable function u such that t→ u(t, ω)is weakly
continuous into V ′ for each ω /∈ N . Moreover, there exists, for each ω /∈ N, a
subsequence un(ω) such that un(ω)(·, ω)→ u(·, ω) weakly in Lp

′
([0, T ];V ′).

We prove the theorem in steps given below. We let X =
∏∞
k=1 C([0, T ]) and

note that when it is equipped with the product topology, then one can consider X
as a metric space using the metric

d(f ,g) ≡
∞∑
k=1

2−k
‖fk − gk‖

1 + ‖fk − gk‖
,

where f = (f1, f2, . . . ), g = (g1, g2, . . . ) ∈ X, and the norm is the maximum norm
in C([0, T ]). With this metric, X is complete and separable.

The next lemma claims that if {fn} has each component bounded in C0,1([0, T ])
then it is pre-compact in X.

Lemma 2.3. Let {fn} be a sequence in X and suppose that each one of the compo-
nents fnk is bounded in C0,1([0, T ]) by C = C(k). Then, there exists a subsequence
{fnj
} that converges to some f ∈ X as nj →∞. Thus, {fn} is pre-compact in X.

Proof. By the Ascoli-Arzela theorem, there exists a subsequence {fn1} such that
the sequence of the first components fn11 converges in C([0, T ]). Then, taking a
subsequence, one can obtain {n2} a subsequence of {n1} such that both the first
and second components of fn2 converge. Continuing in this way one obtains a
sequence of subsequences, each a subsequence of the previous one such that fnj

has
the first j components converging to functions in C([0, T ]). Therefore, the diagonal
subsequence has the property that it has every component converging to a function
in C([0, T ]). The resulting function is f ∈

∏
k C([0, T ]). �

Now, for m ∈ N and φ ∈ V ′, define lm(t) ≡ max(0, t − (1/m)) and ψm,φ :
Lp

′
([0, T ];V ′)→ C([0, T ]) by

ψm,φu(t) ≡
∫ T

0

〈mφX[lm(t),t](s), u(s)〉V ds = m

∫ t

lm(t)

〈φ, u(s)〉V ds.

Here, X[lm(t),t](·) is the characteristic function of the interval [lm(t), t] and 〈·, ·〉V is
the duality pairing between V and V ′.

Let D = {φr}∞r=1 denote a countable dense subset of V . Then, the pairs (m,φ) ∈
N×D form a countable set, and let (mk, φrk

) denote an enumeration of these pairs.
To simplify the notation, we set

fk(u)(t) ≡ ψmk,φrk
(u)(t) = mk

∫ t

lmk
(t)

〈φrk
, u(s)〉V ds.

For fixed ω /∈ N and k, the functions {t → fk(uj(·, ω))(t)}j are uniformly
bounded and equicontinuous because they are in C0,1([0, T ]). Indeed, we have

|fk(uj(·, ω))(t)| =
∣∣mk

∫ t

lmk
(t)

〈φrk
, uj(s, ω)〉V ds

∣∣ ≤ C(ω)‖φrk
‖V ,
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and for t ≤ t′,

|fk(uj(·, ω))(t)− fk(uj(·, ω))(t′)|

≤
∣∣∣mk

∫ t

lmk
(t)

〈φrk
, uj(s, ω)〉V ds−mk

∫ t′

lmk
(t′)

〈φrk
, uj(s, ω)〉V ds

∣∣∣
≤ 2mk|t′ − t|C(ω)‖φrk

‖V ′ .

By Lemma 2.3, the set of functions {f(uj(·, ω))}∞j=n is pre-compact in the space
X =

∏
k C([0, T ]). We now define a set valued map Γn : Ω→ X by

Γn(ω) ≡ ∪j≥n{f(uj(·, ω))},

where the closure is taken in X. Then, Γn(ω) is the closure of a pre-compact set in
X and so Γn(ω) is compact in X. From the definition, a function f is in Γn(ω) if
and only if d(f , f(wl))→ 0 as l→∞, where each wl is one of the uj(·, ω) for j ≥ n.
In the topology on X, this happens if and only if for every k,

fk(t) = lim
l→∞

mk

∫ t

lmk
(t)

〈φrk
, wl(s, ω)〉V ds,

where the limit is the uniform limit in t.

Lemma 2.4. The mapping ω → Γn(ω) is an F measurable set-valued map with
values in X. If σ is a measurable selection, then for each t, ω → σ(t, ω) is F
measurable and (t, ω)→ σ(t, ω) is B([0, T ])×F measurable.

We note that if σ is a measurable selection then σ(ω) ∈ Γn(ω), so σ = σ(·, ω)
is a continuous function. To have σ measurable means that σ−1

k (open) ∈ F , where
the open set is in C([0, T ]).

Proof of Lemma 2.4. Let O be a basic open set in X so that O =
∏∞
k=1Ok, where

Ok is a proper open set of C([0, T ]) only for k ∈ {k1, · · · , kr}, while in the rest of
the components the open set is the whole space C([0, T ]). We need to show that

Γn−(O) ≡ {ω : Γn(ω) ∩O 6= ∅} ∈ F .

Now, Γn−(O) = ∩ri=1{ω : Γn(ω)ki ∩Oki 6= ∅}, so we consider whether

{ω : Γn(ω)ki ∩Oki 6= ∅} ∈ F . (2.2)

From the definition of Γn(ω), this is equivalent to the condition that fki(uj(·, ω)) =
(f(uj(·, ω)))ki

∈ Oki
for some j ≥ n, and so the set in (2.2) is of the form

∪∞j=n{ω : (f(uj(·, ω)))ki
∈ Oki

}.

Now ω → (f(uj(·, ω)))ki
is F measurable into C([0, T ]) and so the above set is in

F . To see this, let g ∈ C([0, T ]) and consider the inverse image of the ball with
radius r and center g,

B(g, r) = {ω : ‖(f(uj(·, ω)))ki
− g‖C([0,T ]) < r}.

By continuity considerations,

‖(f(uj(·, ω)))ki − g‖C([0,T ]) = sup
t∈Q∩[0,T ]

|(f(uj(t, ω)))ki − g(t)|,

which is the supremum over countably many F measurable functions and so it is
F measurable. Since every open set is the countable union of such balls, the F
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measurability follows. Hence, Γn−(O) is F measurable whenever O is a basic open
set.

Now, X is a separable metric space and so every open set is a countable union
of these basic sets. Let U ⊆ X be open with U = ∪∞l=1Ol where Ol is such a basic
open set. Then,

Γn−(U) = ∪∞l=1Γn−(Ol) ∈ F .
The existence of a measurable selection follows from the standard theory of mea-
surable multi-functions [3] or [9, Vol. 1, Page 141]. If σ is one of these measurable
selections, the evaluation at t is F measurable. Thus, ω → σ(t, ω) is F measurable
with values in R∞. Also, t→ σ(t, ω) is continuous, and so it follows that in fact σ
is product measurable as claimed. �

Definition 2.5. Let Γ(ω) ≡ ∩∞n=1Γn(ω).

Lemma 2.6. Γ is a nonempty F measurable set-valued function with values in
compact subsets of X. There exists a measurable selection γ such that (t, ω) →
γ(t, ω) is P measurable. Also, for each ω, there exists a subsequence, un(ω)(·, ω)
such that for each k,

γk(t, ω) = lim
n(ω)→∞

f(un(ω)(t, ω))k = lim
n(ω)→∞

mk

∫ t

lmk
(t)

〈φrk
, un(ω)(s, ω)〉V ds.

Proof. From the definition of Γ(ω) = ∩∞n=1Γn(ω) it follows that ω → Γ(ω) is a
compact set-valued map in X and is nonempty because each Γn(ω) is nonempty and
compact, and the Γn(ω) are nested. We next show that ω → Γ(ω) is F measurable.
Indeed, each Γn is compact valued and F measurable so, if F is closed,

Γ(ω) ∩ F = ∩∞n=1Γn(ω) ∩ F,

and the left-hand side is not empty iff each Γn(ω) ∩ F 6= ∅. Thus, for F closed,

{ω : Γ(ω) ∩ F 6= ∅} = ∩n{ω : Γn(ω) ∩ F 6= ∅},

and so
Γ−(F ) = ∩nΓn−(F ) ∈ F .

The last claim follows from the theory of multi-functions, see, e.g., [3, 9]. The fact
that Γn(ω) is compact implies that strong measurability and measurability coincide,
[9, Vol. 1, p.143]. Thus, Γn is measurable and Γn−(U) ∈ F , for U open, implies
Γn−(F ) ∈ F for F closed. Thus, ω → Γ(ω) is nonempty compact valued in X and
strongly F measurable.

Standard theory, [9, Vol. 1, pp 141-2], also guarantees the existence of an F
measurable selection ω → γ(ω) with γ(ω) ∈ Γ(ω), for each ω, and also that t →
γk(t, ω) (the kth component of γ) is continuous. Next, we consider the product
measurability of γk. We know that ω → γk(ω) is F measurable into C([0, T ]) and
since pointwise evaluation is continuous, ω → γk(t, ω) is F measurable. (Indeed,
a continuous function of a measurable function is measurable.) Then, since t →
γk(t, ω) is continuous, it follows that γk is a P measurable real valued function and
that γ is a P measurable R∞ valued function. Since γ(ω) ∈ Γ(ω), it follows that
for each n, γ(ω) ∈ Γn(ω). Hence, there exists jn ≥ n such that for each ω,

d(f(ujn(·, ω)), γ(ω)) < 2−n.
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Therefore, for a suitable subsequence {un(ω)(·, ω)}, we have

γ(ω) = lim
n(ω)→∞

f(un(ω)(·, ω)).

for each ω. In particular, for each k and for each t, we have

γk(t, ω) = lim
n(ω)→∞

f(un(ω)(t, ω))k = lim
n(ω)→∞

mk

∫ t

lmk
(t)

〈φrk
, un(ω)(s, ω)〉V ds, (2.3)

�

Note that it is not clear that (t, ω) → f(un(ω)(t, ω)) is P measurable, although
(t, ω)→ γ(t, ω) is P measurable.

We have now all the ingredients needed to prove the theorem.

Proof of Theorem 2.2. By assumption, there exists a subsequence, still denoted by
n(ω), such that, in addition to (2.3), the weak limit limn(ω)→∞ un(ω)(·, ω) = u(·, ω)
exists in Lp

′
([0, T ];V ′) such that t → u(t, ω) is weakly continuous into V ′. Then,

(2.3) also holds for this further subsequence and in addition,

mk

∫ t

lmk
(t)

〈φrk
, u(s, ω)〉V ds = lim

n(ω)→∞
mk

∫ t

lmk
(t)

〈φrk
, un(ω)(s, ω)〉V ds = γk(t, ω).

Let φ ∈ D be given, then there exists a subsequence, denoted by k, such that
mk →∞ and φrk

= φ. (Recall that (mk, φrk
) denotes an enumeration of the pairs

(m,φ) ∈ N × D.) Then, passing to the limit and using the assumed continuity of
s→ u(s, ω), the left-hand side of this equality converges to 〈φ, u(s, ω)〉V and so the
right-hand side, γk(t, ω), must also converge and for each ω. Since the right-hand
side is a product measurable function of (t, ω), it follows that the pointwise limit
is also product measurable. Hence, (t, ω) → 〈φ, u(t, ω)〉V is product measurable
for each φ ∈ D. Since D is a dense set, it follows that (t, ω) → 〈φ, u(t, ω)〉V is P
measurable for all φ ∈ V and so by the Pettis theorem, [27], (t, ω) → u(t, ω) is P
measurable into V ′. This completes the proof. �

Actually, one can say more about the measurability of the approximating se-
quence and in fact, we can obtain one for which ω → un(ω)(t, ω) is also F measur-
able.

Lemma 2.7. Suppose that un(ω) → u weakly in Lp
′
([0, T ];V ′), where u is product

measurable, and {un(ω)} is a subsequence of {un}, such that there exists a set of
measure zero N ⊆ Ω and

sup
t∈[0,T ]

‖un(t, ω)‖V ′ < C(ω), for ω /∈ N.

Then, there exists a subsequence of {un}, denoted as {uk(ω)}, such that uk(ω) → u

weakly in Lp
′
([0, T ];V ′), ω → k(ω) is F measurable, and ω → uk(ω)(t, ω) is also F

measurable, for each ω /∈ N .

We introduce the notation

V ≡ Lp([0, T ];V ), V ′ ≡ Lp
′
([0, T ];V ′).
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Proof. Assume that f, g ∈ V ′ and let {φk} be a countable dense subset of V. Then,
a bounded set in V ′ with the weak topology can be considered a complete metric
space using the metric

d(f, g) ≡
∞∑
j=1

2−j
|〈φk, f − g〉V |

1 + |〈φk, f − g〉V |
.

Now, let k(ω) be the first index of {un} that is at least as large as k and such that

d(uk(ω), u) ≤ 2−k.

Such an index exists because there exists a convergent sequence un(ω) that converges
weakly to u. In fact,

{ω : k(ω) = l} = {ω : d(ul, u) ≤ 2−k} ∩ ∩l−1
j=1{ω : d(uj , u) > 2−k}.

Since u is product measurable and each ul is also product measurable, these are
all measurable sets with respect to F and so ω → k(ω) is F measurable. Now, we
have that uk(ω) → u weakly in Lp

′
([0, T ];V ′), for each ω, and each function is F

measurable because

uk(ω)(t, ω) =
∞∑
j=1

X[k(ω)=j]uj(t, ω),

and every term in the sum is F measurable. �

Finally, when all the functions have values in a separable Hilbert space H, the
same arguments yield the following theorem noting that the norms in (2.1) and
(2.4) are different.

Theorem 2.8. Let H be a real separable Hilbert space. Let the functions t →
un(t, ω), for n ∈ N, be in L2([0, T ];H) and (t, ω) → un(t, ω) be B([0, T ]) × F ≡ P
measurable into H. Suppose there is a set of measure zero N ⊆ Ω such that if
ω /∈ N , then for all n,

sup
t∈[0,T ]

|un(t, ω)|H ≤ C(ω). (2.4)

Further, suppose that for each ω /∈ N , each subsequence of {un} has a subsequence
that converges weakly in L2([0, T ];H) to u(·, ω) ∈ L2([0, T ];H) such that t→ u(t, ω)
is weakly continuous into H. Then, there exists a product measurable function u
such that t→ u(t, ω) is weakly continuous into H. Moreover, there exists, for each
ω /∈ N , a subsequence un(ω) such that un(ω)(·, ω)→ u(·, ω) weakly in L2([0, T ];H).

3. Measurability for delay-differential equations

In this section we use our main theorem to establish a Peano-type existence
theorem that provides a solution of the differential equation that retains its product
measurability. In particular, this result applies to general second order ordinary
differential equations with one delay. It is an interesting example of the above
theory and will be used in the Section 4 to show the convergence of the Galerkin
method. Moreover, although the material on filtrations is not needed below, we
include it because it is of interest and will be used in the future. We note that
a filtration on [0, T ] consists of a family of σ-algebras with Ft for each t ∈ [0, T ]
such that for s < t,Fs ≤ Ft. In applications to stochastic integration, Ft is often
chosen as σ(W (s) : s ≤ t), the smallest σ-algebra for which each one of the W (s)
is measurable, where t→W (t) is a Wiener process.
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We recall that P ≡ B([0, T ]) × F , Ω is the sample space, and M(ω) and C(ω)
represent constants that depend only on the problem data and ω.

Our first result deals with the case when N and f are bounded functions. We
assume that for fixed u,v,w in Rd,

(t, ω)→ N(t,u,v,w, ω) (3.1)

is product measurable and that (t,u,v,w) → N(t,u,v,w, ω) is continuous. We
make this assumption so that if u,v,w are each product measurable functions, then
so is

(t, ω)→ N(t,u(t, ω),v(t, ω),w(t, ω), ω).
This follows by using approximations with simple functions.

Our result is as follows.

Theorem 3.1. Suppose that the function N : [0, T ] × R3d × Ω → Rd is such that
for u,v,w ∈ Rd, t ∈ [0, T ] and ω ∈ Ω the mapping (t, ω) → N(t,u,v,w, ω) is
product measurable. Also, suppose that the mapping (t,u,v,w) → N(t,u,v,w, ω)
is continuous and that

|N(t,u,v,w, ω)| ≤M(ω), (3.2)
uniformly in (t,u,v,w). Let f be P measurable and f(·, ω) ∈ L2([0, T ]; Rd).

Then, for h ≥ 0, there exists a P measurable solution u to the integral equation

u(t, ω) +
∫ t

0

N(s,u(s, ω),u(s− h, ω),w(s, ω), ω)ds = u0(ω) +
∫ t

0

f(s, ω)ds. (3.3)

Here, u0 has values in Rd and is F measurable, u(s − h, ω) = u0(ω) if s − h < 0
and for w0 a given F measurable function,

w(t, ω) ≡ w0(ω) +
∫ t

0

u(s, ω)ds.

Proof. The proof is based on the use of the delay operator τδ defined as follows.
For δ > 0, we let

τδu(s) ≡

{
u(s− δ) if s > δ,

0 if s− δ ≤ 0.

Now, let un be the solution of the equation

un(t, ω) +
∫ t

0

N(s, τ1/nun(s, ω),un(s− h, ω), τ1/nwn(s, ω), ω)ds

= u0(ω) +
∫ t

0

f(s, ω)ds.

It follows that (t, ω)→ un(t, ω) is P measurable. The assumptions on N guarantee
that for a fixed ω the family of functions {un(·, ω)} is uniformly bounded, indeed,

sup
t∈[0,T ]

|un(t, ω)| ≤ |u0(ω)|+
∫ T

0

M(ω)ds+
∫ T

0

|f(s, ω)|ds ≡ C(ω).

It is also equicontinuous since for s < t,

|un(t, ω)− un(s, ω)| ≤
∫ t

s

|N(r, τ1/nun(r, ω),un(r − h, ω), τ1/nwn(r, ω), ω)|dr

+
∫ t

s

|f(r, ω)|dr
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≤ C(ω, f)|t− s|1/2.

Therefore, by the Ascoli-Arzela theorem, for each ω there exist a subsequence ñ(ω),
which depends on ω, and a function ũ(t, ω) such that

uñ(ω)(t, ω)→ ũ(t, ω) uniformly in C([0, T ]; Rd).

This verifies that the assumptions of Theorem 2.8 hold. It follows that there exists
a function ū that is product measurable and a subsequence {un(ω)}, for each ω,
such that

lim
n(ω)→∞

un(ω)(·, ω) = ū(·, ω) weakly in L2([0, T ]; Rd)

and that t→ ū(t, ω) is continuous, since weak continuity is the same as continuity
in Rd. The same argument given above applied to the un(ω), for a fixed ω, yields
a further subsequence, denoted as {un̄(ω)(·, ω)} which converges uniformly to a
function u(·, ω) on [0, T ]. So ū(t, ω) = u(t, ω) in L2([0, T ]; Rd). Since both of these
functions are continuous in t, they must be equal for all t. Hence, (t, ω)→ u(t, ω)
is product measurable. Passing to the limit in the equation solved by {un̄(ω)(·, ω)}
and using the dominated convergence theorem, we obtain

u(t, ω)− u0(ω) +
∫ t

0

N(s,u(s, ω),u(s− h, ω),w(s, ω), ω)ds =
∫ t

0

f(s, ω)ds.

Thus t→ u(t, ω) is a product measurable solution of the integral equation. �

The theorem provides the existence of the approximate solutions needed in the
next theorem in which the assumption that the integrand is bounded is replaced
with an appropriate estimate. However, first we mention the following elementary
lower-bound inequality that is used below.

Lemma 3.2. Assume that w(t) = w0(ω) +
∫ t

0
u(s, ω)ds, define v as

v(t) =

{
u(t− h) if t ≥ h,
u0 otherwise,

and that the following estimate holds true,

(N(t,u,v,w, ω),u) ≥ −C(t, ω)− µ(|u|2 + |v|2 + |w|2).

Then, ∫ t

0

(N(t,u,v,w, ω),u)ds ≥ −C
(
C(ω) +

∫ t

0

|u|2ds
)
,

for some constant C depending on the initial data but not on u.

Proof. We have ∫ t

0

|u(s− h)|2ds =
∫ h

0

|u0|2ds+
∫ t

h

|u(s− h)|2ds

= |u0|2h+
∫ t−h

0

|u(s)|2ds

≤ |u0|2h+
∫ t

0

|u(s)|2ds,
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when t ≥ h and when s < h, the integral is dominated by

|u0|2t ≤ |u0|2h ≤ |u0|2h+
∫ t

0

|u(s)|2ds.

Next, using the usual inequalities yields∫ t

0

|w(s)|2ds ≤
∫ t

0

∣∣w0 +
∫ s

0

u(r)dr
∣∣2ds

≤
∫ t

0

(
|w0|2 + 2|w0|

∣∣ ∫ s

0

u(r)dr
∣∣+
∣∣ ∫ s

0

u(r)dr
∣∣2)ds

≤ T |w0|2 + T |w0|2 +
∫ t

0

∣∣ ∫ s

0

u(r)dr
∣∣2ds+

∫ t

0

∣∣ ∫ s

0

u(r)dr
∣∣2ds

≤ 2T |w0|2 + 2
∫ t

0

(∫ s

0

|u(r)|dr
)2

ds

≤ 2T |w0|2 + 2
∫ t

0

s

∫ s

0

|u(r)|2drds

≤ 2T |w0|2 + 2T 2

∫ t

0

|u(r)|2dr.

These estimates lead directly to the claimed result. �

We now state a more general result in which N is only bounded from below,
which is the main result in this section.

Theorem 3.3. Suppose that the function N : [0, T ]×R3d×Ω→ Rd is such that for
u,v,w ∈ Rd, t ∈ [0, T ] and ω ∈ Ω the mapping (t, ω) → N(t,u,v,w, ω) is product
measurable. Also, suppose

(t,u,v,w)→ N(t,u,v,w, ω)

is continuous, and there are a nonnegative function C(·, ω) ∈ L1([0, T ]) and a
positive constant µ such that

(N(t,u,v,w, ω),u) ≥ −C(t, ω)− µ(|u|2 + |v|2 + |w|2). (3.4)

Moreover, let f be product measurable and f(·, ω) ∈ L2([0, T ]; Rd).
Then, for each h ≥ 0, there exists a product measurable solution u to the integral

equation

u(t, ω) +
∫ t

0

N(s,u(s, ω),u(s− h, ω),w(s, ω), ω)ds = u0(ω) +
∫ t

0

f(s, ω)ds, (3.5)

where u0 has values in Rd and is F measurable. Here, u(s− h, ω) ≡ u0(ω) for all
s− h ≤ 0 and for w0 a given F measurable function,

w(t, ω) ≡ w0(ω) +
∫ t

0

u(s, ω)ds

Proof. The idea of the proof is to bound the variables, so that N is bounded, use
Theorem 3.1 to obtain product measure solutions, and pass to the limit when the
variables are allowed be be unbounded.
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Let Pm denote the projection onto the closed ball B(0, 9m) ⊂ Rd. Then, it
follows from Theorem 3.1 that there exists a product measurable solution um of
the integral equation

um(t, ω) +
∫ t

0

N(s, Pmum(s, ω), Pmum(s− h, ω), Pmwm(s, ω), ω)ds

= u0(ω) + s

∫ t

0

f(s, ω)ds.

Next, we define a stopping time

τm(ω) ≡ inf
{
t ∈ [0, T ] : |um(t, ω)|2 + |wm(t, ω)|2 > 2m

}
,

where we use the convention that inf {∅} = T . Localizing with the stopping time,

uτm
m (t, ω) +

∫ t

0

X[0,τm]N(s,uτm
m (s, ω),uτm

m (s− h, ω),wτm
m (s, ω), ω)ds

= u0(ω) +
∫ t

0

X[0,τm]f(s, ω)ds.

Note that the stopping time allowed to eliminate the projection operator in the
equation. Then, we obtain

1
2
|uτm
m (t, ω)|2

+
∫ t

0

(
X[0,τm]N

(
s,uτm

m (s, ω),uτm
m (s− h, ω),wτm

m (s, ω), ω
)
,uτm

m (s, ω)
)
ds

=
1
2
|u0(ω)|2 +

∫ t

0

X[0,τm](f(s, ω),uτm
m (s, ω))ds.

Therefore,

1
2
|uτm
m (t, ω)|2 ≤

∫ t

0

(
µ
(
|uτm
m (s, ω)|2 + |uτm

m (s− h, ω)|2 + |wτm
m (s, ω)|2

)
+ C(s, ω) +

1
2
|f(s, ω)|2

)
ds+

1
2

∫ t

0

|uτm
m (s, ω)|2ds+

1
2
|u0(ω)|2.

We note that

|u0|2h+
∫ t

0

|uτn
n (s)|2ds ≥

∫ t

0

|uτn
n (s− h, ω)|2ds,

and ∫ t

0

|wτn
n (s, ω)|2ds =

∫ t

0

∣∣w0 +
∫ s

0

X[0,τn]un(r)dr
∣∣2ds

=
∫ t

0

∣∣w0 +
∫ s

0

X[0,τn]uτn
n (r)dr

∣∣2ds
≤ C(w0(ω)) + CT

∫ t

0

|uτn
n |2ds.

Using now the Gronwall inequality yields

|uτm
m (t, ω)|2 ≤ C(u0(ω),w0(ω), µ, ‖C(·, ω)‖L1([0,T ];Rd), T, ‖f(·, ω)‖L2([0,T ];Rd))

= C(ω).



EJDE-2014/258 PRODUCT MEASURABILITY 13

Thus, it follows from the definition of the stoping time that for a.e. ω, τm = T for
all m large enough, say for m ≥ M(ω) where C(ω) ≤ 2M(ω). Next, we define the
functions

yn(t, ω) ≡ uτn
n (t, ω),

which are product measurable and satisfy

yn(t, ω) +
∫ t

0

X[0,τn]N
(
s,yn(s, ω),yn(s− h, ω),w0(ω) +

∫ s

0

yn(r, ω)dr, ω
)
ds

= u0(ω) +
∫ t

0

X[0,τn]f(s, ω)ds.

So each function is also continuous in t. Since τn = T for large enough n, it follows
that

yn(t, ω) +
∫ t

0

N
(
s,yn(s, ω),yn(s− h, ω),w0(ω) +

∫ s

0

yn(r, ω)dr, ω
)
ds

= u0(ω) +
∫ t

0

f(s, ω)ds.

Also, these functions satisfy the inequality

sup
t∈[0,T ]

|yn(t, ω)|2 ≤ C(ω) ≤ 2M(ω) < 9M(ω), (3.6)

where the constants on the right-hand side do not depend on n. Thus, for fixed
ω, we can regard N as bounded and the same reasoning used in Theorem 3.1
involving the Ascoli-Arzela theorem implies that every subsequence has a further
subsequence that converges to a solution of the integral equation for that ω. Hence,
it is continuous into Rd. It follows from the measurable selection theorem, Theorem
2.2, that there exists a product measurable function u that is continuous in t such
that u(·, ω) = limn(ω)→∞ yn(ω)(·, ω) in L2([0, T ]; Rd). By the reasoning above,
there is a further subsequence, denoted the same way, for which limn→∞ yn(ω)

in C([0, T ]; Rd) solves the integral equation for a fixed ω. Thus u is a product
measurable solution to the integral equation (3.5) as claimed. �

We made use of estimate (3.4) in the proof of this theorem. However, all that is
really needed is the following simpler condition.

Corollary 3.4. Suppose that the function N : [0, T ] × R3d × Ω → Rd is such
that for u,v,w ∈ Rd, t ∈ [0, T ] and ω ∈ Ω the mapping (t, ω) → N(t,u,v,w, ω) is
product measurable. Also, suppose that (t,u,v,w)→ N(t,u,v,w, ω) is continuous.
Moreover, for each ω, for each solution u(·, ω) of the integral equation

u(t, ω) +
∫ t

0

N(s,u(s, ω),u(s− h, ω),w(s, ω), ω)ds = u0(ω) +
∫ t

0

f(s, ω)ds, (3.7)

there exists an estimate of the form

sup
t∈[0,T ]

|u(t, ω)| ≤ C(ω) <∞. (3.8)

Moreover, let f be product measurable and f(·, ω) ∈ L1([0, T ]; Rd); u0 has values in
Rd and is F measurable and u(s− h, ω) ≡ u0(ω) whenever s− h ≤ 0; and

w(t, ω) ≡ w0(ω) +
∫ t

0

u(s, ω)ds,
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where w0 is a given F measurable function.
Then, for h ≥ 0, there exists a product measurable solution u of the integral

equation (3.5).

We note that the same conclusions apply when there is no dependence of the
integrand on u(s− h, ω), that is, there are no delays, or on w(s, ω).

4. A contact problem with friction

We apply our theoretical result, Theorem 1, to an important problem of dynamic
contact with friction between a viscoelastic body and a deformable foundation in
which the coefficient of friction depends on the relative slip speed. The problem
without randomness was studied in [15], and the novelty here is that the gap be-
tween the body and the foundation is assumed to be a random variable and so is
the foundation’s velocity. These two changes make the model much more realistic
since in engineering applications both can be determined only up to relatively large
tolerances.

The setting of the problem is depicted in Figure 1. A viscoelastic body occupies
the domain U ⊆ Rd (where d = 2, 3 in applications) that is a bounded open subset
with Lipschitz boundary Γ = ∂U . The boundary Γ consists of three parts: ΓD
where a Dirichlet data is prescribed, ΓN where a Neumann condition holds, and
the potential contact surface with the foundation ΓC . We denote by n the outer
unit normal to U on Γ. Moreover, when the foundation is planar, we assume that
it moves with velocity v∗. We also let d = 3 as the 2D case is somewhat simpler.
Finally, in this section µ denotes the friction coefficient, and not the Lebesgue
measure.

ΓD

ΓN

ΓC

?nFoundation -

g − gap

HH

U −Body

v∗

'

&

$

%
Figure 1. ΓC is the contact surface and g is the gap

We denote by u = u(x, t) the displacement vector for x ∈ U and t ∈ [0, T ], by
ε = (εij) the linearized strain tensor, and by σ = (σij) the stress tensor; here and
below i, j, k, l = 1, 2, 3. A dot above a symbol denotes the partial time derivative,
while an index following a coma indicates partial derivative with respect to the
indicated spatial variable, i.e. ui,j = ∂ui/∂xj . Moreover, summation over an index
that appears twice is implied.
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We assume that the material is linearly viscoelastic with short-term memory,
with constitutive relation

σ = Aε(u) + Cε(u̇),
where A = (aijkl) is the elasticity tensor and C = (cijkl) the viscosity tensor, both
described in more detail below. The body is being acted upon by the force density
ρf , and for the sake of simplicity we rescale the variables so that the material density
is ρ = 1. On ΓD the body is clamped so that u = 0, and a prescribed traction t
acts on ΓN .

The dynamic equations of motion and the initial and boundary conditions are
as follows.

ü = Divσ(u, u̇) + f , (t,x) ∈ (0, T )× U, (4.1)

u(0,x) = u0(x), u̇(0,x) = v0(x), x ∈ U, (4.2)

u(t,x) = 0, (t,x) ∈ (0, T )× ΓD; σ(t,x) · n = t, (t,x) ∈ (0, T )× ΓN . (4.3)

Here, n is the outer unit normal to U on Γ.

Next, we describe the contact conditions on ΓC . To that end we need the normal
and tangential components and parts of the vectors on the surface, so we let

un = u · n, uτ = u− (u · n)n,
σn = σijnjni, στi = σijnj − σnni,

written more simply, σn = n · σ · n and στ = σn− σnn.
We assume that contact is described by the normal compliance condition (see,

e.g., [20, 10, 11, 12, 16, 24, 25] and the references therein) and the friction process
by an appropriately modified condition of the Coulomb-type, thus, for x ∈ ΓC , we
assume

σn = −p(un − g), (4.4)
where p(·) is the normal compliance function, assumed to be nonnegative and to
vanish when there is no contact, i.e., when the normal displacement is less than the
gap, un ≤ g. The friction process is in the tangential direction and there is relative
motion only when the tangential traction reaches the threshold of the friction bound
denoted by Fµ, where µ is the friction coefficient, described below. We refer the
reader to [15, 25] for further details. The friction condition is

|στ | ≤ F (un − g)µ(|u̇τ − v∗|), (4.5)

|στ | = µ(|u̇τ − v∗|)F (un − g) implies u̇τ − v∗ = −λστ . (4.6)

where λ ≥ 0. Here, v∗ is the velocity of the foundation, which is known, and
the friction coefficient µ depends on the relative slip-rate, and is assumed to be a
bounded positive function having a bounded continuous derivative. It is reasonable
to assume that µ depends on x ∈ ΓC , related to the pointwise roughness of the
contact surface, however, we do not make this dependence explicit for the sake of
simpler notation.

The function g represents the gap between the contact surface ΓC and a foun-
dation along the direction n. One of the novel ingredients in this paper is that we
allow the gap to be random, which better describes real contact processes. More-
over, part of the novelty is that we do not need to make any assumption on the
sample space. It is often the case that it is assumed to be the unit interval or the
real line but no such assumption is needed here. Indeed, the exact form of the
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sample space does not enter the arguments. Therefore, in each application, one
may specify the appropriate sample space Ω freely. Therefore, we do not specify Ω
below. Thus,

g = g(t,x, ω),
where ω ∈ Ω and we assume that (t,x, ω)→ g(x, ω) is B([0, T ]×ΓC)×F measurable,
where B([0, T ]×ΓC) denotes the Borel sets of [0, T ]×ΓC . We assume that the gap
is nonnegative (we do not consider ‘shrink-fit’ cases) and bounded, so

0 ≤ g(t,x, ω) ≤ l∗ <∞,

for all (t,x, ω) and some l∗. Additional novelty in this work is that the motion of
the foundation v∗ is assumed to be a stochastic process

v∗ = v∗(t,x, ω),

and is B([0, T ]×ΓC)×F measurable. We also assume that v∗(t, x, ω) is uniformly
bounded, and to simplify the notation, we suppress the dependence on t,x and ω.

The normal compliance contact condition (4.4) says that σn the normal compo-
nent of the traction density on ΓC is dependent on the normal interpenetration of
the body’s surface asperities into those of the foundation surface. Conditions (4.5)
and (4.6) model friction. They say that no sliding takes place until |στ | reaches the
friction bound F (un−g)µ(0) and when this occurs, the tangential force density has
a direction opposite to the relative tangential velocity (4.6). The dependence of
the friction coefficient on the magnitude of the slip velocity, |u̇τ − v∗| is important
and well documented (see, e.g., [25] and the references therein) and so it has been
included.

The two new features in this model are that the gap and the foundation’s velocity
are random variables for each x ∈ ΓC . Our aim is to show the measurability of the
solutions. Thus, for a fixed ω, we have a friction problem that has been studied in
the literature, and it is the measurability which is of interest here.

We assume the following on the functions p and F . Both p and F are increasing
and

δ2r −K ≤ p(r) ≤ K(1 + r), r ≥ 0, p(r) = 0, r ≤ 0, (4.7)

F (r) ≤ K(1 + r), r ≥ 0, F (r) = 0, r ≤ 0, (4.8)

|µ(r1)− µ(r2)| ≤ Lip(µ)|r1 − r2|, ‖µ‖∞ ≤ C, (4.9)

and for ψ = F, p, and r1, r2 ≥ 0,

|ψ(r1)− ψ(r2)| ≤ K|r1 − r2|. (4.10)

One could consider more general growth conditions than these (see [12]), but we
keep this part simple to emphasize the new stochastic features.

The stress tensor is given by

σij = Aijkluk,l + Cijklu̇k,l, (4.11)

where A and C are in L∞(U) and for B = A or C, we have the following symmetries.

Bijkl = Bijlk , Bjikl = Bijkl , Bijkl = Bklij , (4.12)

and we also assume that
BijklHijHkl ≥ εHrsHrs (4.13)

for all symmetric Hij .
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In the rest of this section, V is a closed subspace of (H1(U))3 containing the
space of test functions (C∞0 (U))3; ⇀ denotes weak convergence in the case of a
reflexive Banach space and weak∗ convergence for a few examples of dual spaces
that are not reflexive, while → means strong convergence; γ denotes the trace map
from W 1,2(U) into L2(Γ); H denotes (L2(U))3 and we always identify H and H ′

to write
V ⊆ H = H ′ ⊆ V ′,

so that (V,H, V ′) is a Gelfand triple. The duality pairing of V and V ′ is denoted
by 〈·, ·〉V . We also define

V = L2(0, T ;V ), H = L2(0, T,H), V ′ = L2(0, T ;V ′).

We refer to [1, 18] for standard notation and properties of Sobolev Spaces.

4.1. The Abstract Problem. In this subsection we derive an abstract formula-
tion of the problem that allows us to use various tools and results from the theory
of evolution equations. However, first, we recall two theorems about compact sets
of functions found in Lions [19] and Simon [26], respectively, that we need below.
These theorems apply for a fixed ω ∈ Ω.

Theorem 4.1. Assume that the sets W,U and Y are such that W ⊆ U ⊆ Y , and
the inclusion map of W into U is compact and the inclusion map of U into Y is
continuous. Let p ≥ 1, q > 1, and define

S = {u ∈ Lp(0, T ;W ) : u′ ∈ Lq(0, T ;Y ) and ‖u‖Lp(0,T ;W ) + ‖u′‖Lq(0,T ;Y ) < R}.
Then, S is pre-compact in Lp(0, T ;U).

Theorem 4.2. Let W,U and Y , and p, q, be as in Theorem 4.1 and let

S = {u : ‖u(t)‖W + ‖u′‖Lq(0,T ;Y ) ≤ R for t ∈ [0, T ]}.
Then, S is pre-compact in C(0, T ;U).

Now, we obtain an abstract formulation of the problem (4.1)–(4.6). We begin
by defining the operators M,A : V → V ′ by

〈Mu,v〉V =
∫
U

Cijkluk,lvi,jdx, (4.14)

〈Au,v〉V =
∫
U

Aijkluk,lvi,jdx. (4.15)

Also, let the operator v→ P (u), mapping V into V ′, be given by

〈P (u),w〉V =
∫ T

0

∫
ΓC

p(un − g)wn dSdt, (4.16)

where dS is surface measure on Γ and

u(t) = u0 +
∫ t

0

v(s)ds, (4.17)

for u0 ∈ V . We note that P depends on u0 but we suppress this in favor of simpler
notation. Let

γ∗τ : L2
(
0, T ;L2(ΓC)3

)
→ V ′,

be defined as

〈γ∗τ ξ,w〉V ≡
∫ T

0

∫
ΓC

ξ ·wτ dSdt.
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Finally, we assume that f(·, ω) ∈ L2(0, T ;V ′) and it includes the body force f̂ in
U and the traction t on ΓN .

The abstract form of problem (4.1)–(4.6), is as follows.
Problem Pabst. Find u,v ∈ V and ξ ∈ L2(0, T ;L2(ΓC)3) such that

v′ +Mv +Au + Pu + γ∗τ ξ = f in V ′, (4.18)

with v(0, ω) = v0(ω) ∈ H, and

u(t, ω) = u0(ω) +
∫ t

0

v(s, ω)ds, u0(ω) ∈ V, (4.19)

and for all w ∈V,

〈γ∗τ ξ,w〉V ≤
∫ T

0

∫
ΓC

F (un−g)µ(|vτ−v∗|)·[|vτ−v∗+wτ |−|vτ−v∗|] dS dt. (4.20)

We note that if v solves the abstract problem Pabst, then u is a weak solution
of (4.1)–(4.6). As usual, other variational and stable boundary conditions can
be incorporated by the appropriate choice of V and f(·, ω) ∈ L2(0, T ;V ′). The
following is the main result for the cases with continuous friction coefficient.

Theorem 4.3. Let u0(ω) ∈ V,v0(ω) ∈ H, for each ω ∈ Ω, these functions being
F measurable. Assume that f(·, ω) ∈ V ′, and the gap (t, ω) → g(t, ω) and the
sliding velocity (t, ω)→ v∗(t, ω) are B([0, T ])× F measurable and bounded. Then,
there exists a solution (u,v) to the problem (4.18)–(4.20) for each ω. This solution
(t, ω) → (u(t, ω),v(t, ω)) is measurable into V,H and V ′. If, in addition, the
friction coefficient µ is Lipschitz continuous, then the solution is unique.

To carry out the proofs of existence and uniqueness, we note that both M and A
are coercive, nonnegative, and symmetric. That is, for two constants δ > 0, λ ≥ 0
they satisfy the following conditions

〈Bu,u〉 ≥ δ2‖u‖2W − λ|u|2H , 〈Bu,u〉 ≥ 0, 〈Bu,v〉 = 〈Bv,u〉, (4.21)

for B = M or A. Indeed, (4.21) is a consequence of (4.11)–(4.13) and Korn’s
inequality [23].

4.2. An Approximate Problem. To establish the theorem, we use a sequence of
approximate problems that we solve using the Galerkin method. To that end, we
first regularize the friction condition, which has a subgradient form. We approxi-
mate the norm function γ(r) = |r| with the function

Ψε(r) =
√
|r|2 + ε,

which is convex, Lipschitz continuous, and has bounded derivative, and it converges
uniformly to γ(r) = |r| on R as ε→ 0, moreover,

|Ψε(x)−Ψε(y)| ≤ |x− y|, |Ψ′ε(t)| ≤ 1.

Furthermore, Ψ′ε is Lipschitz continuous with Lipschitz constant C/
√
ε, where Ψ′ε

denotes the gradient or Frechet derivative of the scalar valued function.
The approximate problem to which we apply the Galerkin method is obtained

by replacing the friction condition (4.20) with its regularization, and is as follows.
Problem Pε. Find u,v ∈ V such that

v′ +Mv +Au + Pu + γ∗τF (un − g(ω))µ(|vτ − v∗(ω)|)Ψ′ε(vτ − v∗(ω)) = f (4.22)
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in V ′, with v(0) = v0 ∈ H, where

u(t) = u0 +
∫ t

0

v(s)ds, u0 ∈ V. (4.23)

Here, we indicate that the gap and the velocity of the foundation are random
variables depending on ω ∈ Ω, which is fixed, and the approximate friction operator
is defined for w ∈ V in the following manner,

〈γ∗τF (un − g(ω))µ(|vτ − v∗(ω)|)Ψ′ε(vτ − v∗(ω)),w〉

=
∫

ΓC

F (un − g(ω))µ(|vτ − v∗(ω)|)Ψ′ε(vτ − v∗(ω)) ·wτ dS.

Let R denote the Riesz map from V to V ′ defined by 〈Ru,v〉V = (u,v)H . Then,
R−1 : H → V is a compact and self-adjoint operator and so there exists a complete
orthonormal basis {ek} for H, such that {ek} ⊆ V and

Rek = λkek,

where λk →∞. Let Vn = span{e1, . . . , en}. Then, ∪nVn is dense in H and is also
dense in V , and {ek} is an orthogonal set in V . Indeed, we have

0 = (ek, el)H =
1
λk

(Rek, el)H =
1
λk
〈Rek, el〉 =

1
λk

(el, ek)V , k 6= l.

Next, to show that ∪nVn is dense in V , assume that this is not so, then there exists
f ∈ V ′, f 6= 0, such that ∪nVn is in ker(f). But f = Ru, for some u, and so

0 = 〈Ru, ek〉 = 〈Rek,u〉V = λk(ek,u)H ,

for all ek and so u = 0 by the density of ∪nVn in H, and hence Ru = 0 = f after
all, a contradiction.

Now, we apply the Galerkin method to Problem Pε. Let

vk(t, ω) =
k∑
j=1

xj(t, ω)ej , uk(t, ω) = u0 +
∫ t

0

vk(s, ω)ds,

and let vk be the solution to the following integral equation, for each ω and j ≤ k.
We now suppress the dependence on ω to simplify the notation, unless it is needed.〈

vk(t)− v0k +
∫ t

0

Mvk +Auk + Puk

+ γ∗τF (ukn − g)µ(|vkτ − v∗|)Ψ′ε(vkτ − v∗), ej
〉

=
∫ t

0

〈f , ej〉ds.

(4.24)

Here, v0k → v0 ∈ H and the equation holds for each ej for each j ≤ k. Then,
this integral equation reduces to a system of ordinary differential equations for the
vector x(t, ω) whose jth component is xj(t, ω) mentioned above. We will obtain
existence and measurability of x from Theorem 3.3.

We differentiate, multiply by xj , add and then integrate and after some manip-
ulations we obtain various terms that need to be estimated. For the friction term
we have,∫ t

0

∫
ΓC

F (ukn − g)µ(|vkτ − v∗|)Ψ′ε(vkτ − v∗) · vkτ dS ds
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=
∫ t

0

∫
ΓC

F (ukn − g)µ(|vkτ − v∗|)Ψ′ε(vkτ − v∗) · (vkτ − v∗) dS ds

+
∫ t

0

∫
ΓC

F (ukn − g)µ(|vkτ − v∗|)Ψ′ε(vkτ − v∗) · v∗ dS ds.

The first term on the right-hand side is nonnegative and the second term is bounded
below by an expression of the form

−C
∫ t

0

∫
ΓC

(1 + |ukn|)|v∗| dS ds ≥ −C
∫ t

0

‖uk‖W ‖v∗‖L2(ΓC)3ds− C

≥ −C
∫ t

0

‖uk‖W − C,

where C is independent of ε, ω and k.
Here, the space W embeds compactly into V and the trace map from W to

L2(ΓC)3 is continuous. We note that the use of the space W is not essential here,
however, below we do need this intermediate space. To estimate the term with P ,
one uses the linear growth condition of P in (4.7).

It follows from equivalence of norms in finite dimensional spaces, the assumed
estimates on M , A, and P , and standard manipulations depending on compact
embeddings, that there exists an estimate suitable to apply Theorem 3.3 to obtain
the existence of a solution such that (t, ω) → x(t, ω) is measurable into Rk which
implies that (t, ω)→ vk(t, ω) is product measurable into V and H. This yields the
measurable Galerkin approximation of a solution.

Also, the estimates and compact embedding results for Sobolev spaces lead to
the inequality

|vk(t)|2H +
∫ T

0

‖vk‖2V ds+ ‖uk(t)‖2V ≤ C, (4.25)

where the constant C does not depend on ε or k.
Next, we need to estimate the time derivative in V ′. The integral equation

implies that for all w ∈ Vk,

〈v′k(t),w〉V
+ 〈Mvk +Auk + Puk + γ∗τF (ukn − g)µ(|vkτ − v∗|)Ψ′ε(vkτ − v∗),w〉V
= 〈f ,w〉,

(4.26)

where the dependence on t and ω is suppressed. In terms of inner products in V
this reduces to

(R−1v′k(t),w)V

+
(
R−1(Mvk +Auk + Puk + γ∗τF (un − g)µ(|vkτ − v∗|)Ψ′ε(vkτ − v∗)),w

)
V

= (R−1f ,w)V .

In terms of the orthogonal projection in V onto Vk, denoted by Pk, this takes the
form

(R−1v′k(t), Pkw)V

+ (R−1
(
Mvk +Auk + Puk + γ∗τF (un − g)µ(|vkτ − v∗|)Ψ′ε(vkτ − v∗)

)
, Pkw)V

= (R−1f , Pkw)V ,
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for all w ∈ V . Now v′k(t) ∈ Vk and so the first term can be simplified and we can
write

(R−1v′k(t),w)V

+ (R−1
(
Mvk +Auk + Puk + γ∗τF (un − g)µ(|vkτ − v∗|)Ψ′ε(vkτ − v∗)

)
, Pkw)V

= (R−1f , Pkw)V ,

for all w ∈ V . Then it follows that for all w ∈ V ,

(R−1v′k(t),w)V

+ (PkR−1
(
Mvk +Auk + Puk + γ∗τF (un − g)µ(|vkτ − v∗|)Ψ′ε(vkτ − v∗)

)
,w)V

= (PkR−1f ,w)V .

Thus, in V we have

R−1v′k(t) + PkR
−1
(
Mvk +Auk + Puk + γ∗τF (un − g)µ(|vkτ − v∗|)Ψ′ε(vkτ − v∗)

)
= PkR

−1f .

and R−1 preserves norms while Pk decreases them. Hence, the estimate (4.25)
implies that ‖v′k‖V′ is also bounded independently of ε and k. Then, summarizing
the above estimates and restoring ω, yields

|vk(t, ω)|H + ‖vk(·, ω)‖V + ‖v′k(·, ω)‖V′ + ‖uk(t, ω)‖V ≤ C, (4.27)

where C is a constant that does not depend on ε and k. Also, integrating (4.26),
leads to

i∗k

(
vk(t)− v0k +

∫ t

0

Mvkds+
∫ t

0

Aukds+
∫ t

0

Puk ds

+
∫ t

0

γ∗τF (ukn − g)µ(|vkτ − v∗|)Ψ′ε(vkτ − v∗)ds
)

= i∗k

∫ t

0

fds,

(4.28)

where i∗k is the dual map to the inclusion map ik : Vk → V .
Let W be an intermediate space introduced above such that

V ⊆W ⊆ H, V dense in W,

where the embedding is compact and the trace map onto L2(U) is continuous.
Using Theorems 4.1 and 4.2, it follows that for each fixed ω ∈ Ω, the following
convergences hold true for suitable subsequences, still denoted as {vk} , which may
depend on ω. We note that the compactness of the embedding of V into W and
consequently into H implies the compactness of the embedding of H = H ′ into W ′.
Then using the estimates and these theorems, as k →∞, we obtain

vk ⇀ v in V, (4.29)

v′k ⇀ v′ in V ′, (4.30)

vk → v strongly in C([0, T ],W ′), (4.31)

vk → v strongly in L2([0, T ];W ), (4.32)

vk(t)→ v(t) in W for a.a. t, (4.33)

uk → u strongly in C([0, T ];W ), (4.34)
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Auk ⇀ Au in V ′, (4.35)

Mvk ⇀Mv in V ′. (4.36)

It follows from these convergences and the density of ∪nVn in V that by passing to
a limit and using the dominated convergence theorem and the strong convergences
above in the nonlinear terms, we obtain the following equation that holds in V ′,

v(t) +
∫ t

0

Mvds+
∫ t

0

Auds+
∫ t

0

Puds

+
∫ t

0

γ∗τF (un − g(ω))µ(|vτ − v∗(ω)|)Ψ′ε(vτ − v∗(ω))ds

= v0 +
∫ t

0

fds.

(4.37)

Thus, t→ v(t, ω) is continuous into V ′. This fact together with estimate (4.27)
imply that the conditions of Theorem 2.2 are satisfied. It follows that there is a
function v̄ which is product measurable into V ′ and weakly continuous in t and
such that for each ω there is a subsequence vk(ω) such that vk(ω)(·, ω) ⇀ v̄(·, ω)
in V ′. By repeating the above argument, for each ω we obtain that there exists a
further subsequence, still denoted as vk(ω), that converges in V ′ to v(·, ω), which is
a solution (4.37) that is continuous into V ′. Hence, v̄(·, ω) = v(·, ω), and since these
functions are both weakly continuous into V ′ they must be identical. Therefore,
there is a product measurable solution v to each regularized problem.

It remains to pass to the regularization limit ε→ 0. We let ε = 1/k and denote
the product measurable solution of (4.37) by vk and note that estimate (4.25) holds
true for vk. Then, we obtain a subsequence, still denoted as vk, that has the same
convergences as in (4.29)–(4.36). Thus, we obtain these convergences along with
the fact that vk is product measurable and for each ω it is a solution of the problem

vk(t) +
∫ t

0

Mvk ds+
∫ t

0

Auk ds+
∫ t

0

Puk ds

+
∫ t

0

γ∗τF (ukn − g(ω))µ(|vkτ − v∗(ω)|)Ψ′1/k(vkτ − v∗(ω))ds

= v0 +
∫ t

0

fds.

(4.38)

Next, in addition to (4.29)–(4.36), we have

Ψ′1/k(vkτ − v∗) ⇀ ξ in L∞([0, T ];L∞(ΓC)3),

and moreover,

Ψ′1/k(vkτ − v∗) ·wτ ≤ Ψ1/k(vkτ − v∗ + wτ )−Ψ1/k(vkτ − v∗).

Therefore, passing to the limit as k →∞; using the strong convergence in the space
L2([0, T ];W ), of vkτ to vτ ; the uniform convergence of Ψ1/k to ‖ · ‖; the pointwise
convergence in W ; and the dominated convergence theorem, we obtain that for
w ∈ V, ∫ t

0

∫
ΓC

F (ukn − g(ω))µ(|vkτ − v∗(ω)|)Ψ′1/k(vkτ − v∗(ω)) ·wτ dS ds
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→
∫ t

0

∫
ΓC

F (un − g(ω))µ(|vτ − v∗(ω)|)ξ ·wτ dS ds,

where∫ t

0

∫
ΓC

ξ ·wτ dS ds ≤
∫ t

0

∫
ΓC

(|vkτ − v∗ + wτ | − |vkτ − v∗|) dS ds. (4.39)

Then, passing to the limit in the integral equation (4.38), we obtain that for each
ω, v is a solution of the integral equation

v(t) +
∫ t

0

Mv ds+
∫ t

0

Au ds+
∫ t

0

Pu ds

+
∫ t

0

γ∗τF (un − g(ω))µ(|vτ − v∗(ω)|)ξ ds

= v0 +
∫ t

0

f ds,

(4.40)

where ξ satisfies the inequality (4.39). In particular, v is continuous into V ′ and
now, the conclusion of the measurable selection theorem applies and yields the
existence of a measurable solution to (4.40) for each ω. Taking a weak derivative, it
follows that we have obtained a product measurable solution to the system (4.18)–
(4.20). This completes the existence part of the proof of Theorem 4.3.

We note that when the friction coefficient µ(·) is Lipschitz continuous, one can
show that for each ω the solution of the integral equation (4.38) is unique, although
this it is not an obvious statement, see [15]. This follows from standard procedures
involving Gronwall’s inequality and the various necessary estimates. Therefore, it
is possible to obtain the product measurability by using more elementary methods.

We also note that it allows one to include a stochastic integral of the form∫ t
0

ΦdW . In this case one must consider a filtration and obtain solutions that are
adapted to the filtration.

In the next section we consider the case of discontinuous friction coefficient and in
this case it is not clear whether there is uniqueness, but we still obtain a measurable
solution.

4.3. Discontinuous coefficient of friction. In this section we consider the case
when the coefficient of friction is a discontinuous function of the slip speed, which
was studied by us in [15]. This is the case described in elementary physics and
engineering courses, as well as in a host of engineering publications on friction, which
assumes, based on experimental data, that the coefficient of sliding or dynamic
friction is less than the coefficient of static friction. Additional information can be
found in [25] and the many references therein. Therefore, we assume the friction
coefficient function µ has a jump discontinuity at 0, becoming smaller when the slip
speed is positive. The graph of the multi-function friction coefficient µ is depicted
in Figure 2 in blue.

We assume the friction coefficient is a set-valued function µ = µ(r) that consists
of a Lipschitz continuous function µs and the segment connecting the static friction
coefficient µ0 and the value µs(0) on the vertical axis, Figure 2.

To study the frictional contact problem with discontinuous friction coefficient,
we regularize the coefficient, obtain a measurable solution to each regularized prob-
lem as above, and then pass to the limit. To that end, we approximate by the
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6

µ0

|v − v∗|

µs

µs(0)

µk

Figure 2. Graph of µ and µk vs. the slip-rate |v − v∗|.

multi-function µ with the sequence of functions µk, Figure 2, which are Lipschitz
continuous and converge uniformly to µ on every interval of the form [δ,∞) for
δ > 0. It follows from Theorem 4.3 that for each k there exists a unique measurable
solution of the integral equation

vk(t) +
∫ t

0

Mvk ds+
∫ t

0

Auk ds+
∫ t

0

Puk ds

+
∫ t

0

γ∗τF (ukn − g(ω))µk(|vkτ − v∗(ω)|)ξkds = v0 +
∫ t

0

f ds,
(4.41)

where∫ t

0

∫
ΓC

ξk ·wτ dS ds ≤
∫ t

0

∫
ΓC

|vkτ − v∗ + wτ | − |vkτ − v∗| dS ds. (4.42)

Let γ(r) = |r|, then it follows from (4.42) that for ω off a set of measure zero
ξk ∈ ∂γ(vkτ − v∗) a.e. t for each k. Thus,∫ t

0

∫
ΓC

F (ukn − g)µk(|vkτ − v∗|)ξk ·wτ dS ds

≤
∫ t

0

∫
ΓC

F (ukn − g)µk(|vkτ − v∗|)(|vkτ − v∗ + wτ | − |vkτ − v∗|) dS ds.

Now, for each ω, the estimate (4.25) holds true, thus,

|vk(t)|2H +
∫ T

0

‖vk‖2V ds+ ‖uk(t)‖2V ≤ C,

where C does not depend on k. Since ξk is bounded, it follows from (4.41) and this
estimate, that v′k is bounded in V ′. So,

|vk(t)|2H +
∫ T

0

‖vk‖2V ds+ ‖uk(t)‖2V + ‖v′k‖V′ ≤ C. (4.43)

As was noted above, the constant C is independent of k. Now, for fixed ω, there
exists a subsequence, still denoted as {vk} such that the convergences obtained in
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(4.29)–((4.36) hold. Thus, as k →∞,

vk ⇀ v in V, (4.44)

v′k ⇀ v′ in V ′, (4.45)

vk → v strongly in C([0, T ],W ′), (4.46)

vk → v strongly in L2([0, T ];W ), (4.47)

vk(t)→ v(t) in W for a. a. t, (4.48)

uk → u strongly in C([0, T ];W ), (4.49)

Auk ⇀ Au in V ′, (4.50)

Mvk ⇀Mv in V ′. (4.51)

We note that more can be said if a further subsequence is taken. Indeed,

m(t : ‖vk(t)− v(t)‖W ≥ λ) <
1
λ

∫ T

0

‖vk − v‖2W ds,

and so there exists a subsequence, still denoted by {vk}, such that

m(t : ‖vk(t)− v(t)‖W ≥ 2−k) < 2−k.

The Borel-Cantelli lemma implies that there exists a set of measure zero N such
that for t not in this set,

‖vk(t)− v(t)‖W < 2−k,
for all k sufficiently large. Thus, for all k large enough,

‖vkτ (t)− vτ (t)‖L2(ΓC) <
C

2k
.

It now follows from the usual proof of the completeness of the space L2 that for
t /∈ N ,

vkτ (t, x)→ vτ (t, x) a.e. x. (4.52)
Passing to a further subsequence, if necessary, we may also assume that

µk(|vkτ − v∗|) ⇀ µ̂ weak ∗ in L∞([0, T ];L∞(ΓC)),

µk(|vkτ − v∗|)ξk ⇀ Σ weak ∗ in L∞([0, T ], L∞(ΓC)3).

Next, for a given w ∈ V, we consider only those (t, x) for which convergence takes
place in (4.52), and denote the set as

S0 ≡ {(t, x) /∈M : |vτ (t, x)− v∗| = 0},
where M is the subset of ([0, T ] × ΓC where convergence does not take place.
Then, from the description of the µk, for k large enough, µk(|vkτ (t, x) − v∗|) ∈
[µs(0)− ε, µ0]. Let B be the set of all those (t, x) ∈ S0 for which µ̂(t, x) > µ0 and
suppose it has positive measure. Then, since S is the surface measure on ΓC and
(m× S)(B) > 0, it follows from the above weak convergence that

µ0(m× S)(B) =
∫ T

0

∫
ΓC

µ0XB(t, x) dS dt

≥
∫ T

0

∫
ΓC

lim
k→∞

µk(|vkτ − v∗|)XB(t, x) dS dt

= lim
k→∞

∫ T

0

∫
ΓC

µk(|vkτ − v∗|)XB(t, x) dS dt
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=
∫ T

0

∫
ΓC

µ̂(t, x)XB(t, x) dS dt > µ0(m× S)(B),

which is a contradiction. Similarly, if we assume that B consists of those (t, x) ∈ S0

for which µ̂(t, x) < µs(0) − ε, one obtains a contradiction unless (m × S)(B) = 0.
It follows that for a.e. (t, x) ∈ S0,

µ̂(t, x) ∈ [µs(0)− ε, µ0].

Since ε is arbitrary, it follows that µ̂(t, x) ∈ [µs(0), µ0] for a.e. (t, x). Now, let

S+ ≡ {(t, x) /∈M : |vτ (t, x)− v∗| > 0}.

Then, by the convergence (4.52), for a.e. (t, x),

µk(|vkτ (t, x)− v∗|)→ µ(|vτ (t, x)− v∗|),

and so similar arguments show that µ̂(t, x) = µ(|vτ (t, x) − v∗|) for these (t, x) as
well. Thus µ̂ is in the graph of µ(|vτ (t, x) − v∗|) off a set of measure zero. Now,
consider the friction term,∫ T

0

∫
ΓC

F (ukn − g)µk(|vkτ − v∗|)ξk ·wτ dS dt

≤
∫ T

0

∫
ΓC

F (ukn − g)µk(|vkτ − v∗|)(|vkτ − v∗ + wτ | − |vkτ − v∗|) dS dt.

Then the weak convergence and the strong convergence above imply∫ T

0

∫
ΓC

F (un − g)Σ ·wτ dS dt

≤
∫ T

0

∫
ΓC

F (un − g)µ̂(|vkτ − v∗ + wτ | − |vkτ − v∗|) dS dt.

Here µ̂(t, x) ∈ µ(|vτ (t, x)−v∗|). Define ξ ≡ Σ/µ̂, which is well defined since µ̂ 6= 0.
Then, the above expression takes the form∫ T

0

∫
ΓC

F (un − g)µ̂(
Σ
µ̂

) ·wτ dS dt

=
∫ T

0

∫
ΓC

F (un − g)µ̂ξ ·wτ dS dt

≤
∫ T

0

∫
ΓC

F (un − g)µ̂(|vkτ − v∗ + wτ | − |vkτ − v∗|) dS dt,

where µ̂(t, x) ∈ µ(|vτ (t, x)− v∗|).
We now return to the approximate integral equation (4.41). The strong conver-

gence (4.49) is sufficient to pass to the limit in the term involving P . Therefore,
collecting the above results establishes the following Proposition.

Proposition 4.4. For fixed ω, there exist four functions (v,u,µ̂, ξ) such that v ∈ V,
u ∈ C([0, T ], V ), v′ ∈ V ′

u(t) = u0 +
∫ t

0

v(s)ds, (4.53)

µ̂ ∈ µ(|vτ (t, x)− v∗|) a.e. (t, x).
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For all w ∈ V,∫ T

0

∫
ΓC

F (un − g)µ̂ξ ·wτ dS dt

≤
∫ T

0

∫
ΓC

F (un − g)µ̂(|vkτ − v∗ + wτ | − |vkτ − v∗|) dS dt,

and

v(t) +
∫ t

0

Mvds+
∫ t

0

Au ds+
∫ t

0

Pu ds+
∫ t

0

γ∗τF (un − g)µ̂ξds

= v0 +
∫ t

0

f ds.
(4.54)

Finally, the remaining issue is to show the existence of a measurable solution.
However, this follows in the same way as above from the measurable selection
theorem, Theorem 2.2. The reasoning as above shows that for a fixed ω every
sequence has a subsequence that converges to a solution of the integral equation
(4.53)–(4.54) that is continuous into V ′, this continuity follows directly from the
integral equation (4.54). Moreover, one can obtain the estimate (4.43) for all of
the sequence vk for ω off a set of measure zero. Therefore, Theorem 2.2 asserts
that there is a function v(·, ω) in V ′ that is product measurable into V ′ that is
also weakly continuous in t into V ′, and there is a subsequence vk(ω)(·, ω) that
converges weakly to v(·, ω) in V ′. We note that although v has values in V , it is
only known to be continuous into V ′, which has a weaker norm. Then, it follows
from the above argument that a further subsequence converges to a solution of the
integral equation, and since both are weakly continuous into V ′, this solution to the
integral equation equals this measurable function v for all t, and for each ω off a
set of measure zero. Thus, there is a measurable solution to the stochastic friction
problem with discontinuous friction coefficient, too. This result is summarized in
the following theorem.

Theorem 4.5. For each ω ∈ Ω, let u0(ω) ∈ V , v0(ω) ∈ H, and f(·, ω) ∈ V ′. Also,
assume the gap g and sliding velocity v∗ are B([0, T ]) × F measurable, and µ has
a jump discontinuity at the origin. Then, there exists a solution v of the problem
summarized in (4.53)–(4.54) for each ω ∈ Ω. This solution (t, ω) → v(t, ω) is
product measurable into V,H and V ′.

It only remains to check the last claim about measurability into the spaces V and
H. By the density of V into H, it follows that H ′ is dense in V ′ and so a simple
argument using the Pettis theorem implies that ω → v(t, ω) is F measurable in
both V and H.

Finally, we note that if we assume more regularity on f , say that it is actually
in L2([0, T ]× Ω;V ′), then we could say that in fact, v ∈ L2([0, T ]× Ω;V ). This is
obtained by simply integrating the estimate (4.25) and being more careful about the
structure of the constant on the right-hand side in this inequality. The measurability
issue is obtained again from our major theorem. We have not done this because
we want to emphasize that this extra assumption is not needed in order to get
measurable solutions.
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